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Figure 1. With one suite of parameters, X-Decoder after pretraining supports all types of image segmentation tasks ranging from open-vocabulary in-
stance/semantic/panoptic segmentation to referring segmentation, and vision-language tasks including image-text retrieval, and image captioning (labeled in
green boxes). It further empowers composite tasks like referring captioning using X-Decoder itself and image editing collaborating with generative models
such as Stable Diffusion [61] (labeled in yellow boxes).

Abstract
We present X-Decoder, a generalized decoding model

that can predict pixel-level segmentation and language to-
kens seamlessly. X-Decoder takes as input two types of
queries: (i) generic non-semantic queries and (ii) semantic
queries induced from text inputs, to decode different pixel-
level and token-level outputs in the same semantic space.
With such a novel design, X-Decoder is the first work that
provides a unified way to support all types of image segmen-
tation and a variety of vision-language (VL) tasks. With-
out any pseudo-labeling, our design enables seamless in-
teractions across tasks at different granularities and brings
mutual benefits by learning a common and rich pixel-level
understanding. After pretraining on a mixed set of a lim-
ited amount of segmentation data and millions of image-text
pairs, X-Decoder exhibits strong transferability to a wide
range of downstream tasks in both zero-shot and finetuning
settings. Notably, it achieves (1) state-of-the-art results on

open-vocabulary segmentation and referring segmentation
on seven datasets; (2) better or competitive finetuned per-
formance to other generalist and specialist models on seg-
mentation and VL tasks; and (3) flexibility for efficient fine-
tuning and novel task composition (e.g., referring caption-
ing and image editing shown in Fig. 1). Code, demo, video
and visualization are available at: https://x-decoder-
vl.github.io.

1. Introduction
Visual understanding at different levels of granularity

has been a longstanding problem in the vision community.
The tasks span from image-level tasks (e.g., image clas-
sification [14], image-text retrieval, image captioning [8],
and visual question answering (VQA) [2]), region-level lo-
calization tasks (e.g., object detection and phrase ground-
ing [58]), to pixel-level grouping tasks (e.g., image in-
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stance/semantic/panoptic segmentation [27, 35, 48]). Until
recently, most of these tasks have been separately tackled
with specialized model designs, preventing the synergy of
tasks across different granularities from being exploited. In
light of the versatility of transformers [67], we are now wit-
nessing a growing interest in building general-purpose mod-
els that can learn from and be applied to a diverse set of
vision and vision-language tasks, through multi-task learn-
ing [26, 30], sequential decoding [7, 50, 71, 80], or unified
learning strategy [79, 85, 88, 89]. While these works have
shown encouraging cross-task generalization capabilities,
most target the unification of image-level and region-level
tasks, leaving the important pixel-level understanding un-
derexplored. In [7, 50], the authors attempt to unify seg-
mentation into a decoding of a coordinate sequence or a
color map, which, however, produces suboptimal perfor-
mance and limited support for open-world generalization.

Arguably, understanding images down to the pixel level
is one of the most important yet challenging problems in
that: (1) pixel-level annotations are costly and undoubt-
edly much more scarce compared to other types of anno-
tations; (2) grouping every pixel and recognizing them in
an open-vocabulary manner is less studied; and (3) more
importantly, it is non-trivial to learn from data at two sub-
stantially different granularities while also obtaining mutual
benefits. Some recent efforts have attempted to bridge this
gap from different aspects. In [12], Chen et al. propose
a unified architecture Mask2Former that tackles all three
types of segmentation tasks but in a closed set. To support
open vocabulary recognition, a number of works study how
to transfer or distill rich semantic knowledge from image-
level vision-language foundation models such as CLIP [59]
and ALIGN [32] to specialist models [17,24,60]. However,
all these initial explorations focus on specific segmentation
tasks of interest and do not show generalization to tasks at
different granularities. In this work, we take one step fur-
ther to build a generalized decoder called X-Decoder1 to-
wards the unification of pixel-level and image-level vision-
language understanding, as shown in Figure 1.

A generalized decoding framework. We formulate
all tasks including pixel-level image segmentation, image-
level retrieval and vision-language tasks into a generic de-
coding procedure. Specifically, X-Decoder is built on top
of a vision backbone and a transformer encoder for ex-
tracting multi-scale image features, following the frame-
work of Mask2Former [12]. The key novelty lies in the
decoder design. First, it takes two sets of queries as in-
put: (i) generic non-semantic queries that aim to decode
segmentation masks for universal segmentation, similar
to Mask2Former [12], and (ii) newly introduced textual
queries to make the decoder language-aware for a diverse
set of language-related vision tasks. Second, it predicts two

1Here, ‘X’ denotes versatile, and also represents ‘piXel’.

types of outputs: pixel-level masks and token-level seman-
tics, and their different combinations can seamlessly sup-
port all tasks of interest. Third, we use a single text encoder
to encode the textual corpus involved in all tasks, includ-
ing concepts in segmentation, phrases in referring segmen-
tation, tokens in image captioning and questions in VQA,
etc. As a result, our X-Decoder can naturally facilitate the
synergy across tasks and advocate the learning of a shared
visual-semantic space, while respecting the heterogeneous
nature of different tasks.

An end-to-end learning paradigm. With our general-
ized decoder design, we propose an end-to-end pretraining
method to learn from all granularities of supervision. We
unite three types of data: panoptic segmentation, referring
segmentation, and image-text pairs. Unlike previous works
that use pseudo-labeling techniques to extract fine-grained
supervision from image-text pairs [24, 89], X-Decoder di-
rectly groups and proposes a few meaningful segmentation
candidates, so that it can map the regions easily to the con-
tents described in the captions on the fly. Meanwhile, the re-
ferring segmentation task bridges generic segmentation and
image captioning by sharing the latent queries and semantic
queries during decoding..

Strong zero-shot and transfer ability to a wide range
of segmentation and VL tasks. Pre-trained with a lim-
ited amount of segmentation data and millions of image-
text pairs (4m images), our X-Decoder supports a diversity
of tasks in a zero-shot and open-vocabulary manner. Con-
cretely, our model can be directly applied for all three types
of segmentation tasks in a wide range of domains, estab-
lishing new state-of-the-art on ten settings of seven datasets.
When transferred to specific tasks, our model also exhibits
consistent superiority to previous works. Finally, we ob-
serve some intriguing properties in our model that it can
support some novel task compositions and efficient finetun-
ing, thanks to the flexibility endowed by our model design.

2. From Specialist to Generalist Models
2.1. Pixel-Level Understanding

Pixel-level image understanding, also known as image
segmentation, has been a long-standing problem [22, 57].
Generic Segmentation. There are mainly three well-
defined tasks for pixel-level understanding, including se-
mantic [48], instance [27], and panoptic [35] segmentation.
Semantic segmentation cares about the per-pixel semantic
within an image [6, 11, 48], whereas instance segmentation
groups pixels of the same semantic meaning into objects.
Models for both tasks have evolved from CNN-based archi-
tectures [48] to transformer-based ones [11], and from two-
stage models [28], one-stage models [3, 66] to the recent
query-based approaches [18,92]. With the capability of per-
pixel and instance-level understanding, a natural step was
taken to formulate panoptic segmentation [12,35,68]. Most
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recently, Mask2Former [12] proposed to address all three
tasks with a unified encoder-decoder architecture. Never-
theless, all these works cope with a limited number of cate-
gories. In MSeg [38], the authors manually merge different
datasets, which is still limited to being a closed set.
Open-Vocabulary Segmentation. Recently, a number of
works opt to transfer or distill the rich visual-semantic
knowledge from foundation models [32,59] to specific seg-
mentation tasks. Prominent examples include LSeg [39],
OpenSeg [24], and [31]. Instead of using existing models,
GroupViT [77] performed language-image pretraining from
scratch with a bottom-up grouping ViT [19], while Dense-
CLIP [60] demonstrated the superiority of foundation mod-
els in finetuning settings compared with supervised models.
Referring Segmentation by nature is open-vocabulary.
Models are usually designed specifically to learn from tar-
get datasets using various multimodal fusion strategies [29,
47, 53, 75, 83, 86]. Since the emergence of vision trans-
formers, works like LAVT [81] enhance the cross-modal
interactions from the very beginning, which led to SoTA
on RefCOCO [86], RefCOCO+ [86] and G-Ref [52, 55].
CLIPSeg [51] extended the textual query to a visual query
and showed superior performance not only on referring seg-
mentation but also on semantic segmentation.

In this work, we propose X-Decoder, which is the first
model to tackle generic and referring segmentation tasks all
in one model. Furthermore, the generalized decoder jointly
learns from segmentation data and image-text pairs end-to-
end, and thus can augment the synergy across tasks for rich
pixel-level and image-level understanding.

2.2. Vision-Language Understanding
Vision-language (VL) pretraining has proven to be ef-

fective for various VL tasks [41, 49, 64, 65]. The field has
evolved from a transformer fusion model [10, 43, 90] with
pre-extracted object features [1] to end-to-end transform-
ers [21, 34, 40], that directly learn from raw image pixels.
Recently, researchers [63,73,74] have found that image-text
data at scale can be helpful for visual representation learn-
ing (e.g., enabling zero-shot image classification [32, 59],
action recognition [85,88], and image generation [44]). VL
pre-trained models can be further extended to region-level
tasks, such as phrase grounding and open-vocabulary object
detection [25, 33, 54, 91], and unified frameworks that aim
to combine image-text pairs with region-level data have also
been proposed [4, 20, 42, 82, 89]. A comprehensive review
on this topic is provided in [23].

We are clearly witnessing a trend from building special-
ist models to generalist ones. Early efforts [26, 30] build
a multi-task learning paradigm to accommodate a diversity
of tasks. However, the interactions among different tasks
in these works are less studied, and the combination usu-
ally leads to performance degradation compared with spe-
cialist models. Recently, a number of works aim to re-

Figure 2. Overall pipeline for our model. It consists of an image encoder,
a text encoder and our own designed X-Decoder.

formulate the tasks into a unified sequential decoding pro-
cess [7, 36, 50, 71, 80]. In this work, instead of developing
a unified interface for vision and VL tasks, our X-Decoder
builds a generalized decoding paradigm that can seamlessly
connect the tasks by taking the common (e.g., semantic) but
respecting the natural differences (e.g., spatial mask v.s. se-
quential language), leading to significant improvements for
different segmentation and VL tasks across the board.

3. X-Decoder
3.1. Formulation

Our model follows the generic design of encoder-
decoder architecture as shown in Fig. 2. Given an input
image I ∈ RH×W×3, we first use an image encoder EncI
to extract features Z. Afterwards, we use the text encoder
EncT to encode a textual query T into Qt = ⟨q1t , · · · , qnt ⟩
of length n. The visual features, textual queries and the m
non-semantic or latent queries Qh = ⟨q1h, · · · , qmh ⟩ are fed
to our X-Decoder to predict the outputs:

⟨Op
{h,t},O

s
{h,t}⟩ = XDec (⟨Qh,Qt⟩;Z) (1)

where Op
{h,t} and Os

{h,t} are the pixel-level masks and
token-level semantics for latent and textual queries, respec-
tively. In the above formula, we note three critical designs
to empower the generalization ability of our X-Decoder to
a variety of vision and vision-language tasks.

We define two types of queries and outputs for X-
Decoder. As discussed earlier, the queries for the decoder
are categorized into latent queries Qh and text queries Qt,
which undertake generic vision and vision-language tasks,
respectively. Likewise, the output is categorized into pixel-
level masks and semantic embeddings. By simply using dif-
ferent combinations, we can adapt our X-Decoder to various
tasks with the same suite of parameters.
We employ a single text encoder EncT to encode the
textual corpus from all tasks. The common text encoder
is used to encode referring phrases, text descriptions, im-
age captions in the task of referring segmentation, image-
text retrieval and image captioning, respectively. Further-
more, we reformulate the mask classification in segmenta-
tion into a mask-text matching problem between Os and
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Figure 3. Unifying four different types of tasks with our proposed X-Decoder. From left to right, they are: (a) generic semantic/instance/panoptic
segmentation; (b) referring segmentation; (c) image-text retrieval and (d) image captioning and VQA. The components with white text indicate not applied.

the textual embeddings of prompted textual concepts simi-
lar to [24,79]. Sharing the text encoder for all textual corpus
could maximally exchange knowledge from different tasks
and learn a richer and more coherent semantic space.
We fully decouple the image and text encoder. In many
previous unified encoder-decoder models [7, 33, 80], the
image and text are fused in the encoder side. This de-
sign makes it intractable not only for global image-text
contrastive learning [59, 79], but also generative pretrain-
ing [70]. In contrast, by fully decoupling the image and text
encoder and using the outputs all as queries, X-Decoder can
learn from both intra-image supervisions and inter-image
ones, which is essential to learn stronger pixel-level repre-
sentations and support different granularity of tasks.

3.2. Unification of Tasks
Based on the above designs, X-Decoder can be used to

seamlessly unify different vision and vision-language tasks,
simply with different combinations of queries as inputs.
Generic Segmentation. For this task, there are no textual
queries as inputs. Hence, Eq. (1) becomes:

⟨Op
h,O

s
h⟩ = XDec(Qh;Z) (2)

where Op
h, Os

h correspond and have the same size to the la-
tent queries Qh. For generic segmentation, our X-Decoder
resembles Mask2former [12] but with open-vocabulary ca-
pacity since it transforms mask classification into a mask-
text matching problem.
Referring Segmentation. It requires both latent and text
queries as inputs:

⟨Op
h,O

s
h⟩ = XDec(⟨Qh,Qt⟩;Z) (3)

and only uses the decoded outputs corresponding to the la-
tent queries. Compared with Eq. (2), Eq. (3) can be consid-
ered as language-conditioned generic segmentation.
Image-Text Retrieval. The decoupled image and text en-
coder in our X-Decoder makes it straightforward for inter-
image retrieval tasks. Specifically, we only feed the latent
queries to the decoder and obtain the semantic representa-
tion of an image:

Os
h = XDec (Qh;Z) (4)

where the last (m-th) token in Os
h is used as the image rep-

resentation to compute the similarities to texts.
Image Captioning and VQA. For both tasks, X-Decoder
takes both latent and text queries and decodes the outputs:

Os
t = XDec (⟨Qh,Qt⟩;Z) (5)

where Os
t correspondingly has equal size to Qt, and no

masks are predicted. There are two slight differences be-
tween the two tasks. First, the caption prediction follows a
causal masking strategy while VQA does not. Second, we
use all the outputs in Os

t for captioning, but only the last
one to predict the answer for VQA.

The adaptation of our X-Decoder to each task is further
depicted in Fig. 3. Based on this unification, we can pre-
train our X-Decoder jointly with all tasks using a proper
combination of queries and losses, and further finetune for
individual tasks without any extra heads 2. As discussed
earlier, a lineup of works exploited a sequential decoding
interface for the unification [7, 7, 13, 50, 72, 80]. However,
in this work, we advocate the unification by functionality
rather than interface, namely, we maximally share the com-
mon parts of different tasks while keeping the remaining
unchanged for individual tasks.

3.3. Unified Architecture
We follow Mask2Former [12] to build our decoder archi-

tecture. Given an image I ∈ RH×W×3, we extract hierar-
chical visual features from L layers:

Z = EncI(I) = ⟨zl⟩Ll=1 (6)

where zl ∈ RHl×Wl×d and {Hl,Wl} is the size of fea-
ture map at level l and d is the feature dimension. These
hierarchical feature maps are important for pixel-level un-
derstanding at different scales.

One Decoder XDec for All Tasks. Given the visual fea-
tures Z, X-Decoder uses a stack of transformer layers to
refine the queries and render the outputs. At layer l, it
first cross-attends the visual features and then performs self-
attention among latent and text queries:

⟨Q̂l−1
h , Q̂l−1

t ⟩ = CrossAtt(⟨Ql−1
h ,Ql−1

t ⟩;Z) (7)

⟨Ql
h,Q

l
t⟩ = SelfAtt(⟨Q̂l−1

h , Q̂l−1
t ⟩) (8)

In Eq. (7), we let all queries cross-attend the visual features.
For latent queries, we use a masked cross-attention mech-
anism as in [12], and full attention for the textual queries.

2VQA is not used for pretraining following common practice.
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Figure 4. Interaction among latent queries (green), between latent and text
queries (yellow) for (a) Generic segmentation and image/text retrieval (b)
referring segmentation and (c) image captioning. The square latent query
is designated for image-text retrieval.

In Eq. (8), we specifically design the self-attention mecha-
nism: (i) we use the last latent query to extract the global
image representation and the remaining for generic segmen-
tation; (ii) for image captioning, each textual query can at-
tend itself, its predecessors and all latent queries; (iii) for
referring segmentation, latent queries attend all text queries
to use it as the language condition. Based on these rules, the
resulting self-attention in our X-Decoder is shown in Fig. 4.

As we illustrated in Sec. 3.2, X-Decoder always pro-
duces the masks only for the m latent queries, i.e., Op

h =
{op1, · · · , opm} ∈ {0, 1}m×H×W for all the latent queries.
As for the semantic outputs, X-Decoder predicts the out-
puts for both latent and text queries, i.e., Os

{h,t} =

{os1, · · · , osm+n} ∈ R(m+n)×d, to cover both mask recog-
nition and caption generation.
One Encoder EncT for All Texts. Given the raw text such
as a phrase or caption, we convert it to discrete tokens using
an off-the-shelf tokenizer and then send it to the text en-
coder [59]. We apply causal masking to ensure its outputs
are compatible with caption decoding. For segmentation,
we follow [59, 79] to convert the class name into a phrase
with a text prompt (e.g., “dog” → “an image of dog”), and
encode the phrase as above.

3.4. End-to-End Pre-training

We train our X-Decoder in an end-to-end manner with
two types of losses corresponding to the outputs.
Semantic Loss. There are three losses on the semantic out-
puts corresponding to three tasks. For image-text retrieval,
we compute the image-language contrastive loss as [59].
We take the last valid token feature of Qt from the text en-
coder to represent text as q̂t and take the last (m-th) entry
in Os

h derived from X-Decoder as ôs, and obtain B pairs of
features for a minibatch of B image-text pairs. Afterwards,
we compute the dot-product between these B × B feature
pairs to obtain affinity matrix Sit ∈ RB×B , and compute
the bidirectional cross-entropy loss:

Lit = CE(Sit,yit) +CE(ST
it,yit) (9)

where yit are the class labels corresponding to diagonal en-
tries in Sit, and ST

it is the transpose of Sit.
For mask classification, we encode all C class names in-

cluding “background” into C text queries and take the last
valid token feature from each to represent the concept. Af-
terward, we take the decoder outputs corresponding to the
first (m − 1) latent queries and compute the dot-product

between these outputs and concept embeddings to obtain
an affinity matrix Scls ∈ R(m−1)×C and compute the loss
Lcls = CE(Scls,ycls), with the corresponding ground-
truth class ycls guided by Hungarian Matching [5].

For image captioning, we first extract the embeddings
for all tokens in the vocabulary of size V from the text en-
coder. Given the last n semantic outputs from X-Decoder,
we compute the dot-product with all token embeddings to
obtain an affinity matrix Scap ∈ Rn×V . Then we compute
the cross-entropy loss Lcap = CE(Scap,ycap), with the
ground-truth next-token id ycap.
Mask Loss. Given the Op

h derived from m latent queries,
we use the computed correspondence based on Hungarian
Matching [5] and follow [12] to use binary cross-entropy
loss Lbce and dice loss Ldice to compute the loss for masks.

Finally, we combine the above four losses to pretrain our
model with segmentation and image-text pair data.

4. Experiments
Datasets and Settings. We pretrain X-Decoder on three
types of data including panoptic segmentation, image-text
pairs (itp), and referring segmentation. For panoptic and
referring segmentation, we use COCO2017 [46] with seg-
mentation annotations and exclude the validation sets of
Ref-COCOg UMD [86] and COCO Karpathy [84]. In total,
there are 104k images for segmentation pretraining, out of
which 30k images are with referring segmentation annota-
tions. For image-text pairs, we use the standard 4M corpora,
including Conceptual Captions [62], SBU Captions [56],
Visual Genome [37], and COCO Captions [9]. We broadly
evaluate our models on all tasks covered by pretraining. In
particular, we benchmark on 10 settings of 7 datasets cov-
ering a wide range of domains on zero-shot segmentation.
Moreover, we finetune and report results on VQA for fine-
grained visual reasoning.
Implementation Details. Our visual encoder follows [12]
to use 100 latent queries and 9 decoder layers, and we add
one additional latent query for image-level task. However,
we do not adopt a deformable encoder as it does not gen-
eralize well to open-vocabulary settings (see in Appendix).
We adopt Focal-T [78] and DaViT-B/L [16] as the vision
encoder and a transformer text encoder with causal mask-
ing [59, 88] as language encoder. The models are pre-
trained on large-scale image-text data [88] (Base or Large)
or UniCL [79] for the tiny model.

4.1. Task-Specific Transfer
Without any architecture change except adding a head

for VQA, we directly finetune X-Decoder to demonstrate
its task transfer capability. Table 1 presents the comparisons
with previous specialized and generalized models.
Comparison with segmentation models. We list the
most recent published models for individual tasks, includ-
ing Mask2Former [12], Panoptic SegFormer [45], KMaX-
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Method Type
Generic Segmentation Referring Retrieval Captioning VQA

ADE COCO g-Ref COCO-Karpathy F30k-Karpathy COCO-Karpathy VQAv2-test
PQ mAP mIoU PQ mAP mIoU cIoU IR@1 TR@1 IR@1 TR@1 CIDEr BLEU dev std

Mask2Former (T) [12]

Segmentation

39.7 26.4 47.7 53.2 43.3 63.2 - - - - - - - - -
Mask2Former (B) [12] ⋆ ⋆ 53.9 56.4 46.3 67.1 - - - - - - - - -
Mask2Former (L) [12] 48.1 34.2 56.1 57.8 48.6 67.4 - - - - - - - - -
Pano/SegFormer (B) [45, 76] ⋆ ⋆ 51.0 55.4 ⋆ ⋆ - - - - - - - - -
kMaX-DeepLab (L) [87] 48.7 ⋆ 54.8 58.1 ⋆ ⋆ - - - - - - - - -
LAVT (B) [81] - - - - - - 61.2 - - - - - - - -
UNITER (B) [10]

Vision Language
(VL)

- - - - - - - 50.3 64.4 72.5 85.9 - - 72.7 72.9
UNITER (L) [10] - - - - - - - 52.9 65.6 75.6 87.3 - - 73.8 74.0
VinVL (B) [90] - - - - - - - 58.1 74.6 ⋆ ⋆ 129.3 38.2 76.0 76.1
VinVL (L) [90] - - - - - - - 58.8 75.4 ⋆ ⋆ 130.8 38.5 76.5 76.6
ALBEF-4M (B) [40] - - - - - - - 56.8 73.1 82.8 94.3 ⋆ ⋆ 74.5 74.7
METER-Swin (B) [21] - - - - - - - 54.9 73.0 79.0 92.4 ⋆ ⋆ 76.4 76.4
UViM (L) [36] ⋆ ⋆ ⋆ 45.8 1 ⋆ ⋆ - - - - - - - - -
UniT (T) [30]

General Purpose

- - - - - - - - - - - - - 67.6 ⋆
GPV (T) [26] - - - - - - - - - - - 102.3 2 ⋆ 62.5 ⋆
UniTAB (B) [80] - - - - - - - - - - - 119.8 36.1 70.7 71.0
Pix2Seq v2 (B) [7] - ⋆ - - 38.2 - - - - - - ⋆ 34.9 - -
Unified-IO (B) [50] - ⋆ - - ⋆ - - - - - - ⋆ ⋆ 61.8 ⋆
Unified-IO (L) [50] - ⋆ - - ⋆ - - - - - - ⋆ ⋆ 67.8 ⋆
GLIPv2 (T) [89] - ⋆ - - -/42.0 - ⋆ - - - - 122.1 ⋆ 71.6 71.8
GLIPv2 (B) [89] - ⋆ - - -/45.8 - ⋆ - - - - 128.5 ⋆ 73.1 73.3
GLIPv2 (H) [89] - ⋆ - - -/48.9 - ⋆ - - - - 131.0 ⋆ 74.6 74.8
X-Decoder (T) 41.6 27.7 51.0 52.6 41.3/- 62.4 59.8 | 61.9 49.3 66.7 74.4 89.1 122.3 37.8 70.6 70.9
X-Decoder (B) 46.8 33.5 54.6 57.0 47.4/- 66.7 62.4 | 64.5 54.5 71.2 80.8 93.2 129.0 39.6 74.1 74.2
X-Decoder (L) 49.6 35.8 58.1 57.9 48.6/- 67.8 64.6 | 64.6 58.6 76.1 84.4 94.4 132.1 40.2 76.8 77.0

Table 1. Task-specific transfer of X-Decoder to different segmentation and VL tasks. Note: “⋆” denotes the model has the capability for the task but does
not have number reported. “-” means the model does not have the ability for the specific task. “model name” means the model does not have task specific
finetune. “1” is the reported pretrained number for UViM, the corresponding X-Decoder (L) has pretrained PQ 56.9. “2” is the reported coco test2014 value
for GPV. “a|b” means “pretrain|finetune”. “a/b” indicate “val/test”.

DeepLab [87] for generic segmentation, and LAVT [81] for
referring segmentation. Notably, our 25 epoch finetuned X-
Decoder (L) establishes a new SoTA on ADE20k dataset
that outperforms the current SoTA KMaX-DeepLab (L) on
ADE Panoptic Segmentation (our model trained with 1024
resolution achieves 51.0 PQ), as well as Instance Segmenta-
tion SoTA, Mask2Former-L. On COCO, our model attains
comparable or better performance to Mask2Former and
kMaX-DeepLab. Finally, we compare with LAVT [81] on
COCO G-ref. It is worth pointing out that with lightweight
finetuning, our tiny model already outperforms LAVT-Base
(61.9 v.s. 61.2). Further increasing the model size can bring
additional gains by 2.6 and 2.7 points respectively, which
helps to set a new record on this benchmark in the pub-
lished literature.
Comparison with VL models. We compare with a set of
VL models on image-text retrieval, image captioning and
VQA in Table 1. X-Decoder achieves competitive perfor-
mance across the board. Specifically, X-Decoder outper-
forms UNITER [10] and rivals VinVL [90] on COCO re-
trieval, and even beats all the baselines on Flickr30k [58].
Unlike all these works, the image and text encoders are
fully decoupled in X-Decoder, which leads to a much faster
inference speed. On captioning and VQA, our models
also demonstrate superior performance to their counter-
parts. For example, it outperforms VinVL by 1.3 and 1.7
on CIDEr and BLEU, respectively. Note that most of these
works use sophisticatedly designed training objectives, such
as masked data modeling, image-text matching and hard-
negative mining [20, 40, 69]. In contrast, X-Decoder is pre-
trained with image-text contrastive and image captioning,
along with the segmentation losses. The simplicity and ef-

fectiveness imply a great potential for using X-Decoder as
a general pretraining paradigm for VL.
Comparison with generalist models. We further com-
pare with prior arts that explore general-purpose vision
models. Limited works report the generic segmentation
performance. Our model outperforms UViM [36] and
Pix2Seq v2 [7] significantly on COCO panoptic (56.9 v.s.
45.8) and instance segmentation (46.7 v.s. 38.2), respec-
tively (The X-Decoder (L) have the same zero-shot and fine-
tuning performance). With the same amount of segmenta-
tion data, these margins strongly justify our model design,
i.e., unifying functionality without any tweaks for individ-
ual tasks. When compared with GLIPv2 [89], our model
achieves comparable performance. Note that GLIPv2 uses
over 10M pretraining data, including around 2M with box
supervision. Despite the huge gap in pretraining data, X-
Decoder outperforms GLIPv2 on both captioning and VQA.
Efficient Finetuning. Finally, we study whether our pre-
trained X-Decoder can be finetuned for segmentation with
a low cost. In Table 3, we show that we can simply fine-
tune the class embedding layer, mask embedding layer or
the whole decoder to reach a decent segmentation perfor-
mance and surpass the fully finetuned tiny SoTA models
like kMaX-DeepLab [87]. These results imply an efficient
way of using our pretrained X-Decoder models.

4.2. Zero-Shot Transfer

Without any change in model weights, X-Decoder can be
directly applied to various segmentation tasks and datasets
after pretraining. In Table 2, we evaluate our model in a
zero-shot manner on seven commonly used segmentation

15121



Model COCO (p/s) ITP Fix EM Pse-
udo

ADE-150 A-847 VOC PC-59 PC-459 SUN SCAN-20 SCAN-41 Cityscapes BDD
m cls cap PQ mAP mIoU mIoU mIoU mIoU mIoU mIoU mIoU PQ mIoU mIoU mAP PQ mIoU PQ

MSeg (B) [38] ✓ ✓ ✗ ✗ ✗ ✗ ✗ 33.7 32.6 19.1 ⋆ 73.4 43.4 ⋆ 29.6 33.4 ⋆ ⋆ 46.9 24.8 51.1 44.9 ⋆
GroupViT (S) ✗ ✗ ✗ ✓ ✗ ✓ ✗ - - ⋆ ⋆ 52.3 22.4 ⋆ ⋆ ⋆ - ⋆ ⋆ - - ⋆ -
LSeg+ (B) [39] ✓ ✓ ✗ ✗ ✓ ✓ ✗ - - 18.0 3.8 ⋆ 46.5 7.8 ⋆ ⋆ - ⋆ ⋆ - - ⋆ -
ZegFormer (B) [15] ✓ ✓ ✗ ✗ ✓ ✓ ✗ - - ⋆ 8.1 80.7 ⋆ ⋆ ⋆ ⋆ - ⋆ ⋆ - - ⋆ -
OpenSeg (B) [25] ✓ ✗ ✓ ✗ ✓ ✓ ✓ - - 21.1 6.3 70.3 45.9 9.0 ⋆ ⋆ - ⋆ ⋆ - - ⋆ -
OpenSeg (B) [25] ✓ ✗ ✓ ✓ ✓ ✓ ✓ - - 26.4 8.1 70.2 44.8 11.5 ⋆ ⋆ - ⋆ ⋆ - - ⋆ -
MaskCLIP (L) [17] ✓ ✓ ✗ ✗ ✓ ✓ ✗ 15.1 6.0 23.7 8.2 ⋆ 45.9 10.0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
X-Decoder-Seg (B) ✓ ✓ ✗ ✗ ✗ ✗ ✗ 15.3 8.3 19.5 2.9 95.7 63.5 13.3 33.0 41.6 32.5 22.4 47.3 22.8 35.2 44.1 14.1
X-Decoder-Seg+ (B) ✓ ✓ ✓ ✗ ✗ ✗ ✗ 16.9 9.5 23.8 4.6 97.8 64.7 12.1 32.2 35.1 33.8 18.5 47.6 25.9 36.9 42.7 16.6
X-Decoder (T) ✓ ✓ ✓ ✓ ✗ ✗ ✗ 18.8 9.8 25.0 6.4 96.2 62.9 12.3 34.5 37.8 30.7 21.7 47.3 16.0 37.2 42.4 16.4
X-Decoder (B) ✓ ✓ ✓ ✓ ✗ ✗ ✗ 21.1 11.7 27.2 8.2 97.9 65.1 14.7 39.6 40.3 35.4 24.8 50.8 22.3 39.5 45.1 17.1
X-Decoder (L) ✓ ✓ ✓ ✓ ✗ ✗ ✗ 21.8 13.1 29.6 9.2 97.7 64.0 16.1 43.0 49.5 39.5 29.7 52.0 24.9 38.1 47.2 17.8

Table 2. One suite of model weights for open-vocabulary image segmentation. Note: “ITP” means image-text pairs. “Fix” indicates whether contains
fixed text/image encoder. “EM” means whether the model has extra modules that are designed for open-vocabulary settings (e.g. Adaptor, class agnostic
proposal, and etc.). “Pseudo” means whether the method uses an extra step to extract pseudo label image-text pairs. “gray” color means a fully supervised
approach. “light purple” color means a semi-supervised learning approach. “FL-in21k” means the backbone is pretained with in21k data using a FocalNet
backbone. For COCO, different methods use different supervisions of mask (m), class label (cls) and caption (cap). “⋆ and -” follows Table 1

Method C.E. M.E Q.E Dec. #Param ADE Cityscapes
PQ mAP mIoU PQ mAP mIoU

Mask2Former (T) [12] - - - - - 39.7 26.4 47.7 63.9 39.1 80.5
Pano/SegFormer (T) [45, 76] - - - - - 36.4 ⋆ 46.5 ⋆ ⋆ ⋆

kMaX-DeepLab (T) [87] - - - - - 41.5 ⋆ 45.0 64.3 38.5 79.7
Mask2Former (S) [12] - - - - - ⋆ ⋆ 51.3 64.8 40.7 81.8
Mask2Former (B) [12] - - - - - ⋆ ⋆ 53.9 66.1 42.8 82.7
Mask2Former (L) [12] - - - - - 48.1 34.9 56.1 66.6 43.6 82.9

✓ ✗ ✗ ✗ 0.26M 44.3 33.2 54.6 65.1 41.4 81.7
✓ ✓ ✗ ✗ 1.05M 43.9 33.2 53.9 64.8 41.2 81.2
✓ ✓ ✓ ✗ 1.15M 44.0 32.8 54.0 64.6 41.1 81.5X-Decoder (L)

✓ ✓ ✓ ✓ 38.3M 47.0 35.1 56.0 65.6 42.2 81.7

Table 3. Performance with different efficient finetuning strategies for X-
Decoder large, and comparisons with fully-finetuned models. Note: C.M
denotes class embedding, M.E. denotes mask embedding, Q.E. denotes
query embedding, #Param means the number of parameters tuned.

datasets in 10 different settings from diverse domains, in-
cluding common indoor, outdoor and self-driving scenar-
ios. We report PQ, mAP and mIoU for generic segmentation
quantitatively, and qualitatively show examples on various
dataset in the Appendix.
Comparison with baselines. We build two X-Decoder
variants: (1) X-Decoder-Seg, which is only trained with
COCO panoptic segmentation using a text encoder for class
names; and (2) X-Decoder-Seg+, where we take the heuris-
tic way to extract noun phrases from COCO captions and
use them as extra supervision on top of the matched decoder
outputs. First, X-Decoder-Seg shows clear advantages on
open-vocabulary segmentation over MSeg [38], that manu-
ally conducts label mapping across different datasets. Sec-
ond, the extra supervision from COCO captions improves
model performance on 9 out of 15 metrics, which indicates
the benefit of joint learning with image-level supervision.
Third, when pretraining with the full X-Decoder, the per-
formance is significantly boosted. Notably, the mIoU met-
ric is improved by 7.4, 3.4 and 2.6 on SUN, ADE-150 and
PC-459, respectively.
Comparison with state-of-the-art. We further compare
with the most advanced methods for open-vocabulary im-
age segmentation in Table 2. Clearly, our models achieve
the best results across all datasets. Among the base-sized
models, X-Decoder (B) outperforms OpenSeg (B) [24] on
two challenging datasets, ADE-150 and PC-459 for se-
mantic segmentation. Scaling X-Decoder to large size fur-

ther improves mIoU by 2.4 and 1.4 on these two datasets.
Among prior arts, MaskCLIP [17] is the first proposed
for open-vocabulary panoptic segmentation by combining
Mask2Former with CLIP models. With COCO caption su-
pervisions, our simple baseline X-Decoder-Seg+ already
performs comparably. The full version of our tiny model X-
Decoder (T) surpasses MaskCLIP across the board except
A-847. We note that these comparisons are not strictly fair
in terms of supervision, settings and models used. How-
ever, these results demonstrate the effectiveness of our X-
Decoder to learn from the different granularity of supervi-
sions end-to-end for open-vocabulary segmentation, which
leads to new SoTA on 10 settings of 7 datasets across three
segmentation tasks.

4.3. Model Inspection

Pretraining Tasks. By default, we exploit four pre-training
tasks including generic and referring segmentation, caption-
ing and retrieval. In Table 6, we keep the generic segmenta-
tion while ablating the importance of the other pre-training
tasks. Accordingly, we have the following observations:

Image-text retrieval help open-vocabulary segmentation:
On ADE, mIoU decreases from 23.4 to 21.8 and PQ by 0.7
without image-text retrieval. As both tasks share semantic
space, improved visual-semantic alignment boosts recogni-
tion of novel concepts.

Image captioning helps referring segmentation and vice
versa: COCO g-Ref drops 2.0 pts without training with im-
age captioning, and CIDEr falls 3.2 pts without training
with referring tasks. This indicate sharing a text encoder
and joint training enhances text input understanding.

Image captioning and retrieval can mutually benefit each
other: Removing captioning in pretraining, R@1 drops by
0.8; and CIDEr decreases 3.2 pts without retrieval task.
It indicates X-Decoder fosters generative and contrastive
learning synergy.

Query Interactions. The interaction among tasks is
highly dependent on the interaction between latent and text
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Model COCO ADE COCO-Karparthy g-Ref
PQ mAP mIoU PQ mAP mIoU IR@1 IR@1 CIDEr cIoU

X-Decoder 51.4 40.5 62.8 14.7 9.6 23.4 30.7 48.5 82.0 59.7
* text: [yny] 51.4 39.8 61.7 14.7 9.4 22.2 29.9 46.9 78.6 57.7
* text: [nyy] 51.4 38.6 61.7 15.2 9.4 23.1 30.3 47.5 78.9 59.4
* latent: [yyn] 50.9 39.6 62.0 15.5 9.4 22.8 29.8 47.6 81.1 57.6

Table 4. Ablation of query interaction in X-Decoder. [x,x,x] denotes
whether attend [object latent query, image latent query, text query]

COCO ADE COCO-Karparthy g-RefModel PQ mAP mIoU PQ mAP mIoU IR@1 TR@1 CIDEr cIoU
* bs 1024 50.9 39.5 62.4 15.2 10.0 24.6 30.6 48.1 85.0 58.0
* bs 768 51.0 39.5 62.4 15.4 10.0 24.2 29.0 46.8 78.6 58.8
* bs 512 50.7 39.3 62.0 14.9 9.7 24.3 27.4 43.8 76.1 58.6

Table 5. Ablation of VL batch size. We mark the significant drop metrics
in green.

COCO ADE COCO-Karparthy g-RefModel PQ mAP mIoU PQ mAP mIoU IR@1 TR@1 CIDEr cIoU
X-Decoder 51.4 40.5 62.8 14.7 9.6 23.4 30.7 48.5 82.0 59.7
- Retrieval 51.4 40.4 62.6 14.0 9.2 21.8 n/a n/a 78.8 59.2
- Captioning 51.1 40.4 63.2 15.0 9.6 23.2 29.9 48.1 n/a 57.7
- Referring 51.1 39.7 62.3 15.2 8.9 22.6 30.0 47.6 78.8 n/a

Table 6. Ablation of pretraining tasks by removing one at a time. We bold
the best entry and underline the worst entry in each column.

Model COCO ADE COCO-Karparthy g-Ref
PQ mAP mIoU PQ mAP mIoU IR@1 TR@1 CIDEr cIoU

Full Datasets 50.9 39.5 62.4 15.2 10.0 24.6 30.6 48.1 85.0 58.0
- coco 50.9 39.9 62.2 15.3 9.8 24.4 27.4 38.2 32.6 59.4
- cc3m 51.2 39.7 62.6 15.5 10.1 24.6 31.0 50.0 81.2 58.3
- vg 51.1 39.8 62.4 14.6 9.7 23.8 36.1 56.1 107.1 58.3
- sbu 51.1 39.8 62.4 15.3 9.5 24.6 30.3 48.3 81.2 58.3

Table 7. Ablation of VL datasets in X-Decoder. A single VL dataset is re-
moved in each row. And we mark the metrics that significantly drop/increase
in green/red.

Figure 5. An example of region retrieval as a showcase of task composition of image-text retrieval and referring segmentation.

queries. We have described how the queries interact with
each other by default in Fig. 4. Here, we investigate how
our model behaves with different interactions in Tab. 4:

Image captioning requires both fine-grained and global
image information: Comparing rows 1-3 in Tab. 4, CIDEr
score drops significantly when information flow from global
latent queries or other latent queries to text queries is cut off
(82.0 → 78.6 and 78.9, respectively).

Language-condition is important for ref-segmentation:
In the last row of Tab. 4, turning off text-to-latent query in-
teraction significantly decrease ref-segmentation (59.7 →
57.6) performance, indicating generic segmentation can’t
be converted to referring segmentation using post-hoc
matching with referring texts easily.

VL Batch Size & Dataset The default batch size of VL
task is 1024, we explore the gradual decreasing of VL batch
size in Tab. 5. In addition, each VL dataset is removed to
investigate the pre-trained performance on different tasks.

Decreasing VL batch size hurts VL tasks and open-vocab
Segmentation performance: As shown in Tab. 5, decreasing
the VL task batch size from 1024 to 256 significantly hurts
the retrieval and captioning performance as well as minor
influence on open-vocabulary settings.

VG dataset hurts pretraining VL tasks performance
but improves open-vocab segmentation: As shown in Ta-
ble 7, removing the visual genome from the pretraining
VL dataset significantly improves captioning task with 22.1
points in pretraining caused by the different annotation style
of that dataset.

4.4. Task Composition
X-Decoder has the unique benefit of task interaction. We

demonstrate our model can perform region-based retrieval
(Fig. 5) and referring based captioning (Fig. 1) without any
architecture/weight change. As shown in Fig. 5, given a set
of animal images and text query, our model first retrieves
the correct image and then grounds the query in pixel level.
Further, our model can be easily adapted to referring cap-
tioning by localizing a given word and then modulating the
predicted mask in the cross-attention layers for text queries.
This will allow the text queries to focus on the grounded re-
gion only. Thus lead to the generated caption that focus on
the specific area. Lastly, we also integrate X-Deocder with
diffusion model for referring image editing and inpainting.
This has been demonstrated in Fig. 1.

5. Conclusion
We introduce X-Decoder, a versatile model for pixel

and image-level vision-language understanding. Its uni-
fied design enables generic segmentation, referring seg-
mentation, and VL tasks with strong generalizability and
SoTA/Comparable performance. We hope this work can
shed a light on the design of the next-generation general-
purpose vision system.
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