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1. Limitations

Our method also has some limitations. Overall, the vi-

sual quality is limited by the quality of StyleGAN2 pretrain-

ing. While we found the quality to be very high for the

datasets shown in the paper, it relies on hundreds of images

in the target domain to be available. Would be interesting to

do few- shot domain adaptation in the future. Further, ed-

its are largely limited to semantic edits of EG3D and global

space deformations by TPS. Our method does not enable

fine-grained geometric edits. Finally, a large part of our

method is face specific. We justify this specialization by

the importance of human models and the specific target do-

main of editable 3D avatars. We nevertheless believe that

domain adaptation of general 3D-GANs will be an interest-

ing avenue of future work.

2. Ethical Concerns

Deep learning-based image and video processing is a

tool for image/video understanding, animation, and artis-

tic expression. Similar to most software in this domain,

our work could be used to produce offensive results. An

application of concern would be if a user would generate

offensive caricatures and cartoons of other people without

consent. This can be used to insinuate biases against peo-

ple or can have a detrimental effect on a person’s autonomy,

dignity, and/or privacy. The images used in this work are

taken or derived from the FFHQ [3] dataset which has ap-

propriate licenses for non-commercial research use and to

the best of our knowledge, is committed to protecting the

privacy of the individuals who do not wish to be included.

3. Training Details

We train our models on 4 V100 GPUs with a batch size

of 8. Similar to EG3D, we start training from the neural

rendering resolution of 642 which is increased during the

training. Then we do fine-tuning on 1282 resolution to pro-

duce the final 5122 outputs. We sample 100k samples from

each dataset. We train Caricatures on ∼ 880 kimgs, Pixar,

and Cartoons on ∼ 500 kimgs. We fine-tune these mod-

els on 1282 neural rendering resolution for an additional

80 − 160 kimgs. Other hyperparameters of learning rates

are the same as the EG3D. We train the TPS module on

∼2000 kimgs. We set the weight for the regularization

term R(∆s) as 0.001, and R(D) as 0.005. For the TPS

training we use the weights for α, β, σ and R(T2) as 150,

1, 3 and 1 respectively. For inversion, we perform 200 steps

for the source domain inversion and 400 steps for the target

domain to generate the final avatar.

4. Illustrations and Pipeline figures

We show the camera alignment illustration in Fig. 2. We

also show the illustration of the inference pipeline of the

TPS module in Fig. 3 and the final inference model with the

TPS module added in Fig. 4.

5. Ablation Study

In order to validate the importance of the losses, and

components of our design choices, in Table 1, we show

an ablation study of these components with regularizers.

Note that we evaluate these design choices on the carica-

ture dataset. Notice adding each component improves the

corresponding scores in FID, Md, Sd, and ID as discussed

in the main paper. Notice that by adding the TPS mod-

ule, the FID is still comparable to Gt. The slight drop is

attributed to the stretching and squeezing of some parts of

the texture (See Fig. 6 in the main paper). Nevertheless,

by adding this module, we achieve better control over ge-

ometry and produce exaggerated features for a small drop

in texture quality. In order to show that the TPS transfor-

mations are not random, we compute the FID scores with

randomly perturbed front plane features which are derived

from the perturbations of control points near the face e.g.

taken at the early stages of training after it has stabilized a

bit. This setup has less perturbation in the background. We
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Figure 1. Swaping tri-planes. Validation of the information stored in the front tri-plane. Given two images and their tri-plane represen-

tations, there is almost no change in the final output if the side planes are swapped. While the output changes completely when the front

tri-plane is swapped.

Figure 2. Illustration of camera alignment (Sec 3.1) main paper.

Table 1. Ablation. Ablation of the design choices made in Sec. 3

of the main paper. cam stands for the analysis in Sec. 3.1, Reg

stands for the model after applying Eq. 2, DReg stands for the

model after applying Eq. 4, and TPS stands for the model after

applying Eq. 5, 6, and 7 in the main paper. This is the Gt used in

the comparison. Note that by adding TPS the scores are affected

as the geometry is exaggerated e.g. the identity is affected. This

module can be added to do geometry editing. See the explanation

in Ablation Study.

Method FID Md Sd ID

Gbase - cam 90.8 0.47 0.33 1.348

Gbase 67.8 0.47 0.22 1.272

+ Reg 19.0 0.22 0.22 0.889

+ DReg 19.4 0.21 0.15 0.879

+ TPS 20.6 0.25 0.20 0.924

found that the FID score is worse i.e. 25.5 hence validating

non-random transformations.

Table 2. Ablation of TPS on metrics based on facial keypoints.

Metric with TPS without TPS

Avg. Keypoint Distance 5.7 4.3

Avg. Keypoint Variation 0.06 0.04

Table 3. FID comparison with SCG: StyleCariGAN, DSG: DualStyleGAN.

Method Cari. (SCG) Cari. (DSG) Pixar (DSG) Cartoons (DSG)

2D-GANs 51.68 96.49 166.78 105.57

Ours 62.90 89.73 162.06 111.35

6. More ablation on TPS and what metric does

it improve?

The purpose of adding the TPS module is to model the

exaggerated geometries in the data and at the same time

achieve geometric editing and animation capabilities (Cari-

catures in the main paper, and Project Page). We ablate (see

Table 2) the average face Keypoint Distance between the

paired FFHQ-generated images and corresponding avatars

and the face Keypoint Variation (standard deviation of key-

points) with and without the TPS module. The results show

that with TPS module, the deviations are large and match

the exaggerations.

7. Results on Real Images, Algorithmic De-

scription of Projection, and User Study

Let x be the source image, let pixel-wise

MSE loss be represented as Lmse(x,w,G) =
MSE(x,G(w,M(θ′, φ′, c′, r′))), and let LPIPS

loss be represented as Llpips(x,w,G) =
LPIPS(x,G(w,M(θ′, φ′, c′, r′))) where camera pa-

rameters are determined by Sec. 3.1 in the main paper. Let

Ld(w) be the depth regularizer (Sec. 3.2) and At(x,w,G)
be the attribute classifier loss. We define the algorithm of

projection of a single source image to 3D avatars in Algo-
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Figure 3. Illustration of TPS module (Sec 3.4) main paper.

Figure 4. Fine tuned EG3D (Gt) pipeline with TPS module.

rithm 1. For additional results on real images please refer

to Fig. 5. We conducted a user study using 50 real images

(25 caricatures, and 25 Pixar) on identity preservation and

3D consistency versus the baseline method. We asked 21

unique workers where each triplet was reviewed by 10

workers and our avatars were chosen 92% of the time.

8. Comparison to 2D-GANs

The quality drop is expected when the final model is

compared with 2D-GANs as we derive our datasets from

these 2D-GANs fine-tuned on avatar datasets. In Table 3,

we compute the FID scores between the datasets (size∼200

images for DualStyleGAN dataset) used to train these 2D-

GANs and our corresponding avatar generators (size ∼10k

images). We used the 3DCaricShop [4] dataset for Cari-

catures as the authors of WebCaricature did not reply with

the download link. The scores are comparable, even better

in the case of Caricatures and Pixar, probably due to our

regularizers including 3D view consistency.

9. Importance of Front Tri-plane Features

As discussed in Sec. 3.4 of the main paper, the front tri-

plane of the EG3D architecture encodes most of the texture

and depth information in the output. In Fig. 1, we show

two images with their front and other side plane swapped.

Then we show the corresponding effect on the output image.

Notice that the results are consistent with the analysis in

Sec. 3.4 where the front tri-plane dominates the information

for output texture and depth.
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Figure 5. Real to avatar results.

Algorithm 1: Projection of single image into 3D

Avatar.

Input: source image x ∈ R
n×n×3; Gs, Gt,

gradient-based optimizer F ′ and F ′′.

Output: the embedded code w′ for Gt

1 Initialize() the code w = wavg;

2 while not converged do

3 L← Lmse(x,w,Gs) + Llpips(x,w,Gs) +
Ld(w) +At(x,w,Gs);

4 w ← w − ηF ′(∇wL,w);

5 end

6 Initialize() the code w′ = w;

7 while not converged do

8 L′
← Lmse(x,w

′,Gt) + Llpips(x,w
′,Gt) +

Ld(w
′) +At(x,w

′,Gt);
9 w′

← w′
− ζF ′′(∇w′L′, w′);

10 end

10. Stylization

To validate that our chosen layers in Sec.3.2 are respon-

sible for geometrical and texture changes, we resort to a

stylization technique. For stylization given an arbitrary ref-

erence image e.g. painting, we use the Style Loss [1] to up-

date the layers of Gs or Gt. Essentially, we use the same

parameters used in Sec. 3.1. A critical technique to achieve

multi-view consistency and circumvent the ghosting face ar-

tifact due to single image overfitting is to rotate the camera

to cover the θ′ and φ′ ranges in Sec.3.1 in the main paper

uniformly during the optimization. In Fig. 6, we show some

results using only the layers used in Texture Regularization

(Sec.3.2). Note the high-quality texture change in the im-

ages. In Fig. 7, we show results by adding layers of Geom-

etry Regularization (Sec. 3.2). Note that the geometry is

changed in the examples when we use this module. Note

that in this example, the geometry is not expected to match

as there is no such loss in the optimization. This example re-

sults in some arbitrary geometry change that is not flat. This

validates our choice of geometry and texture layers used in

this paper.

Figure 6. Validation of texture regularization. Style Transfer

using the texture layers discussed in the main paper. Here the style

of the image is changed using the texture layers.

Figure 7. Validation of geometry regularization. Geometry

change (third row) using the geometry layers discussed in the main

paper. Here the style (second row) is changed using the texture

layers and the geometry (third row) is changed using the geometry

layers. Note that the geometry is not correct as we apply Style Loss

using a single image and is only used to demonstrate the usage of

different layers.

11. Failure cases

Our method has some failure cases that stem from the

samples of the 2D-GANs i.e. DualStyleGAN [5] and Style-

CariGAN [2]. In the caricature domain, the random samples

generated in the case of Gt trained on StyleCariGAN sam-

ples can have some severe artifacts (See Fig. 8). Although

these do not appear often, such a sample can be improved
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Figure 8. Failure cases. Failure cases in caricature generation that

stems from the artifacts in the 2D-GAN from which the dataset is

generated. Here the artifacts are the result of the generated results

of StyleCariGAN [2]

by attribute classifier and depth regularization losses used

on a single image as discussed in Sec. 4 of the main paper.

12. Depth Map visualization

In order to show some more samples and the correspond-

ing depth maps for Gbase and Gt, in Fig. 9, we show some

samples from both the generators and the corresponding

depth maps with pose changes. Notice the flat geometry

in the case of Gbase results. Next, in Fig. 10 and Fig. 11, we

show some grid samples of our method with depth maps on

the Caricature, Pixar toon, Cartoon, and Comic datasets.

13. Video Results

We also show our 3D avatar editing results in videos. We

design a simple UI to show that the avatars can be edited

in an interactive manner. Please refer to the webpage for

editing videos and the interactive editing sessions.
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Figure 9. Comparison with Naive method. Results of the Caricatures and Pixar toons were viewed from different viewpoints and

compared with the baseline method. Note that the depth maps are also visualized highlighting flat geometry. For more results refer to the

videos on the Project Page.
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Figure 10. Grid samples. Samples from the source domain and corresponding results in the target domain. Corresponding images and

depth outputs of the Caricatures and Pixar Toons are shown.
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Figure 11. Grid samples. Extension of Fig. 6. Corresponding images and depth outputs of the Comics and Cartoons are shown.
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