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A. Preprocessing Density Field
Before querying NeRF for occupancy, we do not have

the extremities of the object. We query a uniform grid
within the unit cube to obtain a 323 grid density field to find
the object bounds and the center of the object. The density
values are normalized to range [0, 1] (see page 3 in the main
paper). We then perform an initial K-means clustering with
K = 2 to separate the foreground and background clusters.
Note that this clustering is on the entire scene and is dif-
ferent from the clustering we perform while computing the
losses. The clustering that we perform while computing the
loss is within the object bounding box and not for the entire
scene. The mean of query coordinate locations in the fore-
ground cluster gives us the center of the object c. We then
obtain the extremities from the foreground cluster and find
its maximal diagonal length (l). We re-sample the region
within the bounding cube (at center c side length l) and use
it as input to CaFi-Net.

B. Equivariance Properties of CaFi-Net
B.1. Averaging Equivariant Signals is Equivariant

A tensor field of type ℓ (ℓ-field) is a map f : R3 →
R2ℓ+1. We have an action of SO(3) on any ℓ-field f
given by (R.f)(x) := Dℓ(R)f(R−1x) for any rotation
R ∈ SO(3) and x ∈ R3 where Dℓ(R) ∈ SO(2ℓ + 1)
is the Wigner matrix of type ℓ. We say that transforma-
tion F transforming tensor fields of type p into tensor fields
of type q if it commutes with the action of SO(3), i.e.
for all type p-field f and rotation R ∈ SO(3) we have
F (R.f) = R.F (f). We will call such transformations
(p, q)-equivariant transformations.

Lemma 1 For any r > 0 the local average operator meanr
defined over p-fields by:

meanr(f)(x) :=

∫
B(x,r)

f(y)dy

where B(x, r) ⊂ R3 is the open ball of radius r centered at
x ∈ R3 is a (p, p)-equivariant transform of fields.

Proof: Let x ∈ R3 and R ∈ SO(3) we have:

meanr(R.f)(x) =

∫
B(x,r)

(R.f)(y)dy

=

∫
B(x,r)

Dp(R)f(R−1y)dy

=
u=R−1y

Dp(R)

∫
R−1B(x,r)

f(u)du

= Dp(R)

∫
B(R−1x,r)

f(u)du

= (R.meanr(f))(x)

B.2. Locally Averaged Density Weighted Equivari-
ant Vectors are Equivariant

Lemma 2 Scaling an equivariant field with density is a (1,
1)-equivariant transformation.

Proof: Let σ be a type-0 density field and f be a type-1 field
at the corresponding location, weighing f by the average of
σ is:

meanr(σ)(x) · f(x) :=

(∫
B(x,r)

σ(y)dy

)
f(x)

meanr(R · σ)(x) · (R · f)(x)

=

(∫
B(x,r)

(R · σ)(y)dy

)
D1(R)(f)(R−1x)

=

(∫
B(x,r)

(σ)(R−1y)dy

)
D1(R)(f)(R−1x)

=

(
I ·
∫
R−1B(x,r)

(σ)(u)du

)
D1(R)(f)(R−1x)

= D1(R) ·meanr(σ)(x) · (f)(R−1x)

Thus, meanr(R · σ)(x) · f(x) = D1(R) · meanr(σ)(x) ·
f(R−1x) proving the result that scaling equivariant features
by average density do not break the equivariance property.
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Figure 1. CaFi-Net qualitative canonicalization results for 7 categories (see following pages for more results).

B.3. Gradient is Type-1 Equivariant

Lemma 3 The gradient operator is a (0, 1)-equivariant
transformation.

Proof: Let f be a 0-type field, by the chain rule of differ-
entiation, for any x, h ∈ R3 and R ∈ SO(3) we have

⟨∇(R.f), h⟩ = Dx(R.f)(h)

= Dxf ◦R−1(h)

= DR−1xf ◦DxR
−1(h)

= ⟨∇R−1xf,R
−1h⟩

= ⟨R∇R−1xf, h⟩
= ⟨R∇R−1xf, h⟩

thus ∇(R.f) = R.∇f which concludes the proof.

C. Additional Training Details
To train CaFi-Net, we augment NeRF density fields

with random rotations Rrand and canonicalize them at each

Equivariant Convolution Non-Linearities

InverseSphericalHarmonicTransform(sphere samples=64)
BatchNorm(momentum=0.75)

ReLU
MLP(Fin, Fout)

ForwardSphericalHarmonicTransform(sphere samples=64)

Table 1. Equivariant Convolution Non-Linearities - We use the
result in [2] and apply non-linearities after performing an inverse
spherical harmonic transform to avoid breaking the equivariance
of each layer. The sphere samples is the sphere sampling resolu-
tion to perform the Spherical Harmonic Transform and Fin, Fout

are the input and output feature dimensions respectively.

training iteration. We can easily do this by sampling the
NeRF model at location R−1

randx instead of x in a differen-
tiable manner using [1]. Our method is built over equivari-
ant layers and non-linearities from [2]. Table 1 shows the
non-linearities and learning layers that are used after each
equivariant convolution described in the main manuscript.



Figure 2. CaFi-Net qualitative canonicalization results for the remaining 6 categories.

D. Qualitative Results
We illustrate qualitative results by rendering objects in

the canonical frame for all the 13 categories in Figure 1 and
Figure 2. Here, we fix a camera position and viewing direc-
tion in the canonical frame and render all objects from the
same camera.
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