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A. Method details

In this section, we explain detailed settings and experi-
mental analyzes conducted in the main text.
Texture control analysis. Here, we describe detailed se-
tups of the texture control analysis (Section 3.1, main text).
In Figure 4a (main text), each stroke thickness case was
generated by the separately trained CARTOONER. We used
three models and these are trained with the cartoon image
resolutions of {2562, 4162, 8002}. We also set the texture
controller to only have a single branch. With these setups,
the models trained with {2562, 4162, 8002} resolutions gen-
erated thin, moderately thick, and thick strokes respectively.

To conduct an abstraction change experiment, as shown
in Figure 4b (main text), we trained multiple CARTOONER
similar to the stroke change scenario except for the receptive
field (RF) of the generator. We differentiated the RF of the
network by changing the kernel size of conv layers in the
texture controller by {3, 11, 19} each, which corresponds
to the low, moderate, and high abstraction scenes.
Network architecture. Table 1 presents the network ar-
chitecture of CARTOONER. We applied LeakyReLU for all
conv layers and did not use any normalization layer. In our
experiments, we observed that the existence of a normal-
ization layer (batchnorm [9] and instance norm [17]) drops
the cartoonization quality. The cardinality of conv layers in
the ResNeXt blocks were set to 32. We used the bilinear
interpolation method for Upsample layer. In col2 and col3
layers in the color decoder, the additional 3-channel of each
first conv layer is for the color cue injection.
Abstraction control unit. We designed this unit to be a
shared multi-branch system to increase the quality robust-
ness and reduce the model size. Specifically, the multi-
branch module was composed of conv layers with varying
kernel size, K1 < ... < KN , where K denotes kernel size
and N is the number of branches. Instead of using N conv
kernels, we only initialized a single conv layer with KN

kernel size. All other conv kernels were set to be a subset
of KN kernel as illustrated in Figure 1. By doing so, the
abstraction control unit can produce robust outcomes for
the different abstraction levels. We will demonstrate how

Table 1. Network architecture.

Layer Output size Building block

Shared Encoder (Eshared)
conv1 256⇥256 Conv(3, 32, 7, 1, 3)

conv2 128⇥128 Conv(32, 32, 3, 2, 1)
Conv(32, 64, 3, 1, 1)

conv3 64⇥64 Conv(64, 64, 3, 2, 1)
Conv(64, 128, 3, 1, 1)

conv4 64⇥64 3 ⇥ ResNeXt(128, 128)
Texture Decoder (Dtexture)

tex0 64⇥64 texture controller

tex1 128⇥128
Conv(128, 128, 3, 1, 1)
Conv(128, 64, 3, 1, 1)

Upsample(2)

tex2 256⇥256
Conv(64, 64, 3, 1, 1)
Conv(64, 32, 3, 1, 1)

Upsample(2)

tex3 256⇥256 Conv(32, 32, 3, 1, 1)
Conv(32, 1, 7, 1, 3)

Color Decoder (Dcolor)
col0 64⇥64 ResNeXt(128, 128)

col1 128⇥128
Conv(128, 128, 3, 1, 1)
Conv(128, 64, 3, 1, 1)

Upsample(2)

col2 256⇥256
Conv(64+3, 64, 3, 1, 1)

Conv(64, 32, 3, 1, 1)
Upsample(2)

col3 256⇥256 Conv(32+3, 32, 3, 1, 1)
Conv(32, 2, 7, 1, 3)

crucial this design is in Section C. Such a design also suc-
cessfully reduces the model parameters; without a shared
scheme, the model parameters of CARTOONER becomes
26.5M, while the shared kernel version (ours) is 5.9M.

Model training. We trained CARTOONER using Adam [11]
for 100K steps with a batch size of 32 and learning rate
of 2 ⇥ 10�4. Unlike previous deep methods [5, 6, 18], we
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(a) Unshared conv (b) Shared conv

Figure 1. Schematic overview of the shared conv kernel. (a) Un-
shared (vanilla) conv kernel scheme. (b) Our shared conv kernel
scheme, which was applied to constitute a multi-branch module
in the abstraction control unit. To do that, we employed the conv
with the largest kernel size only. All the other conv kernels were
set to be a subset of the largest one.

did not perform network pre-training [6]. For all results
shown in this paper, we used the same hyper-parameters:
�1
texture = 1.0, �2

texture = 0.0025, �3
texture = 0.0045,

�4
texture = 0.0015. We utilized the official Caffe-version of

VGG19 [16], and when creating a Gram matrix, we divided
it by the product of # of the channels, width, and height.

When generating an initial color map, CRGB
src from an

input photo IRGB
src , we adopted Zhu et al. [21] for both

training and inference. We selected this algorithm since it
is GPU-friendly, nevertheless, any off-the-shelf super-pixel
algorithm can be adopted. We tested other algorithms, such
as SLIC [1], and observed no performance drop even when
we use a different approach at train and inference.

B. Experimental settings

Dataset. In our study, we mainly focused on outdoor scenes
and landscapes, to better target the domain of cartoonizing
background scenes. We collected 8,227 real-world outdoor
images from the monet2photo dataset [20] for the source
photo domain. Then, this was split into 6,227 and 2,000 im-
ages for the train and test set. For the target cartoon domain,
we collected cartoon datasets from Japanese animations
and Webtoons. Specifically, we acquired animation images
from ‘The Garden of Words’ and ‘Your Name’ by Shinkai
Makato, and ‘Spirited Away’ by Miyazaki Hayao. For the
Webtoon dataset, we collected comics of titles ‘FreeDraw’1

and ‘Barkhan’2 from the NAVER Webtoon platform.
We resized source domain images as 256⇥256 resolu-

tion. For cartoon datasets, we cropped images to be a res-
olution of 512⇥512 and applied ⇥2 super-resolution [19]
beforehand when the raw image is <1024⇥1024 resolu-
tion. In total, we gathered images of 5,480 Hayao, 5,647
Shinkai, 5,308 FreeDraw, and 6,186 Barkhan datasets. In

1https://comic.naver.com/webtoon/list?titleId=
597447

2https://comic.naver.com/webtoon/list?titleId=
650305

(a) Photo (b) w/ Pre-train (c) w/o Pre-train

Figure 2. Is pre-training necessary? Previous deep cartooniza-
tion methods [5, 6, 18] rely on pre-training strategy. However,
CARTOONER does not require tedious pre-training at all; both
cases show a very similar performance.

Figure 3. What affects the abstraction level? (a) When we only
increase receptive field (RF) of the generator, the abstraction is
not well changed. (b) When we increase both RF of the genera-
tor and the resolution of target cartoon images, the abstraction is
adequately changed (this result (b) is also in the main text).

our experiment, we treated the above four style datasets as
independent since each artwork has a unique style.

User study. We asked 26 participants to pick the best re-
sults for how well the outputs follow both the cartoon styles
and source photos. Each of them was asked to vote on 16
questions, thus we collected 416 samples in total. In every
question, we presented source photography, exemplar car-
toon image, and the results of the previous and our methods.
For better visibility, we also showed cropped patches for all
the results. We computed the quality preference score by
the ratio of the voted (as the best) cases.

Interactive UI. Figure 6 shows an interactive UI of CAR-
TOONER. In the left panel, selection tools (e.g., selection,
quick selection, and eraser) offer mask-based region selec-
tion so the user can easily manipulate local region. In the
right panel, style change tools offer texture and color con-

https://comic.naver.com/webtoon/list?titleId=597447
https://comic.naver.com/webtoon/list?titleId=597447
https://comic.naver.com/webtoon/list?titleId=650305
https://comic.naver.com/webtoon/list?titleId=650305


(a) Unshared conv kernel

(b) Shared conv kernel

Figure 4. Study on the shared kernel in the abstraction control

unit. (a) When the unit does not share the conv kernels, the ab-
straction levels are not smoothly changed since each conv branch
may learn different representations. (b) When the unit shares the
conv kernels, the abstraction levels are gradually transited thanks
to the shared representations.

trol over the selected region. Here, the creators can change
the 1) target cartoon style, 2) texture (i.e., stroke thickness
and abstraction), and 3) color of the cartoonized outcomes.
For the color control, we provide both a color picker and
an HSV control slider UIs since we observed that the latter
is straightforward to utilize for unskilled users. Throughout
this, the creators easily render given natural photos into the
cartoon styles as well as manipulate the results with their
own desired texture and color.
Naive coloring approach. In Figure 10, we presented a
comparison between Cartooner and two alternative ap-
proaches that accept color control. The first one involves ex-
ecuting the re-colorization before the cartoonization (Figure
10a), while the second one involves the re-colorization af-
ter the cartoonization (Figure 10b). For both, we employed
a palette-based re-colorization [4] and Cartooner that is
trained without a color decoder.
Reference image-based color control. It can be achieved
with a simple pipeline. With a given reference image, we
extract the color palette through the K-means clustering.
In our demonstration (Figure 13, main text), we used eight
palettes (i.e., clusters). Note that when the user selects the
specific region (via selection tools) to transfer the color, we

generate a color palette from that region instead. Then, the
user chooses the region to be changed in a source photo and
the framework calculates the average color of the region,
denoted as c. In the meantime, the user also picks the color
c0 from the palette. Using these colors, c and c0, the frame-
work performs a palette-based color transfer algorithm [4]
to the initial color map Csrc and generates C̄src. However,
we observed that a simple color transfer in RGB space (Eq.
1) also produces robust results. With the manipulated color
map, CARTOONER now generates appropriate cartoonized
outputs that fulfill the users’ color intention.

C̄RGB
src = CRGB

src + (c0 � c) (1)

C. Model analysis

Model training. We analyzed the pre-training that has been
a prevalent strategy on deep cartoonization [5,6,18]. Previ-
ous studies reported that the warm-up process, which opti-
mizes the network through the content loss only in advance,
guarantees better convergence and cartoonization quality.
However, we found that the network pre-training does not
require to CARTOONER (Figure 2). We claim that a separate
design of texture and color enables robust training since the
texture and color decoders can solely concentrate on syn-
thesizing texture and color alone, respectively.
What affects the abstraction? In Figure 3, we present re-
sults of the abstraction analysis where we only change the
receptive field (RF) of the generator (Figure 3a), or change
both RF of the generator and the image resolution of car-
toon domain dataset (Figure 3b). Note that the latter result
was shown in the main text. When we alter the RF of the
generator alone, the abstraction seems not much affected
since the low-complexity cartoon scene does not guide the
generator, hence the generator would not have any incen-
tive to increase the abstraction. On the other hand, as we
discussed in Figure 5 (main text), increasing both RF and
the resolution effectively affects the abstraction due to the
scene complexity guidance from the cartoon images.
Abstraction control unit. We designed this unit to have a
shared conv kernel scheme in a multi-branch system. When
the conv kernels are not shared (Figure 4a), it is not guaran-
teed consistent and smooth abstraction transitions. For ex-
ample, the detailed textural gradations near window edges
intensify even when we increase the abstraction (2nd col-
umn). This is because each branch learns separate repre-
sentations without communication, thus, they are not tuned
to each other to generate smooth abstraction change. In
contrast, the shared conv kernel approach (Figure 4b) ad-
equately produces continuous abstraction modification. We
claim that robustness can be achieved since the RF of the
current abstraction is gradually evolved based on the previ-
ous RF (Figure 1). By doing so, all the branches share the
viewpoint near the center point (of RF), and the kernels with



(a) kernel sizes: {3, 11, 19, 27, 35}

(b) kernel size: {3, 7, 11, 15, 19}

Figure 5. Study on the kernel sizes in the abstraction control

unit. (a) When we extremely increase kernel sizes, the model
tends to generate blurred output since the conv kernel refers to
too many flat regions. (b) We found that this kernel size setting
enables the best abstraction control. Decreasing kernel size also
produces good abstraction, but is saturated on the highest level.

larger RF look wider region while maintaining the perspec-
tive of the previous ones. As a consequence, they produce
consistent and gradual transitions on the abstraction.

We demonstrate the results of the different kernel size
cases. In Figure 5a, we excessively expand the kernel sizes
and the network generates blurred outputs since the model
is guided from too many flat regions. In our experiment, we
found that kernel size in Figure 5b shows the best abstrac-
tion change in terms of perceptual quality. However, the
other settings (such as {3, 5, 9, 11, 13}) also make plausi-
ble outcomes as long as kernel sizes are in increasing order.

D. Discussion

Comparison to Jing et al. [10]. Unlike style transfer,
which utilizes general artistic paintings, expressing abstrac-
tion is crucial in cartoonization since cartoon scenes have
many flat regions. Thus, we decomposed stroke into stroke
thickness and abstraction. For stroke thickness, our ob-
servations are similar to the stroke size analysis in Jing et
al. [10]. However, we argue that the distinctiveness of the
cartoon, characterized by its numerous flat regions, renders
this distinctive more conspicuous than that of style transfer.

For abstraction, we argue that our analysis based on scene
complexity is more relevant to the cartoon domain, given the
prevalence of flat regions and abstraction in this genre.
Comparison to WhiteBoxGAN [18]. We present a com-
parison between our proposed method and WhiteBox-
GAN [18]. The shared objective of both methods is to de-
couple features in order to improve the training and synthe-
size quality. WhiteBoxGAN achieves this by decomposing
representations in its loss design such as utilizing structure,
texture, and surface losses. In contrast, Cartooner sep-
arates representations in the model design such as texture
and color decoders. Upon comparing the “decomposition”
in loss and model design, we posit that the latter approach
provides a more explicit separation of features, as each de-
coder can concentrate on its specific task (texture or col-
ormap generation). In contrast, when multiple losses are in-
corporated in a single decoder (as WhiteBoxGAN), the de-
coder may become confused due to the diverse signals ema-
nating from multiple synthesis tasks. As a result, our frame-
work offers the significant advantage of being more efficient
during the training process, leading to superior quality with
fewer artifacts, as demonstrated in Figure 8. Moreover, our
model design philosophy is universally applicable, as the
texture and color decoders are designed with identical struc-
tures that can be integrated into any network architecture.
Comparison to Stable diffusion [14]. We tackled image-
to-image (I2I) based cartoonization. It requires maintaining
the source photos’ structure while altering their style and
mood. In this respect, we compared the proposed method
with unpaired I2I approach [5, 6, 18] since these faithfully
meet the above requirements. Nevertheless, it is worth not-
ing the application of recent diffusion models [8] in the car-
toonization task considering its unprecedented progress in
the image synthesis task [7, 13, 14]. To investigate this,
we fine-tuned a pre-trained Stable diffusion (SD) [14] via
Dreambooth strategy [15] and then incorporated the most
popular I2I method, SDEdit [12], to make SD an I2I frame-
work. As shown in Figure 7, SD with SDEdit struggles to
produce satisfactory outcomes compared to Cartooner.
When the denoising strength (s) is set to a higher value
(= 0.6), it fails to preserve the source photo’s content infor-
mation, which hinders usability in the background-making
process. When s is set to a lower value (= 0.4), it produces
severe artifacts, which results in inferior visual quality than
ours. We suspect this is due to SDEdit’s inability to effec-
tively eliminate high-frequency information when the de-
noising strength is low. In the future, the SD-based content-
preserving I2I approach would be a valuable research topic.
Comparison to cartoon filters. The majority of cartoon
filters in commercial software [2,3] rely on traditional algo-
rithms so they support very limited cartoon styles. In this
respect, “deep cartoonization” studies have not included
comparisons with filters since filters cannot express various



Figure 6. Interactive UI of CARTOONER.

styles that deep methods can produce. In addition, through
interviews with many artists, we found that commercial fil-
ters require significant retouching to fit the artists’ desired
cartoon style and inevitably consume extensive effort. In
contrast, deep cartoonization [5, 6, 18], including ours, can
stylize images into a diverse range of styles with superior
quality, thus reducing the need for thorough retouching.
Limitation. Although Cartooner successfully demon-
strates an interactive to the cartoonization task, other prop-
erties could be incorporated to turn into a more artist-
friendly solution. In our study, we have focused on color
and texture, as these are (in our early interviews) the most
needed aspects by artists. Nevertheless, the lack of other
features might limit its usability in many scenarios. For ex-
ample, stroke shape (or style) control, sky synthesis (Figure
2), vectorization, or layer decomposition which are com-
monly used by artists, would greatly enhance the workflow.

E. Additional results

Figure 8 displays interactive scenarios and Figure 9, 10,
11, 12 show qualitative comparison.



(a) Source Photo (b) Cartooner (ours)

(c) SD [14] + SDEdit [12] (s = 0.6) (d) SD [14] + SDEdit [12] (s = 0.4)

Figure 7. Comparison to Stable diffusion (SD) [14] based image-to-image translation method [12]. Best viewed in zoom.



(a) Source photo (b) Target cartoon

(c) CartoonGAN [6] (d) AnimeGANv2 [5]

(e) WhiteboxGAN [18] (f) CARTOONER (ours)

Figure 9. Visual comparison. Images along with source photos indicate exemplar images of the target cartoon. Best viewed in zoom.



(a) Source photo (b) Target cartoon

(c) CartoonGAN [6] (d) AnimeGANv2 [5]

(e) WhiteboxGAN [18] (f) CARTOONER (ours)

Figure 10. Visual comparison. Images along with source photos indicate exemplar images of the target cartoon. Best viewed in zoom.



(a) Source photo (b) Target cartoon

(c) CartoonGAN [6] (d) AnimeGANv2 [5]

(e) WhiteboxGAN [18] (f) CARTOONER (ours)

Figure 11. Visual comparison. Images along with source photos indicate exemplar images of the target cartoon. Best viewed in zoom.



(a) Source photo (b) Target cartoon

(c) CartoonGAN [6] (d) AnimeGANv2 [5]

(e) WhiteboxGAN [18] (f) CARTOONER (ours)

Figure 12. Visual comparison. Images along with source photos indicate exemplar images of the target cartoon. Best viewed in zoom.
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