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1. Abstract
Due to the lack of space in the main paper, we provide more details of the proposed method and experimental results in the

supplementary material. Sec. 2 adds more details of tangent projection. Sec. 3 provides the detailed calculation progress of
the Collaborative Depth Distribution Classification (CDDC) module. Sec. 4 introduces our loss function, and Sec. 5 presents
a detailed description of the used benchmark datasets and metrics. In the Sec. 6 and Sec. 7, we show additional comparison
results and visual results about experiments. Furthermore, we discuss the rationality of SFA module in the Sec. 8 and show
some comparison results on real data in the Sec. 9.

2. More Details of Tangent Projection
We start by introducing an example of the tangent projection (TP) [1]. As shown in Fig. 1, Ps is a point on the sphere

surface, O is the center of the sphere, Pc is the center of the tangent plane, and Pt is the intersection point of the tangent
plane and the extension line of

−−→
OPs. As both Ps and Pc are on the sphere surface, we represent their spherical coordinates as

(θs, ϕs) and (θc, ϕc), respectively. Then, we can obtain the planar coordinate (ut, vt) of the point Pt on the tangent plane as
follows:

ut =
cos(ϕs) sin(θs − θc)

cos(c)
,

vt =
cos(ϕc) sin(ϕs)− sin(ϕc) cos(ϕs) cos(θs − θc)

cos(c)
,

cos(c) = sin(ϕc) sin(ϕs) + cos(ϕc) cos(ϕs) cos(θs − θc).

(1)

And the inverse transformations are:

θs = θc + tan−1(
ut sin(σ)

γ cos(ϕc) cos(σ)− vt sin(ϕc) sin(σ)
),

ϕs = sin−1(cos(σ) sin(ϕc) +
1

γ
vt sin(σ) cos(ϕc)),

(2)

where γ =
√
u2
t + v2t and σ = tan−1 γ. With Eq.1 and Eq. 2, we can convert the points on the sphere and pix-

els in TP patches to each other. In addition, we can convert the spherical points into pixels in the ERP image with
(ue, ve) = ( θs∗w2π , ϕs∗h

π ), where w and h are the width and height of the ERP image, respectively. Therefore, given the
spherical coordinate of a TP patch center, we can achieve the mapping between the pixels in the ERP images and those in the
corresponding TP patches.

The number of TP patches projected from a 360◦ spherical image depends on the sampling latitudes (the range of latitude
is from -90◦ to 90◦) and the sampling number at each latitude. For instance, in Omnifusion [12], TP patches are sampled
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Figure 1. An example of TP and ERP. Two TP patches are projected from two different areas (red area and yellow area).

Figure 2. (a) An ERP image; (b) TP patches with the patch number N = 10, which are sampled at three latitudes; (c) TP patches with
N = 18, which are sampled at four latitudes; (d) TP patches with N = 26, which are sampled at five latitudes; (e) TP patches with
N = 46, which are sampled at six latitudes

Figure 3. TP patches with different patch sizes.

from four latitudes: -67.5◦, -22.5◦, 22.5◦, 67.5◦, with 3, 6, 6, 3 patches on each latitude, respectively (see Fig 2c). Besides,
for one more case, as shown in Fig 2d, the sampled latitudes can be set: -72.2◦, -36.1◦, 0◦, 36.1◦, 72.2◦, while the sampled
patch numbers are 3, 6, 8, 6, 3, respectively. From Fig 2, we can see that with the patch number increased, the area of the



Figure 4. TP patches with different patch FoVs.

overlapping regions increased correspondingly. As shown in Table. 2, too few patches can not provide sufficient regional
structural information, while too many patches lead to the redundancy of regional information. As a result, we chose to use
a relatively small patch number of 18.

We fix the patch FoV to 80◦ and compare TP patches with different patch sizes of 32×32, 64×64, 128×128, and 256×256
in Fig. 3, and it demonstrates that different patch sizes do not affect the content in each TP patch, but a large patch size does
produce TP patches with more details. However, as shown in Table. 3 of the main paper, too large patch size will increase
computational costs and the redundancy of regional structural information (the amount of pixels in the overlapping regions),
which may further influence the prediction from holistic contextual information and decrease the overall performance. As a
result, we chose to use a relatively large patch size of 128×128.

For the patch FoV, we fix the patch size to 128×128, and change the patch FoVs to obtain a set of TP patches, as shown in
Fig. 4. Compared with the complete view of Fig. 2a, too small FoV causes the loss of the scene information, while too large
FoV causes the redundancy of information in the overlapping areas. As a result, we chose to use patch FoV 80◦.

3. More Discussion of Feature Similarity

Let us consider two pixels in two different TP patches but corresponding to the same pixel in the ERP image (See Fig. 5).
Using a look-up table, we can easily search the locations in two different TP patches TP1 and TP2 w.r.t. the pixel A. How-
ever, when re-projecting the pixel values in TP1 and TP2 to A of ERP, we have to know which one is better (as done by
OmniFusion), rendering the look-up table inapplicable for TP-to-ERP projection. We will clarify this accordingly.

TP𝟏𝟏 TP𝟐𝟐

𝑨𝑨

Figure 5. The relationships between pixels in ERP and TP patches.

4. More Details of Collaborative Depth Distribution Classification (CDDC)

In this section, we introduce the calculation process of the collaborative depth distribution classification (CDDC) module
in detail.

First, given an ERP image with the size of He×We×3, we follow the gnomonic projection to obtain N TP patches with the
size of Ht×Wt×3. Through the feature extractors, we can obtain the ERP feature map fE with the size He/2×We/2×Ce

and TP feature maps
{
fT
n

}
, n = 1, . . . , N with the size of Ht/2×Wt/2×Ct×N , as the inputs of CDDC module. Then we

summarize the detailed layer-by-layer network configurations in Table. 1. Especially, we introduce network configurations
in four parts: holistic depth distribution classification, holistic depth prediction, regional depth distribution classification, and
regional depth prediction.



Collaborative Depth Distribution Classification (CDDC)
Input InpRes Kernel Stride Ch I/O Opt. OutRes Output

Holistic Depth Distribution Classification
FERP He/2 × We/2 × Ce 8 8 Ce/C1 Flatten (He∗We

256 ) × C1 TkH
in

TkH
in (He∗We

256 ) × C1 - - C1/C1 Transformer Encoder (He∗We
256 ) × C1 TkH

out

TkH
out[0] 1 × C1 - - C1/B Eq. 3, Eq. 4 1 × B cH

Holistic Range Attention Map
FERP He/2 × We/2 × Ce 3 1 Ce/C1 He/2 × We/2 × C1 FH

FH& He/2 × We/2 × C1& - - - ⊙ He/2 × We/2 × C2 RH

TkH
out[1 : C2 + 1](TH) C2 × C1 - - -

RH He/2 × We/2 × C2 - - - Up-sample He × We × C2 RH
′

RH
′

He × We × C2 1 1 C2/B Softmax He × We × B PH

Holistic Depth Prediction
cH&PH 1 × B&He × We × B - - B/1 Eq. 5 He × We × 1 DH

Regional Depth Distribution Classification{
FTP

n

}
Ht
2 × Wt

2 × Ct × N 4 4 Ct/C1 Flatten (
Ht∗Wt

64 ) × C1 × N TkR
in

TkR
in (

Ht∗Wt
64 ) × C1 × N - - C1/C1 Transformer Encoder (

Ht∗Wt
64 ) × C1 × N TkR

out

TkR
out[0] 1 × C1 × N - - C1/B Similar to Eq. 3, Eq. 4 1 × B × N cR

cR&M 1 × B × N&He
2 × We

2 × N - - - Eq. 6 He
2 × We

2 × B Mc

Regional Range Attention Map
TkR

out[1 : C2 + 1] C2 × C1 × N - - - Mean C1 × N TR

TR&M C1 × N&He
2 × We

2 × N - - - Similar to Eq. 6 He
2 × We

2 × C1 Mkey

Mkey&TH He
2 × We

2 × C1&C2 × C1 - - - ⊙ He
2 × We

2 × C2 RR

RR He
2 × We

2 × C2 - - - Up-sample He × We × C2 RR
′

RR
′

He × We × C2 1 1 C2/B Softmax He × We × B PR

Regional Depth prediction

Mc
He
2 × We

2 × B - - - Up-sample He × We × B M
′
c

M
′
c&PR He × We × B&He × We × B - - B/1 Similar to Eq. 6 He × We × 1 DR

Table 1. Network summary of the CDDC module (⊙ denotes the dot-production).

In the holistic depth distribution classification, given the output of the transformer encoder, embedding tokens TkHout, we
select the first token TkHout[0] to calculate the bin center vector cH as

cHi = Dmin + (wH
i /2 +

i−1∑
j=1

wH
j ), (3)

wH
i = (Dmax −Dmin)

(mlp(TkHout[0]))i + ϵ∑B
j=1 (mlp(TkHout[0]))j + ϵ

, (4)

where i, j = 1, . . . , B, wH is the bin widths of the holistic distribution histogram, mlp denotes a multi-layer perceptron
(MLP) head with a ReLU activation, (Dmin, Dmax) is the depth range of the dataset, B denotes the number of depth
distribution bins, and ϵ is a small constant to ensure that each value of wH is positive. For the holistic depth prediction, the
bin centers cH are linearly blended with a probability score map PH to predict the depth value at each pixel (i, j):

DH(i, j) =

B∑
b=1

PH(i, j)b · cHb . (5)

For the regional depth distribution classification, as illustrated in the Table. 1, we collect regional depth bin center vectors
from the collection of TP feature map

{
FTP
n

}
and concatenate the center vectors to obtain the tensor cR with the size of

B ×N . Moreover, with the spatial guidance of index map M , we can obtain an ERP format bin center map Mc based on cR

as follows:

Mc(i, j) =

N∑
n=1

M(i, j)n · cRn (6)

where (i, j) is the pixel coordinate, and n is the patch index. The bin center map Mc represents the depth distribution of
each pixel with the regional structural information. Meanwhile, we concatenate the collection of selected tokens and reduce



the first dimension of the concatenation with the average operation, to obtain the tensor TR. Then we combine TR with the
spatial locations of index map M to obtain a feature map Mkey . Moreover, we introduce the embedding vectors TH of the
ERP branch. With Mkey as the “keymap” and TH as the “queries”, we can predict the probability score map PR and further
output the ERP format regional depth map DR.

Figure 6. Overview of the CDDC module with two steps.

5. More Details of Loss Functions
As introduced in the main paper, our loss consists of two terms: the pixel-wise depth loss and the holistic distribution loss.

For the pixel-wise depth loss, following existing works [9, 12], we adopt BerHu loss [10] for pixel-wise depth supervision,
which is formulated as

Ldepth =
∑
i∈P

B(Di −Di
GT ), (7)

B(x) =


|x| , |x| ≤ c

x2 + c2

2c
, |x| > c

(8)

where DGT is the ERP format ground truth, P indicates pixels which are valid in the ground truth depth map. c is a threshold
hyper-parameter and set to 0.2 empirically [9, 12].

Furthermore, following [3], we employ the bi-directional Chamfer Loss [7] to encourage the holistic depth bin centers
cH(b) to be consistent with the distribution of all depth values (X) in the ground truth map as:

LHbin = Cha(X, cH(b)) (9)

Cha(X1, X2) =
∑
x∈X1

min
y∈X2

∥x− y∥22 +
∑
y∈X2

min
x∈X1

∥x− y∥22 (10)



Finally, the total loss is the summation of both two terms:

Ltotal = Ldepth + λLHbin . (11)

For the balance weight λ, we follow [3] and set λ = 0.1 for all our experiments.

6. More Details of Datasets and Metrics

We conduct experiments on three benchmark datasets: Stanford2D3D [2], Matterport3D [4] and 3D60 dataset [16]. Note
that Stanford2D3D dataset and Matterport3D dataset are real-world datasets, while 3D60 dataset is composed of two synthetic
datasets (SunCG [14] and SceneNet [8]) and two real-world datasets (Stanford2D3D and Matterport3D). Stanford2D3D
contains 1413 panoramic samples and we split it into 1,000 samples for training, 40 samples for validation and 373 samples
for testing. Matterport3D is the largest real-world dataset for indoor panorama scenes containing 10,800 panoramas and we
follow the official split to split it into 33875 samples for training, 800 samples for validation, and 1298 samples for testing.
As the largest 360◦ depth estimation dataset, 3D60 totally contains 35973 panoramic samples where 33875 of them are used
for training, 800 samples for validation, and 1298 samples for testing. During training and testing, we resize the resolution
of the panorama and depth map in the former two datasets into 512 × 1024. For 3D60, we set the input size into 256× 512.

7. Additional Comparison Results

As shown in the open source code of PanoFormer [13], the authors applied the masking strategy for the Stanford2D3D
dataset:

1 mask = torch.ones([512, 1024])
2 mask[0:int(512*0.15), :] = 0
3 mask[512-int(512*0.15):512, :] = 0

Therefore, we apply the same masking strategy for the Stanford2D3D dataset and compare with PanoFormer in Table. 2.
With the masking strategy, our HRDFuse outperforms PanoFormer [13] by a significant margin, e.g., 5.8% (Abs Rel), 11.3%
(Sq Rel), 5.3% (RMSE). Furthermore, we compare our method with the PanoFormer on 3D60 dataset in Table. 3. Note that
PanoFormer did not provide the pre-trained models on the 3D60 dataset, we re-train the PanoFormer for 60 epochs with the
official hyper-parameters and same experiment setting as OmniFusion and UniFuse. Our HRDFuse outperforms PanoFormer
by a large margin.

Datasets Method Patch size/FoV Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE(log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Stanford2D3D

PanoFormer* [13] −/− 0.1131 0.0723 0.3557 0.2454 0.8808 0.9623 0.9855
PanoFormer† [13] −/− 0.0721 0.0506 0.3187 0.1949 0.9260 0.9766 0.9922

HRDFuse*,Ours 128× 128 / 80◦ 0.0984 0.0530 0.3452 0.1465 0.8941 0.9778 0.9923
HRDFuse†,Ours 128× 128 / 80◦ 0.0730 0.0469 0.3265 0.1311 0.9213 0.9807 0.9934
HRDFuse*,Ours 256× 256 / 80◦ 0.0935 0.0508 0.3106 0.1422 0.9140 0.9798 0.9927
HRDFuse†,Ours 256× 256 / 80◦ 0.0679 0.0449 0.3017 0.1271 0.9327 0.9826 0.9935

Table 2. Quantitative comparison with the SOTA methods. ∗ represents that the model is re-trained following the official setting. †
represents that the model is evaluated with the masking strategy in PanoFormer [13].

8. Additional Visual Results

More visual comparisons on Stanford2D3D and Matterport3D. In Fig. 7a, we perform qualitative comparisons with the
SOTA methods, UniFuse. [9] and OmniFusion [12], on the Stanford2D3D dataset and Matterport3D dataset, whose samples
are from real-world scenes. From the visual results, we confirm that our HRDFuse predicts the depth maps which are more
precise and contain more structural details than other methods.
More visual comparisons on 3D60. In Fig. 7b, we perform qualitative comparisons with the SOTA methods, UniFuse. [9]
and OmniFusion [12], on the 3D60 dataset, which contains both real-world and synthetic samples. From the visual results,
we further confirm the superiority of our HRDFuse.



Datasets Method Patch size/FoV Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE(log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

3D60

FCRN [11] −/− 0.0699 0.2833 - - 0.9532 0.9905 0.9966
RectNet [16] −/− 0.0702 0.0297 0.2911 0.1017 0.9574 0.9933 0.9979

Mapped Convolution [6] −/− 0.0965 0.0371 0.2966 0.1413 0.9068 0.9854 0.9967
BiFuse with fusion [15] −/− 0.0615 - 0.2440 - 0.9699 0.9927 0.9969
UniFuse with fusion [9] −/− 0.0466 - 0.1968 - 0.9835 0.9965 0.9987

ODE-CNN [5] −/− 0.0467 0.0124 0.1728 0.0793 0.9814 0.9967 0.9989
OmniFusion (1-iter) [12] 128× 128 / 80◦ 0.0469 0.0127 0.1880 0.0792 0.9827 0.9963 0.9988
OmniFusion (2-iter) [12] 128× 128 / 80◦ 0.0430 0.0114 0.1808 0.0735 0.9859 0.9969 0.9989

PanoFormer* [13] −/− 0.0442 0.0124 0.1691 0.0676 0.9861 0.9966 0.9987

HRDFuse,Ours 128× 128 / 80◦ 0.0363 0.0103 0.1565 0.0594 0.9888 0.9974 0.9990
HRDFuse,Ours 256× 256 / 80◦ 0.0358 0.0100 0.1555 0.0592 0.9894 0.9973 0.9990

Table 3. Quantitative comparison with the SOTA methods. ∗ represents that the model is re-trained following the official setting.

9. Discussion on the rationality of SFA module
As shown in the Fig .8, for a scene with simple structure, our SFA module make the index map centralized to several

representative TP patches with higher frequency of index, e.g., 4, 6, 10 (Fig. 8(c)). Combined with the Fig. 8(d), we can
observe that the feature alignment based on the feature similarity in the SFA module tends to employ the most representative
regional depth distributions to avoid the redundant usage. Meanwhile, facing the special depth values, SFA module will
introduce the corresponding the regional depth distributions to predict them (e.g., with index 11, 14). Especially, with the
scene structure becoming more complex, the more TP patches are needed to describe the holistic depth information, as shown
in the Fig. 9. The frequency of TP index is more balanced.



(a) Visual comparisons on Stanford2D3D and Matterport3D.

(b) Visual comparisons on 3D60 dataset.

Figure 7. More visual comparison results.
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Figure 8. The visualization of (a) ERP depth ground truth, (b) TP index map (colored according to the attached color card), (c) TP index
frequency and (d) TP depth patches with the corresponding index numbers from a scene with simple structure.
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Figure 9. The visualization of (a) ERP depth ground truth, (b) TP index map (colored according to the attached color card), (c) TP index
frequency and (d) TP depth patches with the corresponding index numbers from a scene with complex structure.



10. Visual comparisons and discussion on real data.
To better compare the generation capability of our HRDFuse and other SoTA methods, we capture the two real images

which records the indoor scene (considering the limited max depth value, we ignore the outdoor scene) and directly use the
models trained on Matterport3D training dataset to predict their depth maps. As shown in the Fig. 10, we can observe that
our HRDFuse predicts more precise depth maps for the captured scenes. By contrast, the results of PanoFormer [13] tend to
be blurry and over-smooth on unseen scenes.

RGB HRDFuse PanoFormer OmniFusion

RGB HRDFuse PanoFormer OmniFusion

Figure 10. Visual comparisons on real data (captured by Ricoh Theta Z1).
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