
Hierarchical B-frame Video Coding Using Two-Layer CANF
without Motion Coding - Supplementary Material

David Alexandre1, Hsueh-Ming Hang2, Wen-Hsiao Peng3

1Electrical Engineering and Computer Science International Graduate Program
2Institute of Electronics

3Department of Computer Science
National Yang Ming Chiao Tung University

Hsinchu, Taiwan
{davidalexandre.eed05g,hmhang}@nctu.edu.tw, wpeng@g2.nctu.edu.tw

1. Variants of TLZMC

In this section, we introduce two additional variants of
TLZMC: TLZMC** and TLZMC+. They are built upon
TLZMC* and offer improved rate-distortion (RD) perfor-
mance at the cost of slightly increased computational com-
plexity. Table 1 shows the comparison between TLZMC,
TLZMC*, TLZMC**, and TLZMC+.

1.1. System Architecture

The TLZMC** and TLZMC+ models incorporate the ef-
ficient CANF backbone in B-CANF [4], which is a vari-
ant (termed ECANF) of CANF [5] having fewer network
parameters, thereby, reducing computational complexity
at the cost of slightly lower coding performance. These
models also feature modifications in several aspects, in-
cluding the downsampling factor (TLZMC**, TLZMC+),

Figure 1. Framework of TLZMC**. As compared to its predeces-
sor (TLZMC*), TLZMC** uses EfficientCANF as its base-layer
and enhancement-layer codecs, max pooling as the downsampler,
and CARN as the super-resolution network.

the downsampler and super-resolution network (TLZMC**,
TLZMC+), and the merging operation (TLZMC+). Fig-
ures 1 and 2 show the architectures of TLZMC** and
TLZMC+, respectively. Specifically, TLZMC** adopts a
downsampling factor of 2 (instead of 4), employs Max Pool-
ing as the downsampler (using the built-in library from
torch.nn.MaxPool2D), and adopts CARN [2] for super-
resolution. But, TLZMC** still uses the multi-frame merg-
ing network from TLZMC. The implementation of CARN
is from [1]. Taking one step further, TLZMC+ incorporates
the above modifications and replaces the multi-frame merg-
ing net (MFMN) with the frame synthesis network in B-
CANF [4].

1.2. Training Procedure

For training TLZMC** and TLZMC+, we use the same
training procedure of TLZMC*, except that the CARN has
an initial model provided by its software [1].

Figure 2. Framework of TLZMC+. It has the same architecture
as TLZMC** except that the multi-frame merging network is re-
placed by the frame synthesis network in B-CANF [4].

1

Model FA Base Downsampler Super Merging Size Encode/Decode UVG / HEVC-B
Codec Resolution MACs (M/px) BD-Rate Saving

B-CANF Y ECANF - - FS 24.0M 2.70 / 1.97 -56.36 / -48.34
TLZMC N CANF DS-Net (1/4x) SR-Net MFMN 39.9M 1.50 / 1.44 -42.39 / -24.15
TLZMC* Y CANF DS-Net (1/4x) SR-Net MFMN 40.5M 1.57 / 1.48 -44.99 / -26.11
TLZMC** Y ECANF Max Pooling (1/2x) CARN MFMN 27.5M 2.16 / 2.10 -51.50 / -36.36
TLZMC+ Y ECANF Max Pooling (1/2x) CARN FS 29.0M 2.39 / 2.33 -48.10 / -39.40

Table 1. Components, model size and computational complexity of B-CANF, TLZMC, TLZMC*, TLZMC**, and TLZMC+. FA: frame-
type adaptive coding, ECANF [4]: EfficientCANF , MFMN: multi-frame merging network, CARN [2]: Super-resolution with Cascading
Residual Network, FS [4]: Frame Synthesis.

Figure 3. RD results for TLZMC variants compared to a few other
high-performance benchmark schemes in terms of PSNR. We use
the MSE model to evaluate TLZMC, TLZMC*, TLZMC**, and
TLZMC+ under the same settings as the main paper.

Video Seq. TLZMC TLZMC* TLZMC** TLZMC+

(1) BasketballDrive +45.67 +43.56 +21.30 +25.58
(2) BQTerrace +84.24 +73.80 +51.43 +2.27
(3) Kimono1 +27.96 +26.59 +13.46 +13.84
(4) Cactus +37.96 +22.65 +6.79 +13.85
(5) ParkScene +61.37 +44.90 +30.21 +17.09

Table 2. BD-rate saving comparison on HEVC-B dataset. B-
CANF is used as the anchor.

1.3. Experimental Results

We compare the rate-distortion (RD) performance of
TLZMC, TLZMC*, TLZMC** and TLZMC+ in Figure 3,
which includes also some high-performance B-frame and P-
frame codecs. The test sequences are from UVG and HEVC
Class-B datasets and the experiment settings are the same
as those in the main paper. It is clear that the new vari-
ants provide higher BD-rate savings than TLZMC on both
UVG and HEVC-B datasets. Particularly, their improve-
ments on the HEVC-B dataset is more significant. When we
examine individual videos, TLZMC** and TLZMC+ offer
more improvements on the video sequences with a moving
camera, such as ParkScene and BQTerrace in the HEVC-B
dataset. In contrast, the videos in the UVG test dataset typ-
ically have slower movement and do not have complex tex-
tures as compared to HEVC-B videos. Table 2 and Table 3
present the BD-rate comparison among TLZMC, TLZMC*,
TLZMC**, and TLZMC+, when B-CANF is the anchor. A
negative BD-rate number indicates that the current variant
outperforms B-CANF. On HoneyBee sequence, a station-
ary video with a small moving object, both TLZMC** and
TLZMC+ outperform B-CANF. Also, we show the bitrate
of the base layer in Table 4. We see that TLZMC** and
TLZMC+ have much more bits spent on coding the base
layer. This is attributed mainly to the smaller downsam-
pling factor (i.e., 2) used in these two schemes. In other
words, their base-layer images have larger size.

We adopt CANF as our image compressor and the sys-
tem block diagram is shown in Figure 4. As Table 1 in-
dicates, we use two types of CANF. The original CANF
(referred to as CANF) was implemented according to [5].
The EfficientCANF (ECANF) was implemented according

to [4], which has significantly smaller model size due to its
reduced and trimmed network layers. CANF has 13.616
million parameters, while ECANF has only 7.339 million
parameters. Hence, ECANF has lower computational com-
plexity than and slightly inferior RD performance to the
original CANF.

Video Seq. TLZMC TLZMC* TLZMC** TLZMC+

(1) Beauty +19.39 +18.11 +14.67 +14.40
(2) Bosphorus +28.21 +25.49 +22.98 +24.03
(3) HoneyBee +4.01 +1.33 -11.10 -13.40
(4) Jockey +34.77 +26.55 +21.63 +27.72
(5) ReadySteady +30.24 +29.12 +27.29 +27.13
(6) ShakeNDry +14.04 +13.11 +12.73 +12.27
(7) YachtRide +18.02 +17.92 +14.82 +17.79

Table 3. BD-rate saving comparison on UVG dataset. B-CANF is
used as the anchor.

1.4. Skip-Mode Coding Procedure

Figure 5 shows the operation of our skip-mode coding.
The skip mask determines the locations of skipped feature
samples. At the encoder, the skipped feature samples are
not included in the coded bitstream. At the decoder, the
same skip mask is generated; it guides the skipped sample
insertion process, in which the skipped samples are inserted
using the decoded µ values from the hyperprior. Figure 6
shows the structure of our adaptive CANF.

Figure 4. The architecture of basic CANF compressor. It takes xt

as the target signal and xc as the condition signal. The reconstruc-
tion target is x̂t = y1 + gdecπ1

(z1)

Figure 5. The binary skip mask SMt is used to determine the
skipped samples in z2. Only non-skipped samples go to the arith-
metic coding units (AC and AD). The same SMt is used to deter-
mine the locations of skipped samples on the decoder side. The
received samples are arranged to recover their original locations,
guided by SMt, and the skipped samples are filled in with the µ
values from the hyperprior to reconstruct ẑ2 (cited from [3]).

Figure 6. The architecture of adaptive CANF compressor. The
arithmetic coder (AC) and decoder (AD) in CANF are modified
to execute the skip-mode coding process. The decoder uses the µ
values produced by the predictor (in hdec

π3) to replace the skipped
samples.

1.5. Frame-type Adaptive Coding

The frame-type adaptive coding tool in B-CANF [4]
classifies frames in a GOP into “reference B-frames” and
”non-reference B-frames”. Reference B-frames are used

λ TLZMC TLZMC* (DS4 & MFMN) TLZMC** (DS2 & MFMN) TLZMC+ (DS2 & FS [4])
R / NR / AVG R / NR / AVG R / NR / AVG R / NR / AVG

256 5.38 / 8.71 / 6.80% 18.05 / 15.96 / 17.41% 27.37 / 38.34 / 32.95% 51.94 / 70.38 / 59.31%
512 4.30 / 7.55 / 5.53% 11.58 / 8.45 / 10.52% 14.12 / 19.77 / 16.59% 35.79 / 43.93 / 38.93%
1024 2.99 / 6.43 / 4.51% 8.08 / 5.16 / 7.01% 8.21 / 10.82 / 9.67% 23.93 / 24.17 / 24.03%
2048 2.55 / 5.29 / 3.46% 5.31 / 2.83 / 4.31% 6.10 / 7.18 / 6.53% 15.75 / 13.13 / 14.56%
Average 3.80 / 6.99 / 5.07% 10.75 / 8.10 / 9.81% 13.95 / 19.03 / 16.44% 31.86 / 37.94 / 34.21%

Table 4. Percentages of the base-layer bitrate for 100 frames in all videos were calculated for the HEVC-B dataset. We use the MSE model
for TLZMC, TLZMC*, TLZMC**, and TLZMC+. The percentages of the enhancement-layer bitrate can be derived by (100 - BL)%. The
total bitrate excludes intra-frames. R: reference frames, NR: non-reference frames, and AVG: the average percentages of the base-layer
bitrate over both reference and non-reference frames.

Figure 7. The specification of our frame-type adaptation in a GOP
of 32 frames. The first three interpolation levels are reference
frames and levels 4 and 5 are non-reference frames. R: Reference
frame, NR: Non-Reference frame.

to generate interpolated frames; non-reference B-frames
are never used to generate interpolated frames. If the
GOP size is 32 and frame 1 and frame 33 are Intra-coded
frames, then odd-indexed frames are reference frames and
even-indexed frames are non-reference frames. We mod-
ify slightly the above classification in TLZMC* (and thus
also in TLZMC** and TLZMC+). TLZMC* specifies the
reference B-frames based on the levels of interpolation in
a GOP. In a GOP of 32 frames, as shown in Figure 7, the
first interpolation level is frame 17, which is generated (in-
terpolated) by using frame 1 and frame 33. The second in-
terpolation level includes frames 9 and 25, which are gener-
ated by using frames 1, 17, and 33. The third interpolation
level consists of frames 5, 13, 21, and 29, generated us-
ing the frames of previous levels. The fourth level and the
fifth level frames are similarly defined. In TLZMC*, the
frames belonging to the first three interpolation levels are
called reference B-frames. The remaining frames (levels 4
and 5) are non-reference B-frames. In contrast, only level
5 interpolated frames are non-reference frames in B-CANF.
Higher bit rates are assigned to the reference-frames to im-
prove the overall coding performance.

1.6. Merging-Map Generator Architecture

The merging-map generator architecture is shown in
Figure 8. This architecture generates merging maps us-

ing a U-Net structure, taking three images as input: x̂SR
t ,

warp(x̂t−k,m
p
tt−k−>t

), and warp(x̂t+k,m
p
tt+k−>t

). The
generator architecture uses max-pooling for down-sampling
and transpose convolution for up-sampling, and generates
three floating-point maps using softmax function.

1.7. Refinement Module Architecture

Figure 9 shows the refinement module architecture,
which is also built on the U-Net structure and is made of
convolution layers. This module takes the output gener-
ated by the merging-map generator, along with the refer-
ence frames x̂t−k and x̂t+k, and generates a high-resolution
image x′

t. The refinement module uses average-pooling for
down-sampling and bi-linear interpolation for up-sampling.

2. Additional Experiment Results
2.1. Evaluation in x265 and HM-16.23

The x265 compressed videos in this paper were gener-
ated using the FFmpeg software with the x265 [veryslow]
setting. The command line for x265 encoding is:

ffmpeg -pix fmt yuv420p -s WxH -r FR -i input file.yuv
-vframes N -c:v libx265 -preset veryslow -tune zerolatency
-x265-params ”qp=QP:keyint=GOP” output

QP stands for the quality point, configured as 19, 22,
27, 32, 37. For the standard test protocol, GOP is set to 10
for HEVC Class B and 12 for UVG datasets.

To obtain HM-16.23 [LDP] results, we use the configu-
ration file encoder lowdelay P main.cfg with the following
settings:
-i=input.yuv -fr=FR -wdt=W -hgt=H -f=N -ip=32 -g=8
-dr=2 -q=QP -b bistream -o output
For HM-16.23 [RandomAccess], we use the configuration
file encoder randomaccess main.cfg with the following
settings:
-i=input.yuv -fr=FR -wdt=W -hgt=H -f=N -ip=32 -g=16
-q=QP -b bistream -o output

The value of QP for [LDP] is set to 17, 22, 24, 27,

Figure 8. The merging-map generator takes three inputs: x̂SR
t , warp(x̂t−k,m

p
tt−k−>t

), and warp(x̂t+k,m
p
tt+k−>t

), and generates the
merging-map using a U-Net structure. Downsampling is performed using the max-pool operation, and up-sampling is performed using
transpose convolution. Finally, the softmax function is applied at the end of the network to generate floating-point maps.

Figure 9. The refinement module of the multi-frame merging network (MFMN) uses a U-Net structure to produce output x′
t based on

the inputs x̂t−k, x̂t+k, and the merging output from MFMN. This module consists of convolution layers, with average pooling used for
downsampling and bilinear interpolation for upsampling. The output goes through a ReLU function before the construction of x′

t.

32, while for [RandomAccess] is set to 19, 22, 27, 32, 37
The symbols FR, N, and QP correspond to the frame rate,
the number of frames to be encoded, and the quantization
value.

2.2. Visual Quality

In Figure 10, we compare the visual quality of TLZMC
coded images to that of the standard codecs (x265 [verys-
low] and HM-16.23 [RandomAccess]) in low-rate set-
tings. Our reconstructed image (10c) of the Jockey se-
quence in the UVG dataset use the MSE model with λ=256

(PSNR=35.47 dB, bitrate=0.0047 bpp). It has fewer re-
construction artifacts than x265 [veryslow] (10e) at a sim-
ilar bitrate (PSNR=35.16 dB, bitrate=0.0047 bpp). How-
ever, the quality of the reconstructed image using HM-16.23
[RandomAccess] (10g) is higher; it is consistent with the
fact that it has higher PSNR (PSNR=35.93 dB, bitrate=
0.0046 bpp). We also show the reconstructed image of
the ShakeNDry sequence of the UVG dataset using our
MS-SSIM model. Compared to x265 [veryslow] (10f) and
HM-16.23 [RandomAccess] (10h), our TLZMC with MS-
SSIM model (10d) provides better visual quality at similar
bitrates (∼0.075 bpp). This is reflected in the MS-SSIM
metrics, where TLZMC has MS-SSIM=0.9605 while x265
[veryslow] has MS-SSIM=0.9299 and HM-16.23 [Rando-
mAccess] has MS-SSIM=0.9420. In general, our approach
can preserve more details in the coded images compared to
the traditional codecs.

References
[1] Carn software, 2022. https://github.com/nmhkahn/CARN-

pytorch. 1
[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

accurate, and lightweight super-resolution with cascading
residual network. arXiv preprint arXiv:1803.08664, 2018. 1,
2

[3] David Alexandre, Hsueh-Ming Hang, and Wen-Hsiao
Peng. Two-layer learning-based p-frame coding with super-
resolution and content-adaptive conditional anf. In Proceed-
ings of the 4th ACM International Conference on Multimedia
in Asia, pages 1–7, 2022. 3

[4] Mu-Jung Chen, Yi-Hsin Chen, Peng-Yu Chen, Chih-Hsuan
Lin, Yung-Han Ho, and Wen-Hsiao Peng. B-canf: Adaptive b-
frame coding with conditional augmented normalizing flows.
arXiv:2209.01769v1, 2022. 1, 2, 3, 4

[5] Yung-Han Ho, Chih-Chun Chan, Wen-Hsiao Peng, Hsueh-
Ming Hang, and Marek Domański. Anfic: Image compression
using augmented normalizing flows. IEEE OJCAS, 2:613–
626, 2021. 1, 2

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. The visual quality of TLZMC. (a,b) show the original pictures of Jockey and ShakeNDry video sequences. (c) is produced using
the MSE model of TLZMC with λ=256. (PSNR=35.47 dB, bitrate=0.0047 bpp) (d) is produced using the MS-SSIM model TLZMC with
λ=4 (MS-SSIM=0.9605, bitrate=0.0762 bpp). (e,f) are produced by x265 [veryslow]: for (e), PSNR=35.16 dB, bitrate=0.0047 bpp; and for
(f), MS-SSIM=0.9299, bitrate=0.0754 bpp. (g,h) are produced by HM-16.23 [RandomAccess]: for (g), PSNR=35.93 dB, bitrate=0.0046
bpp; and for (h), MS-SSIM=0.9420, bitrate=0.0765 bpp. The QP values of x265 and HM-16.23 were selected to reconstruct the frames at
similar bpps to our codec.

