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Abstract function associated with RF’s resolution-limited imaging

This supplementary material consists of 11 appendices.
It provides expanded discussion, background details, results,
illustrations, and documentation for radio-visual data and
algorithms.

A. Radio-visual analytic relationship

In radio imaging, there are two main phenomena that gov-
ern our ability to resolve objects in space. First, range resolu-
tion Ar is determined by bandwidth B and obeys Ar = ¢/2B,
where c is the speed of light. In typical millimetre-wave
frequencies for 6G, B ~ 1GHz which gives ~ 0.3 metre
resolution. Second, the angular resolution A¢ is consider-
ably worse and is generally related to our ability to pack
antennae in a reasonable form factor. That is, the imaging
performance disparity between vision and radio is largely a
function of disparities in angular resolution. To see this, let
I(z,y) be an image of a sensing scene, where = and y are its
horizontal and vertical dimensions, respectively. Let w be
the so-called beamwidth of an RF horn antenna. Then the
antenna response h(z,y) = e~ (" +v?)/(2w?) ig g “distortion”

(a) grey-scale camera image

(b) moderate blur

of a given scene. Specifically, h(z,y) will act as a blurring
function that convolves with the original image according to

I'(z,y) = I(z,y) * h(z,y) (1)

where I’ is the degraded image and * is the convolution
operator.

Fig. 1 contrasts normal camera imaging against RF’s
resolution-limited imaging. Left-most Fig. 1a shows a grey-
scale image of a factory. Assuming 1 degree angular resolu-
tion (A¢ = 1°), Fig. 1b in the middle illustrates the blurring
effect of Eq. 1 on the camera image. Under higher angular
resolution distortion A¢ = 10°, the right-most Fig. 1c shows
significant blurring as a result of a coarser beamwidth w
acting on I.

(c) high blur

Figure 1. Radio-visual relationship. A grey-scale camera image (a) undergoes blurring in (b) & (c) to simulate the effect of RF’s limited
angular resolution when using radio to image the environment. (b) shows moderate blur while (c) shows significant blur as a result of

angular resolutions A¢ = 1° and A¢ = 10°, respectively.



B. Radio-visual subspace analysis

In Sec. 4.1, the spatial encoders for (r), fgv (v) € REXhXw
are introduced. Following the implementation conditions
detailed in Appendix D, fqr(r), fgu(v) are concretely €
R128x60x80 Tn this section, we analyse their dimension-
ality after 100 epochs of training on the contrastive loss of
Eq. 4. To do so, we evaluate these embedding tensors for
the validation set. For each channel ¢ € {1,...,128} and spa-
tial bin n € {1,...,60} x {1,...,80}, we compute the centred
covariance matrices Cove € R128X128 gy, ¢ R4800x4800
according to

1 N-1
Covy = — > (2 —27)(zf —2°)" (2)
N k=0

where z§ is the embedding vector of a channel or spatial
bin! z € [¢,n], N is the number of validation samples, and
Z” is the respective average. To measure subspaces dimen-
sionality, we compute the singular value decomposition on
the covariance matrix Covy = USVT, S = diag(c¥), follow-
ing general practice in SSL theory [14,20]. We use these

li.e., unfolding the original 2-D spatial bins into a vector of wh = 4800
length
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subspace measurements to quantify changes in the learnt
contrastive representation as a result of architectural tweaks
such as EMA.

We concatenate the singular values of all channels and all
spatial bins and sort them in descending order. Fig. 2 depicts
on a logarithmic scale these aggregated singular values. We
can readily see that EMA has little effect on the dimension-
ality of the learnt representation across channels and spatial
bins, for both radio and vision branches. We, therefore, opt
to exclude it from our experiments for efficiency.
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Figure 2. Radio-visual subspace analysis w/ and w/o EMA.



C. Contrastive learning background & defini-
tions

Contrastive learning (CL). Let (r,v) be a radio-visual
data pair, where » € RIXHXW g a radar heatmap and
v € R3XHXW ig a corresponding RGB image. Encode, re-
spectively, radio and vision by two neural networks fyr and
fov and their momentum-filtered versions fz. and fz,, as-
suming some weight parametrisation {6",0v}. Additionally,
use projector heads gg- and gyv respectively, such that

q" = ggr (for (1)), k¥ = ggv (fgv (v)),
4" = gov (fov (v)), k" = ggr (fgr (7)) 3)

where vectors ¢", ¢V, k¥, k" € RN, superscripts r and v denote
respectively radio and vision, and following MoCo’s query q
and key & notation [13]. With each r, use K + 1 samples of v
of which one sample v is a true match to r and K samples
{v; 5! are false matches—vice versa with each v, K + 1
samples of r. The one-sided cross-modal contrastive losses
that test for vision-to-radio and radio-to-vision correspon-
dences are

ﬁg—ﬂ”(qr’ kU-‘r? kU—) B 651m(q7 7kv+)

g - -
TU esim(qT kU oy sn(anR )

esirn(qv,kTJr)

L7V (g% K", K"T) = - E log : —
v esim(gV,k7t) +3; esmﬂ(q“,ki )

where sim(z,y) .= z T y/7 is a similarity function, = is a tem-
perature hyper-parameter, k*+/~ = ggo (f5. (/7)) are en-
codings that denote true and false corresponding signals
x € [r,v] , and vector k*~ = {kf’_}iK: 61 holds K false en-
codings. Then the bidirectional cross-modal contrastive loss
is

Loy = (LT +LET0)/2 “4)

Spatial contrastive learning (SCL). Let (r,v) be a radio-
visual data pair, where r € RIXH*W jg a radar heatmap
and v € R3*HXW jg a corresponding RGB image. Encode,
respectively, radio and vision by two backbone neural net-
works for and fyv, assuming some weight parametrisation
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{67,0v}. Each backbone network encodes per bin one C-
dimensional feature vector within 2-dimensional spatial bins,
i.e., for(r), fov (v) € REXhXw The spatial binning resolution
h x w is generally coarser than the original image resolution
H x W. Denote by f7(r), f¥(v) € R radio and vision spatial
encodings atbinn € Q = {1,...,h} x {1,...,w}. Construct a
target mask ~ == [v;;] € [0, 1] %W such that f3,(y ® v) € R¢
is defined for m € @ = {1,...,h} x {1,...,@} to retain encod-
ings for the target of interest only in the RGB image (e.g.,
as delineated by a bounding box), where © is the element-
wise product and Q C Q is a subset of spatial locations. In
practice, the target mask can either be (1) estimated using
off-the-shelf vision object detectors such as Yolo [ 1, 18], or
(2) obtained directly as groundtruth during data synthesis.

Noting attention maximisation defined earlier in main
paper in Eqgs. 2 & 3, spatial cross-modal contrastive losses
can then be implemented during training from a batch B for
all radio-visual pairs (r,v) € B according to

LU=T(B) — _E o exp(S(T,v)/T) 7
o (B) IE & 2. exp (S(r,v;)/7)
i€B
LI(B) = —F o exp (S(r,v)/7)

B 8 Z exp (S(ri,v)/r)
i€B

®)

where the one-sided loss £2—" tests for vision-to-radio corre-
spondence, similarly £7—? tests for radio-to-vision, and 7 is
a temperature hyper-parameter. The bidirectional contrastive
loss that incentivises cross-modal spatial attention becomes

Lscr = (Lo +L£577)/2 (6)

For clarity, Fig. 3 illustrates the three contrastive learning
flavours used in this work.
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Figure 3. Three contrastive architectures that use spatial backbones: CL, MCL, and SCL. CL follows the original SimCLR architecture [9]

and its accessible queue-based MoCo optimisation [

], with the addition of a spatial backbone [5, 8]. MCL is broadly similar to CL except

for target masking on the vision branch, which promotes added target sensitivity. SCL does not use a projector head and instead rely on

spatial contrast [1,2,24].



D. Implementation details

The spatial backbone of the radio and vision encoders
uses an architecture similar to VGG-M [5, 8], swapping
max pooling for average pooling as recommended in [1].
For standard contrastive ablation in Sec. 6.2 (Contrastive
Learning (CL) & Masked Contrastive Learning (MCL)),
we base our cross-modal contrastive learning on MoCo v2
and its public implementation [13]. We extend MoCo’s
implementation with two queues for radio and vision similar
to the audio-visual active sampling work in [16]. We have
found that filtering the encoders with exponential moving
average (EMA) when implementing radio-visual contrast
has no tangible advantage, as detailed in Appendix B.

For mask generation in vision, we rely on groundtruth
bounding boxes from Blender. We also characterise down-
stream performance using bounding boxes estimated from
off-the-shelf Yolov5 model [11]. Tab. 1 reports Yolov5’s
IoU-0.5 performance metric as measured on MaxRay.

We train on 640x480 resolution for both RGB images
and radio heatmaps. Both radio and vision branches output
128 x80x 60 spatial features whose dimensionality is reduced
using 2-layer MLP projectors to 64-D vectors in the case
of CL & MCL. For CL & MCL, we use a MoCo v2 queue
whose size equals to the batch size. For CL & MCL, the
temperature hyper-parameter is 0.07, whereas for SCL it is
0.1. When implementing spatial attention, we pad bound-
ing boxes by a margin of 5 pixels, and pad a target spatial
response by a margin of 1 feature. For backbone training,
we use the Adam optimiser [15] with a learning rate of 10—
and no schedule. For all model variants, we train for 200
epochs. We use a batch size of 32 and train in a distributed
fashion on 8 GPUs. We trained experiments on two ma-
chines with GeForce RTX 2080 Ti GPUs and RTX A5000
GPUs, throughout for backbone training, supervised train-
ing, and NNI search space. Backbone training takes around
16-24 hours per experiment depending on model variant and
configuration. Both the localiser network trained on self-
coordinates and supervised baseline use identical architec-
ture and training as detailed in Tab. 2. MaxRay and CRUW
use different convolutional network settings due to differ-
ences in range and angular resolutions (cf., Tab. 4). The NNI
search space took around 5 days. For ray tracing MaxRay,
the ray casting settings of Blender greatly influence perfor-
mance. We set the maximum number of interactions to 5 and
the maximum length travelled to 500m. We parallelise frame
creation on 3060 Ti GPU, which gives 200sec creation time
per frame. This results in a total of 11.6 days of ray tracing
time for the parking lot scenario of dataset.

E. OFDM radar primer

Sec. 3.1 detailed the modelling and synthesis
flow MaxRay incorporates for vision and radio data.
6G network design is an active area of research whose
details are in a state of flux. We, therefore, elaborate here on
our radio data synthesis flow in order to enhance the clarity
of MaxRay’s radio modelling and assumptions.

Fig. 4 depicts a simplified block diagram of our 6G cel-
lular system with sensing support. This 6G model consists
of two simulation flows: (a) propagation via ray tracing, and
(b) OFDM-based basestation signal processing.

(a) Propagation. The basestation transmits OFDM signals.
These OFDM signals interact with the synthetic environment
of Blender through a set of complex propagation phenom-
ena. As such, backscatter signals captured at the basesta-
tion receiver chain enable radar detection. For synthesis-
ing these backscatter signals, MaxRay uses high-fidelity
radio ray tracing. Specifically, MaxRay (i) implements ge-
ometric radio ray casting within Blender, (ii) calculates the
propagation losses of these rays upon interacting with the
synthetic environment model, and (iii) induces approperi-
ate Doppler effects that correspond to moving objects (see
Fig. 4). The propagation model concludes by presenting
“environmentally-modulated” OFDM signals back to the
basestation model.

(b) Basestation. In 6G networks, sensing is to be supported
at the physical layer, unlike earlier attempts for opportunis-
tically using standard wireless channel estimates for sens-
ing [4]. For this to happen, the basestation transmits OFDM
signals and then receives them back “modulated” by envi-
ronmental effects. Specifically, the echoes backscattered
from objects in the environments are received back at the
basestation coherently w.r.t. the local oscillator of the receive
chain. This coherent transceiver is illustrated in Fig. 4 as a
coupling between the transmit and receive analogue chains.
The modified transceiver remains compatible with standard
downlink and uplink communications.

Radar processing in MaxRay is then implemented on top
of OFDM communication signals. OFDM is the workhorse
of modern communication systems. Using OFDM radar
makes sensing much more amenable to integration in com-
munication systems. Specifically, OFDM radar processing
begins after we obtain wireless channel estimates from the
OFDM demodulator as shown in Fig. 4. OFDM radar finally
outputs the sensing primitives (i.e., the heatmaps) that our
radio-visual SSL uses.

Note that joint communication and sensing in 6G as il-
lustrated in Fig. 4 is non-trivial. Concretely, 6G requires (a)
new hardware at cellular basestations, as well as (b) new re-
source allocation protocol involving space, time, frequency,
and power optimisations of the network [23]. For complete-
ness, the following describes briefly the signal processing
principles of OFDM radar [7] as implemented in MaxRay.



OFDM radar signal processing. For Ny, known trans-
mitted symbols X, the channel can be estimated from the
received data Y according to

B Yk,n
Xk,,n

where X, Y € ¢NsuoXNoymb - N is the number of subcarriers,
k and n are respectively subcarrier and symbol indices, and
division is element-wise for efficient single tap equalisation.
The signal traverses a finite number of paths L to the receiver.
As such we can write the channel according to

H" (7

L
k,n i2nnTy f ji2mkdy/coAf k,n
H — J2mnlofe J ¢/ €0 ’ 8
;70 Ploss & , T & o (8)

Doppler distance

where f, is the per-path Doppler-induced phase shift that
modulates OFDM symbols, and Ty is the symbol duration.
The distance travelled induces another phase shift that affects
OFDM subcarriers, with Af being the subcarrier spacing,
and n*™ ~ N(0,0%™) is zero-mean Gaussian noise. Eq. (8)
tells us that the phase information per path (i.e., bounced
off some object) can be used to determine the relative speed
and range of objects encountered during propagation. The
angle of an object can also be estimated by phase process-
ing multiple H"™ across antennae, i.e., spatial processing.
Orthogonality in OFDM allows for efficient periodogram

estimation of the channel as [7]
Ngm)'b -1 Ngp—1 ; pn
) ‘ —j2m j2m -k
P~ Z ( Z H""™e NSymh) ¢ Nav [ (9)
p=0

m=0

2

using the fast Fourier transform (FFT) over symbols, and the
inverse FFT over subcarriers. This gives rise to peaks at the
corresponding distance and speed of respective objects.

The above treatment shows that OFDM signalling for
communication can be reused for implementing radar tech-
niques for sensing. Integrating such sensing functionality
alongside communications, with acceptable tradeoffs, is an
active area of research for 6G networks.
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Figure 4. 6G network model with sensing support used in MaxRay. The model consists of two subsystems: (a) basestation and (b)
propagation. The basestation implements OFDM radar signalling within a phase coherent signal processing architecture. We simulate the
OFDM channel in baseband. Propagation simulations are performed via geometric ray tracing. We extensively model propagation losses
(e.g., diffraction, backscatter, reflection, scatter, penetration, etc.) as well as Doppler effects.



F. Self-labels analysis

Further to discussions in Sec. 6.2, Fig. 5 details the empir-
ical histograms that characterise SCL’s and MCL’s self-label
deviation from groundtruth labels.
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G. Additional results

Table 1. Yolov5 performance
on MaxRay.
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Figure 5. Groundtruth label distributions for target range and angle bins, along with their respective self-label distributions overlaid. SCL
and MCL behave differently in their ability to derive self-labels. Such distributions are depicted for both training and validation sets.



H. MaxRay illustrations cars are depicted in Fig. 6e.
Fig. 7 shows examples of different lighting and weather
Further to Sec. 3, Fig. 6 shows snapshot examples of conditions supported in MaxRay. Notice how the reliability
various data entries from MaxRay. The examples belong of vision detection (Yolo v5 here) drops under unfavourable

to the parking lot scenario supported in phase 1 of dataset conditions, particularly snow as depicted in Fig. 7d.
release. There are currently up to 20 random and identically

distributed cars. The statistics of the dimensions of these

(a) Camera (b) Lidar (c) Depth (d) Radar
> = width
length
20 mmm height
= 15
8
10
5
0 I II n
2 3 4 5

metre

(e) Car dimension statistics

Figure 6. Example of different modalities supported in MaxRay. From left to right: Camera image with bounding boxes, Lidar point cloud
with object type, Depth image with range, Radar heatmap with groundtruth coordinates. Distribution of car dimensions throughout dataset is
also illustrated.

(a) Day 7 (b) Night

(c) Rain (d) Snow

Figure 7. Example of different lighting and weather conditions supported in MaxRay.



I. In-depth NNI explanation

Neural Network Intelligence (NNI) is an automatic ma-
chine learning (AutoML) tool that enables the systematic
exploration of the optimisation space. We list the parameters
and neural architectures we considered during AutoML opti-
misation in the Tab. 2. The optimal search choice is shown
under the right-most column.

Fig. 8 depicts the final architecture of the supervised

network.
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Figure 8. Final neural architecture of the supervised localiser net-
work. @), @, and O denote vertical network break and continua-

tion.

Table 2. NNI optimisation architecture & parameters

Parameter Explanation Selection  Values Best net chosen
1Ir Learning rate Choice 0.0001, 0.001, 0.01 0.001
momentum Momentum for optimizer Uniform 08,..,1 0.948985588
act_func Activation function of conv layer ~ Choice "ReLU", "LeakyReLU", "Sigmoid", "Tanh", "Softplus" ReLU
optimizer Optimizer type Choice "SGD", "Adam" Adam
loss_func Loss function for training only Choice "MSE", "L1" MSE
cl_size Convolutional kernels of c1 layer Choice 4,8,16,32,64 8
c2_size Convolutional kernels of c2 layer Choice 4,8,16,32,64 16
c3_size Convolutional kernels of ¢3 layer Choice 4,8,16,32,64 8
c4_size Convolutional kernels of ¢4 layer ~ Choice 4,8,16,32,64 32
k1_size Kernel size of c1 layer Choice 2,3,4 4
k2_size Kernel size of c2 layer Choice 2,3,4 3
k3_size Kernel size of ¢3 layer Choice 2,3,4 2
k4_size Kernel size of c4 layer Choice 2,3, 4 4
sl_size Stride of ¢l layer Choice 1,2 2
s2_size Stride of c2 layer Choice 1,2 2
s3_size Stride of ¢3 layer Choice 1,2 2
s4_size Stride of c4 layer Choice 1,2 1
linl_size Linear layer 1 Choice 128, 256, 512 128
lin2_size Linear layer 2 Choice 16, 32, 64, 128, 256 16
1lin3_size Linear layer 3 Choice 16, 32, 64, 128, 256 64
lind_size Linear layer 4 Choice 64, 182, 256 64




J. Dataset comparison

Tab. 3 is a verbose version of Tab. 1 presented in Sec. 2.
Further, Tab. 4 summarises the properties of CRUW and how
it compares to our MaxRay dataset.

Table 3. Radio-visual datasets.

Application Resolution # of data points
Dataset Automotive 6G Range Azimuth Elevation Total Labelled Frame rate Groundtruth Radar Reconfigurability
CRUW [21] v X 23cm 15° — 396k 260k’ 30 Camera FMCW X
Carrada [17] v X 20cm 15° — 127k 7.2k 10 Camera FMCW X
AIODrive [22] 4 X NA N/A N/A 100k 100k 10 Synthetic N/A X
RADIATE [19] v X 17.5cm 1.8° 1.8° 200k 44k N/A Camera FMCW X
Oxford Radar RobotCar [6] v X 438m  0.9° — 240k — 4 N/A FMCW X
RADDet [25] X v 19.5cm 15° 30° 102k 10.2k 10 Camera FMCW X
DeepSense [3] X v 60cm 15° 30° wIP?  WwIp? 10 Camera+Lidar FMCW X
MaxRay™ X v 1875cm  6.75° — 30k 30k 30 Synthetic ~ OFDM v

1only a fraction available publicly.
2work—in—progress: dataset scenarios are being released.
*MaxRay is the only 6G synthetic dataset, and is the only reconfigurable dataset.

Table 4. Comparison between MaxRay and CRUW. CRUW™ requires preprocessing for integration into our radio-visual SSL algorithm.

Entry MaxRay CRUW Preprocessing

Camera 30 FPS @ 640480 pixels 30 FPS @ 1440 1080 pixels Linear downscaling to 640 x 480

Radio OFDM Radar @ 800MHz BW 2x FMCW Radar @ 1250MHz BW Radar range filtered to 5-30m, and
dense 16x 16 antenna array sparse 4 X2 antenna array periodogram upsampled

Range resolution 18.75cm 23cm

Angular resolution 6.75° 15°

Radio groundtruth Perfect high-fidelity ray tracing Camera-radar fusion (RODNet labels) None

Vision groundtruth ~ Perfect target bounding box Yolov5 target bounding box None

Scenario Parking lot (see Sec. ??) Parking lot (see [21])

# of data points 30k 9k

*https://www.cruwdataset.org



K. Datasheet

We document in Tab. 5 various aspects of our radio-visual dataset according to the specifications stipulated in [12].

Table 5. Dataset datasheet

Motivation
For what purpose was the dataset created? To facilitate radio-visual SSL research for 6G sensing.
Who created the dataset and on behalf of which entity? Bell Labs Core Research (BLCR) on behalf of Nokia.
Who funded the creation of the dataset? Nokia.
Composition

What do the instances that comprise the dataset represent?

How many instances are there in total?

Does the dataset contain all possible instances or is it a sample of instances from a larger set?
‘What data does each instance consist of?

Is there a label or target associated with each instance?

Is any information missing from individual instances?

Are relationships between individual instances made explicit?

Are there recommended data splits?

Are there any errors, sources of noise, or redundancies in the dataset?

Is the dataset self-contained, or does it link to or otherwise rely on external resources?
Does the dataset contain data that might be considered confidential?

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might
otherwise cause anxiety?

Does the dataset identify any subpopulations?
Is it possible to identify individuals, either directly or indirectly from the dataset?
Does the dataset contain data that might be considered sensitive in any way?

heatmap-image pairs sampled from a parking lot scenario.

30,000 labelled for parking lot.

All.

Radio heatmaps are range-azimuth description of the environment and
RGB images are their visual pairs.

Object groundtruth coordinates for radio and bounding boxes for vision.
No.

Correspondence between each radio-visual pair.

80:20 train-validation split for downstream regression.

Not at the data instance level; It is a synthetic dataset. At the radio signal
level, high-fidelity propagation modelling captures non-trivial sources
of noise such as clutter and fading.

Self-contained.
No.
No.

Collection Process

How was the data associated with each instance acquired?

‘What mechanisms or procedures were used to collect the data?

If the dataset is a sample from a larger set, what was the sampling strategy?

‘Who was involved in the data collection process and how were they compensated?
Over what timeframe was the data collected?

Were any ethical review processes conducted?

Synthesised using CAD tools.

Ray-tracing for radio and rendering for vision.

N/A.

Nokia employees under full-time employment.

Data generation took several months of in-house development effort.
N/A.

Did you collect the data from the individuals in question directly, or obtain it via third parties or other N/A.

sources?

Were the individuals in question notified about the data collection? N/A.

Did the individuals in question consent to the collection and use of their data? N/A.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent ~ N/A.

in the future or for certain uses?

Has an analysis of the potential impact of the dataset and its use on data subjects been conducted? N/A.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done? No.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data? N/A.

Is the software that was used to preprocess/clean/label the data available? N/A.

Uses

Has the dataset been used for any tasks already? Mainly radio-visual SSL research disclosed in this paper.

Is there a repository that links to any or all papers or systems that use the dataset? N/A.

What (other) tasks could the dataset be used for? This is a 1st radio-visual SSL work, and future research would build
on our ideas and/or investigate alternative approaches, e.g., for more
discriminative radio signals obtained from finer angular resolutions.

Is there anything about the composition of the dataset or the way it was collected and No.

preprocessed/cleaned/labeled that might impact future uses?

Are there tasks for which the dataset should not be used? N/A.

Distribution
Will the dataset be distributed to third parties outside of the entity on behalf of which the dataset was Yes.

created?
How will the dataset will be distributed?
When will the dataset be distributed?

Hosted on a public website.
2023.



Cont. Tab. 5

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under Yes.

applicable terms of use (ToU)?

Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? No.
Maintenance

Who will be supporting/hosting/maintaining the dataset? Nokia Bell Labs.

How can the owner/curator/manager of the dataset be contacted? Email.

Is there an erratum? No.

Will the dataset be updated? Yes.

If the dataset relates to people, are there applicable limits on the retention of the data associated with the N/A.

instances?

Will older versions of the dataset continue to be supported/hosted/maintained? Yes.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?

We will provide reference Blender files which can be modified to model
different environments. Our radio raytracing is however proprietary and
cannot be released. To work around this, users could licence equivalent
commercial radio raytracers in order to generate paired radio heatmaps
from Blender’s 3D models.

End Tab. 5
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