
Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on
Visual Language Understanding

—Supplementary Material—

Morris Alper∗, Michael Fiman∗, Hadar Averbuch-Elor
Tel Aviv University

Task Metric VisualBERT LMXERT BERT CLIP

VLU
Conc. Pearson 0.400 0.421 0.233 0.513

Spearman 0.412 0.370 0.238 0.495
Kendall 0.281 0.249 0.159 0.339

NCD Accuracy 0.467 0.400 0.267 0.823
CTD Accuracy 0.314 0.431 0.353 0.800

NLU
Cites R@1 0.003 0.007 0.199 0.019
NLI AUC 0.704 0.688 0.754 0.696

Table 1. Evaluating non-dual V&L encoders (VisualBERT and
LMXERT) on several VLU and NLU tasks with BERT and CLIP
added for reference.
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1. Additional Results and Comparisons
1.1. Non-dual V&L encoder models

Although non-dual (fusion) encoder models are not di-
rectly comparable to purely textual encoders such as BERT
or the text encoder component of CLIP which do not fuse
modalities, we consider them here for completeness We

*These authors contributed equally to this work

evaluate the VisualBERT and LMXERT non-dual encoder
models on several tasks from our task suite by only feeding
them textual input. Results are shown in Table 1. As illus-
trated in the table, even though these models were trained
using image features together with text tokens, the models
outperform BERT on visual tasks, though the gap is not as
significant as with dual encoder models.

1.2. Additional tasks using linear probing

We present two additional tasks for comparing V&L
and unimodal models using linear probing, one VLU
and one NLU task. For both tasks, we use a lin-
ear classifier on the pooled embedding output of a
model for categorical prediction. Specifically, we
use a logistic regression model using the scikit-learn
linear model.LogisticRegression implementa-
tion. For all tasks we use the default parameters except for
max iter which was changed according to task require-
ments to allow convergence. In particular, we use parame-
ters penalty=’l2’, C=1.0, solver=’lbfgs’.

1.2.1 Groundability classification

Task description. In paired text-image data, there is nor-
mally an implied mapping between referential expressions
in the text and objects or regions in the accompanying im-
age. The task of learning these mappings is known as visual
grounding and is of general interest for visual semantic un-
derstanding [1, 9, 22]. In captions accompanying images,
some expressions refer directly to regions in images while
others give non-visual context; we refer to the former as
groundable referents and the latter as non-groundable. A
similar paradigm was recently proposed by Kim et al. [6]
that separately considers “answerable” and “unanswerable”
phrases.

We propose a groundability classification task, consist-
ing of classifying referents in text as groundable or non-
groundable. This is a text-only task as it uses text alone and
the visual context is only implied. Since this task requires



visual imagination to complete, we consider it to be a VLU
task.

Experimental details. In line with previous works that
consider person-centric visual grounding [1, 11], we con-
struct a dataset of person-centric groundability sentences
where a fixed human participant is either implied to be
groundable (i.e., on-camera) or non-groundable (i.e., off-
camera). The associated task consists of binary classifica-
tion applied to these texts according to whether the given
participant would be visible in a description of an event.
Due to the lack of existing labelled data for this task, we cre-
ated a synthetic dataset of sentences with a common format:
Alex [MASK]ing Riley’s [MASK], where the first masked
word is a randomly drawn verb, and the second masked
word is a randomly drawn noun, and the task is to clas-
sify whether or not the second mentioned individual (i.e.,
Riley) is groundable. Groundability labels are estimated
using zero-shot text classification with a pretrained natu-
ral language inference model. We created synthetic data for
the groundability task by taking the prompt template “Alex

ing Riley’s ”, filling in various verb-noun pairs into
the given slots, and filtering using a pretrained language
model to select for natural-sounding samples. We then esti-
mated ground-truth labels using zero-shot inference with a
pretrained natural language inference (NLI) model.

To find verb-noun pairs, we listed all verbs and nouns
in the Brown corpus of standard American English with
part-of-speech labels [3]. We converted all text to lowercase
and then selected the 5,000 most common verb lemmas and
1,000 most common noun lemmas in this corpus. Using
all possible verb-noun combinations among these, inserted
into the prompt template shown above, yielded 5M can-
didate phrases. From the given 5M candidates we sample
randomly 200K phrases. We then calculate the total nega-
tive log-likelihood (NLL) for each candidate relative to the
pretrained language model GPT2-large [13] and kept only
those samples in the 20th percentile of NLL (i.e. the most
likely samples), corresponding to 40,000 descriptions.

After generating these texts, we estimated labels
using a pretrained NLI model. We used BART-
large [7] fine-tuned on the MNLI dataset [23] (using the
facebook/bart-large-mnli checkpoint from Hug-
ging Face model hub1). This model takes pairs of texts
as inputs (the “premise” and “hypothesis” texts) and out-
puts three probabilities per pair: pc, pn, pe, corresponding
to probabilities of a contradictory, neutral, or entailment re-
lation between the texts respectively. As observed by Yin
et al. [24], NLI can be used for zero-shot text classification
by designing premise and hypothesis prompts for the task
of interest. In our case, we use the following prompts:

Premise: “This is a picture of .”

1The model can be found here.

Model AUC (95% CI)

BERT 0.789 ± 0.0007
RoBERTa 0.799 ± 0.0005
ERNIE 0.766 ± 0.0006
CLIP 0.822 ± 0.0007

Table 2. Groundability Classification Evaluation. We report
ROC-AUC with 95% bootstrap confidence intervals scores for a
manually assembled test set comparing linear probing for text
based encoders and V&L CLIP model. As shown above, CLIP
significantly outperforms the unimodally trained models.

Hypothesis: “Riley can be seen in the picture.”
For each of our 40,000 texts, we insert the text in the slot

given in the premise and calculate pe with the NLI model.
If pe > 0.5 we assign the sample label 1 (groundable), oth-
erwise we assign it label 0 (non-groundable). Below are
several example sentences from the synthetic dataset.
Examples of Riley being groundable (sample label 1):

• Alex facing Riley’s figure

• Alex viewing Riley’s participation

• Alex seeing Riley’s enjoyment

Examples of Riley being non-groundable (sample label 0):

• Alex hiding Riley’s file

• Alex announcing Riley’s absence

• Alex stealing Riley’s evidence

For evaluation we created a test set, containing 200 sen-
tences judged by human evaluators to be natural sound-
ing, half labeled as groundable and the other half as non-
groundable. To provide an example, sentences such as Alex
cutting Riley’s hair or Alex blocking Riley’s shot were la-
beled as groundable, whereas sentences such as Alex paint-
ing Riley’s house or Alex counting Riley’s vote were labeled
as non-groundable.

For this binary classification task, we apply linear prob-
ing to assess our models’ understanding of groundability,
and report ROC-AUC scores for each model. We also pro-
vide 95% confidence intervals, calculated using bootstrap
resampling with 200 bootstraps, in order to analyze the ro-
bustness of these results.

Results and discussion. Results for the groundability clas-
sification are provided in Table 2. As these results illustrate,
CLIP significantly outperforms all unimodally trained text
encoders on average. We observe that the score gaps are not
as distinct as in the previous zero-shot tasks, as this task is a
learnable task which requires training, allowing all models

https://huggingface.co/facebook/bart-large-mnli


to learn this task to some extent. Nonetheless, CLIP’s abil-
ity to surpass the unimodally trained encoders suggest that
V&L trained text encoders have a better ability to grasp if
an object is grounded or not due to additional perceptual in-
formation that is encoded during the pretraining phase. Fur-
thermore, note that in comparison to the other VLU tasks,
here the subject in question (i.e., Riley) is not directly con-
nected to visual information and the prediction is based only
on context relating to the performed action and the associ-
ated object. The improved performance on this task illus-
trates that V&L models can better encode higher-level per-
ceptual reasoning.

1.2.2 Natural language inference

Task description. Natural language inference (NLI) refers
to inferring the logical relation between pairs of statements,
as well as more generally referring to logical inference
based on text [19]. In particular, NLI commonly consid-
ers the following logical relations between sentences A and
B:

• Contradiction: For example, A=It is rainy outside. is
contradicted by B=It is sunny outside., since they can-
not be simultaneously true.

• Neutral: For example, A=It is rainy outside. is neu-
tral with regards to B=It is summer., since A neither
contradicts nor entails B.

• Entailment: For example, A=It is cold and rainy out-
side. entails B=It is cold outside., since if A is true then
B must also be true.

Solving this task requires an understanding of the fine-
grained semantics of language and logical reasoning. On
the other hand, visual cues are not tightly related to this
task and are even potentially misleading. For example, the
sentences This cup contains grape juice. and This cup con-
tains wine. are contradictory even though the scenes they
describe are visually identical. Therefore, we consider this
to be a non-visual NLU task.

Experimental details. For this task we use the MNLI
dataset introduced by Adina et al. [23]. We remove sentence
pairs with a neutral relation and treat this as a binary clas-
sification task to predict sentence pairs as contradictory or
entailing. We perform 5-fold cross validation on a dataset of
261,775 pairs of sentences using 80% of samples for train-
ing and 20% for testing.

For each sentence pair, we concatenate the sentences’
two pooled embeddings and apply linear probing. Note that
some models such as BERT include a special [SEP] token
for encoding sentence pairs as a single unit, but we encode
sentences separately and concatenate their embeddings in

Model AUC ± std

BERT 0.754 ± 0.001
RoBERTa 0.777 ± 0.001
ERNIE 0.787 ± 0.001
CLIP 0.696 ± 0.001

Table 3. NLI Evaluation. We report ROC-AUC scores for the
NLI task using linear probing, comparing text based encoders to
the V&L CLIP model. As depicted above, the V&L trained text
encoder is inferior to all other text based encoders for this non-
visual language understanding task.

order to have a fair comparison between all models. We
report the ROC-AUC score on the MNLI test set.

Results and discussion. Results for NLI are provided in
Table 3. As shown in the table, text-based models outper-
form CLIP by a large margin. Similar to our findings re-
garding linguistic acceptability classification, we see that
V&L trained models are less effective in tasks that do not
incorporate perceptive information, suggesting that for non-
visual tasks, V&L pretraining is not necessarily beneficial.

1.3. Comparing usage of SP on text based models

In the main paper we presented results for text models
using MLM probing, and for CLIP using Stroop probing
(SP). To allow for a full comparison between both types of
models, and to strengthen the choice of using MLM probing
for text based models, we present additional results com-
paring SP and MLM probing for text based models. Ta-
ble 4 presents results for comparing SP and MLM prob-
ing methods for BERT and RoBERTa. As illustrated, using
SP with unimodally trained models results in lower perfor-
mance than using MLM probing with these models. This
result supports our choice of using MLM probing for text
based models trained to perform MLM tasks as the pre-
ferred probing method.

1.4. Additional task results information

We provide additional detailed results for our suite tasks
including the mean and standard deviation of the results
over all used prompts in Table 5.

1.5. Qualitative analysis for V&L model misclassi-
fications on color prediction

Our results for color association prediction show that
V&L models outperform unimodally trained text encoders
in the given setting. Additional qualitative analysis of the
results show that even the reported misclassifications of
V&L models such as CLIP may be explained by ambigu-
ities in the dataset itself. For example, the noun “ash” has
ground truth value “grey” in our dataset, while CLIP with



Color Shape Knowledge Proficiency Sent.
Metric accCTD accNCD acc R@1 R@5 accV accN accP acc

BERT-MLM 0.353 0.400 0.559 0.198 0.522 0.898 0.753 0.893 0.618
BERT-SP 0.137 0.067 0.412 0.000 0.005 0.048 0.038 0.013 0.596

RoBERTa-MLM 0.431 0.333 0.431 – – 0.877 0.718 0.881 0.666
RoBERTa-SP 0.176 0.200 0.422 – – 0.016 0.019 0.063 0.616

Table 4. Comparing SP to MLM probing for text base models. As the results show, using probing using MLM method for text based
models outputs better results than using SP

Concreteness Color Shape Sent.
Metric |ρ| |rs| |τ | accCTD accNCD acc acc

Unimodal
BERT-base 0.27 ± 0.10 0.27 ± 0.09 0.18 ± 0.07 0.26 ± 0.13 0.25 ± 0.08 0.47 ± 0.08 0.56 ± 0.03
BERT-large 0.18 ± 0.13 0.26 ± 0.10 0.17 ± 0.06 0.28 ± 0.14 0.27 ± 0.15 0.51 ± 0.06 0.56 ± 0.03
DistilBERT – – – 0.23 ± 0.08 0.31 ± 0.04 0.45 ± 0.09 0.56 ± 0.04
RoBERTa-base 0.30 ± 0.09 0.29 ± 0.10 0.19 ± 0.07 0.27 ± 0.10 0.27 ± 0.07 0.43 ± 0.00 0.61 ± 0.04
RoBERTa-large 0.21 ± 0.10 0.23 ± 0.11 0.16 ± 0.07 0.30 ± 0.12 0.26 ± 0.08 0.43 ± 0.00 0.63 ± 0.06
DistilRoBERTa – – – 0.24 ± 0.12 0.25 ± 0.10 0.43 ± 0.01 0.57 ± 0.02
ERNIE 0.23 ± 0.10 0.20 ± 0.12 0.13 ± 0.08 0.10 ± 0.04 0.13 ± 0.11 0.31 ± 0.08 0.53 ± 0.02
ERNIE-large 0.23 ± 0.08 0.22 ± 0.07 0.14 ± 0.05 0.12 ± 0.06 0.07 ± 0.09 0.30 ± 0.05 0.57 ± 0.05
SBERT 0.24 ± 0.09 0.25 ± 0.09 0.17 ± 0.06 0.13 ± 0.02 0.07 ± 0.01 0.43 ± 0.05 0.53 ± 0.02

V&L
CLIP 0.47 ± 0.09 0.49 ± 0.09 0.34 ± 0.07 0.67 ± 0.15 0.70 ± 0.08 0.69 ± 0.08 0.52 ± 0.01
OpenCLIP 0.45 ± 0.12 0.47 ± 0.12 0.32 ± 0.09 0.77 ± 0.12 0.66 ± 0.17 0.79 ± 0.08 0.53 ± 0.01
FLAVA 0.46 ± 0.10 0.52 ± 0.10 0.36 ± 0.07 0.52 ± 0.30 0.47 ± 0.22 0.68 ± 0.10 0.50 ± 0.01

Table 5. Mean and STD Results. Additional details of mean and standard deviations calculated across prompts, for all tasks which use
multiple prompts.

Word Ground Truth Predicted Color

apple green red
ash grey black
cauliflower white brown
cello brown black
chalk white grey
foam white grey
garlic white brown
lady finger green red
pear green yellow
sea blue grey
sky blue white

Table 6. Qualitative results for CLIP misclassified objects from
the CTD and NCD datasets. As can be seen by analyzing the
misclassified objects, most mistakes can be explained by ambigu-
ity of the data.

SP predicts the color “black”, which is arguably also cor-
rect. Table 6 presents all of the objects from both color
datasets misclassified by CLIP, containing the ground truth

and the predicted color. As seen there, most of these pre-
dictions may be interpreted as valid colors for the given ob-
jects.

1.6. Analysis of reporting bias in LAION

Prior works have noted that commonsense properties that
can be inferred from text are less likely to be explicitly
stated than incongruent properties, notably including color
terms(e.g. a (yellow) banana vs. a blue banana) [4,10,17].
In particular, text in image captioning datasets such as the
web-scale LAION dataset [16] (used to train OpenCLIP)
might have a different incidence of reporting bias than the
text used to train models such as BERT. To disentangle this
from the effect of training on the visual modality, we pro-
vide an analysis of reporting bias in LAION for color asso-
ciations.

We use the laion-2B-en subset of 2.33 billion
English-language image-caption pairs in the LAION-5B
dataset, and estimate reporting bias by searching for bigram
pairs (c, w) where c is a basic color term2 and w is a un-

2one of {red, orange, yellow, green, blue, black, white, grey, brown}



Word Ground Truth LAION

banana yellow green
cherry red black
orange orange red
soil brown red
swan white black
wood brown white

Table 7. Reporting bias in the LAION dataset, illustrated by
unigram nouns from the CTD and NCD datasets, along with their
ground truth colors and the most commonly preceding colors in
LAION.

igram noun from our color association datasets (CTD and
NCD). The empirical probability of color c immediately
preceding w is P (c|w) = n(c,w)/nw, where n indicates the
number of instances of the given ngram, and the associated
color estimates are ĉw = argmaxc P (c|w). For these esti-
mates, the corresponding accuracy scores on the unigrams
in our datasets are accCTD = 0.549 and accNCD = 0.714,
significantly below the accuracies achieved by all of the
multimodally trained models under consideration on these
datasets for the color prediction task. We also provide qual-
itative examples in Table 7 showing the effect of reporting
bias for various common nouns from these datasets. These
results provide evidence that multimodally trained models’
strong performance on VLU tasks cannot be explained away
as stemming from a lack of reporting bias in the texts used
to train them.

2. Additional Details
2.1. Models

Table 8 presents the different models and Hugging Face
checkpoints used for comparing results on the presented
tasks.

2.2. Prompts used per task

We present further implementation details elaborating
the list of prompts used per task.

Concreteness Prediction As explained in the main paper,
we use the following prompts to probe our models for the
concreteness of words in context by using a cloze task
paradigm with Stroop probing. For each word tested, we
insert the masked prompt and the prompt with the tested
word and calculate the cosine similarity between them.

• Alice giving the [*] to Bob

• Bob giving the [*] to Alice

• I see the [*]

• A photo of my [*]

• A close-up photo of a [*]

• A painting of the [*]

• A photo of the [*]

• A photo of a nice [*]

• A drawing of the [*]

Color Association Prediction For the color association
prediction, we use the following prompts. For each given
object denoted as ⟨w⟩, we use all color options to probe for
the correct color.

• A picture of a [*] ⟨w⟩

• A photo of a [*] ⟨w⟩

• A photo of the [*] ⟨w⟩

• A [*] ⟨w⟩

• [*] ⟨w⟩

• The normal color of a ⟨w⟩ is [*]

• ⟨w⟩ usually has a [*] color

• ⟨w⟩ s have a [*] color

• What is the color of a ⟨w⟩? [*]

• The natural color of a ⟨w⟩ is [*]

Shape Association Prediction For the shape association
prediction, we use the following prompts. For each given
object denoted as ⟨w⟩, we use the given shape o to probe
for the correct object shape.

• A photo of a [*] shaped ⟨w⟩

• A photo of a [*] ⟨w⟩

• A photo of the [*] ⟨w⟩

• A [*] ⟨w⟩

• [*] ⟨w⟩

• An image of a [*] ⟨w⟩

• A ⟨w⟩ usually has a [*] shape

• ⟨w⟩ s commonly have a [*] shape

• The basic shape of a ⟨w⟩ is [*]

• What is the shape of a ⟨w⟩? [*]



Model family Size Pretraining Params MLM head? Checkpoint

BERT [2] base text 110M Y bert-base-uncased
BERT [2] large text 340M Y bert-large-uncased
RoBERTa [8] base text 124M Y roberta-base
RoBERTa [8] large text 355M Y roberta-large
ERNIEv2 [20, 21] base text 109M Y∗ ernie-2.0-base-en
ERNIEv2 [20, 21] large text 335M Y∗ ernie-2.0-large-en
DistilBERT [15] base text 66M Y distilbert-base-uncased
DistilRoBERTa [15] base text 82M Y distilroberta-base
SBERT [14] – text 23M N paraphrase-MiniLM-L6-v2
FLAVA [18] – text & VLP 109M Y facebook/flava-full
CLIP [12] – VLP 63M N openai/clip-vit-base-patch32
OpenCLIP [5] – VLP 352M N laion/CLIP-ViT-H-14-laion2B-s32B-b79K

Table 8. Models table. Note that the number of parameters listed for CLIP, OpenCLIP and FLAVA refers to their text encoder components
alone. ∗ Note: ERNIE was trained with an MLM head, but because the public checkpoints provided do not include this, we do not evaluate
it with MLM probing.

Sentiment Analysis For sentiment analysis, we concate-
nate the following prompts to the given reviews and use the
different options for sentiment prediction.

• Is this review positive? [*]; Yes, No

• Is this a good movie? [*]; Yes, No

• I conclude the movie was [*]; good, bad

• The film was [*]; good, bad

• I had a [*] time; good, bad

• The following movie review expresses what sentiment?
[*]; Positive, Negative

• Sentiment expressed for the movie is [*]; Positive,
Negative

• The overall review of the film is [*]; good, bad

• The movie was [*]; good, bad

• This movie is [*]; good, bad
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