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We provide implementation details in Section A, addi-

tional experimental details in Section B, more visual results

in Section C, and limitations in Section D.

A. Implementation Detail

A.1. Trigrid

Figure S1. Tri-grid visualization

Figure S1 shows how tri-grid works in all three axes.

In practice, for each axis, we format the multiple feature

planes as a 5-D tensor (N×C×D×H×W and D = 3) in-

put for the grid sample function, which leads to a tri-linear

interpolation 1.

A.2. Dataset

We train our model with a combination of FFHQ [4]

(70K images, |yaw| ∈ [0◦, 60◦]), K-hairstyle dataset [7]

(4K images, |yaw| ∈ [120◦, 180◦]), and an in-house

large-pose head image collection (15K images, |yaw| ∈
[60◦, 180◦]). For K-hairstyle dataset, we first use

WHENet [9] to obtain yaw, pitch, and roll angles. Then

the yaw angle is replaced with ground truth horizontal la-

bels provided by the dataset, with adding noises to avoid

concrete values. We mirror all the training images and ad-

ditionally repeat all the back images (|yaw| > 90◦) by four

times for a balanced camera distribution.

A.3. Loss

Our entire pipeline, including generator G, neural ren-

derer R, and the discriminator D is trained using non-

saturating GAN loss with R1 regularization [8], following

1https://pytorch.org/docs/stable/generated/torch.nn.functional.grid

sample.html

StyleGAN2 [5] and EG3D [1]. Additionally, for training

of our foreground-aware tri-discriminator, we regularize the

gradient norm of the head segmentation mask with an addi-

tional R1 regularization loss LR1mask
. We also apply the

regularization loss Lcam = ∥∆ccam∥2 to prohibit far drift-

ing of the self-adapted camera from its original location.

More formally, our loss function is shown as follows:

L = LEG3D + λR1mask
LR1mask

+ λcamLcam (1)

Our method is implemented using PyTorch 1.12.

λR1mask
and λcam are set to 1 and 10, respectively. Em-

pirically we set the camera pose swapping probability to

0.7 instead of 0.5 in the original EG3D with observed better

image synthesis quality from non-conditional camera pose.

B. Experimental Analysis

B.1. ID Score

For identity consistency evaluation, we use the identity

similarity score (ID) by calculating the average AdaFace [6]

cosine similarity score from paired synthesized face images.

To this end, we first generate 1000 paired images rendered

from different camera poses with the same latent code z.

Given an arbitrary pair of images Ip and Iq , we evaluate

their Cosine similarity g as:

g =
fp · fq

∥fp∥∥fq∥
, (2)

, where fp, fq are the facial feature embeddings for Ip and

Iq respectively. We set the random camera poses range at

|yaw| < 45◦ and |pitch| < 15◦ to have reasonably good

quality facial images since AdaFace was trained with facial

images dataset.

B.2. MSE of Alpha Matte

Our tri-discrimination enables image generation with

disentangled foreground and background. Alpha matte, as

known as soft masking, precisely classifies per-pixel image

elements such as face, hair, or other classes. To evaluate
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Figure S2. Alpha matte MSE visualization. From top to bottom, it shows (a) images with the first background, (b) corresponding seg-

mentation masks, (c) images with a second different background, (d) corresponding segmentation masks, and (e) pixel-wise differences

between two above masks.

PanoHead’s capability of fore-background decoupling, we

calculate the pixel-wise mean square error (MSE) between

alpha matte estimated from a fixed identity while switch-

ing the background, as shown in Figure S2. Specifically, a

pair of images are synthesized with the same foreground la-

tent code but under different backgrounds. We obtain their

head segmentation masks from DeepLabV3 ResNet101 net-

work [2] ‘person’ class. Pixel-wise MSE of these two masks

represents how much a fixed foreground is changed while

switching the background. Our metrics are evaluated with

1000 pairs of images.

C. More Results

C.1. Stylemixing application

We show a head style-mixing application using

PanoHead’s learnt latent space. Specifically, given two la-

tent code wa and wb, we concatenate part of layers from wa

and the rest layers from wb to obtain a style-mixed image.

As shown in Figure S3, in PanoHead’s latent space, the first

four layers of w mainly control the haircut shape, 4th to

8th layers represent the facial appearances, whereas the rest

layers change the skin tone.

C.2. Viewconsistent generation

We show more 360◦ full head image synthesis in Fig-

ure S5, S6 and S7. Our model is able to generate di-

verse images in terms of genders, races, and appearances.

Please also refer to our supplementary video for more high-

resolution results.

D. Limitations and Future Work.

In addition to the limitations we mention in the main

paper, we provide failure cases visualization in Figure S4.

The rows (a) to (d) show artifacts on the back head, with

unnatural hair appearance pattern ((a), (d)) or even noisy

back-head geometry ((b),(c)). In (e), even though with short

frontal hair, our model smoothly transits to a long haircut

when rotating to the back. We also observe the appearance

of visual artifacts on the face when transiting the camera

to large poses. In (f), the model fails to learn a complete

hat but interprets the hat as part of the hairstyle. Since our

model is trained with cropped head images only, it occa-

sionally struggles to model authentic shoulder area. The



flickering texture issue is also noticeable in the original

EG3D model. We consider one potential issue is due to

the StyleGAN2 [5] synthesis network. Switching to Style-

GAN3 [3] architecture would help preserve high-frequency

details. We also notice that our model tends to generate

perfectly symmetric back head, which is rarely the case in

reality. We acknowledge that our model is trained with

limited data and styles, thus with underlying inevitable

bias. We believe large-scale high-quality well-annotated

full-head datasets can resolve most of the aforementioned

issues.
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Figure S3. Style-mixing results. Each column represents a head synthesized with the corresponding mixed w latent code at 3 different

camera views.



Figure S4. Failure cases. (a) to (d): artifacts on the back head. (e): unnatural mixing of short front and long back haircut. (f): fail to model

the complete hat.



Figure S5. Additional 360◦ view-consistent full head image synthesis with various hairstyles.



Figure S6. Additional 360◦ view-consistent full head image synthesis with various hairstyles.



Figure S7. Additional 360◦ view-consistent full head image synthesis with various hairstyles.
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