RenderDiffusion: Image Diffusion for 3D Reconstruction,
Inpainting and Generation
Supplementary Material

S1. Overview

In this supplementary material, we provide additional
architecture details (Section S2), additional results for un-
conditional generation (Section S3), additional results for
3D-aware inpainting (Section S4), an additional experiment
where generate multiple ShapeNet categories with a single
model (Section S5), and additional results for reconstruc-
tion (Section S6).

S2. Architecture Details

Here we summarise the architecture of the denoiser
network.  Code, training configurations and datasets
are publicly available at https://github.com/
Anciukevicius/RenderDiffusion.

Triplane encoder. The triplane encoder transforms the in-
put image of size M x M x 3 into a triplane representation
of size N x N x 3ny. We choose M = 64 and N = 256
for our experiments on ShapeNet, as we found that the in-
creased triplane resolution improves the quality of our re-
sults, and M = 32, N = 32 for CLEVRI1. Similar to other
2D diffusion models [5], we use a UNet [10] architecture
for the triplane encoder. The UNet consists of 8 down and
up blocks [10]. Each block consists of 2 ResNet blocks [3]
that additionaly take a timestep embedding, and linear at-
tention. If the triplane has larger resolution than the input
image, we append additional up blocks to the UNet that up-
sample the image to the triplane resolution. These have the
same architecture as the other UNet blocks, except that they
do not use skip connections, as there is no down block in
the UNet with the corresponding resolution.

Triplane renderer. To render triplanes, we mostly follow
EG3D [1]; however, we use explicit volumetric rendering
that samples points along the ray and queries a 2-layer fully-
connected neural network to output color and a density [1].
The network takes as input 32-dimensional sum-pooled in-
terpolations of triplane features. Unlike EG3D, we also use
a positional embedding of the 3D sample position [9] as in-
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Figure S1. 3D reconstructions over 6 random seeds given masked
input image from car test set. Notice the diversity in predictions.
Results were selected randomly (non-cherry-picked). Since there
are many possible inpaintings, Tab. S3 reports quantitative results
by taking best-performing reconstruction.

put to the network, which allows the network to represent
parts of the ground plane that extend beyond the triplanes
with a single constant feature.

S3. Additional Unconditional Generation Re-
sults

Quantitative evaluation We evaluate the distributions of
generated scenes quantitatively using four metrics. FID,
is the Fréchet Inception Distance (FID) [4] computed be-
tween training views of the generated scenes and training
views of all training set scenes. FID, is the FID com-
puted between test views of the generated scenes and test
views of all scenes from the test set. The coverage met-
ric (cov.) [7] measures how well the generated distribution
covers the data distribution. It is defined as the fraction of
training set images with neighborhoods that contain at least
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Table S1. 3D generation performance for our model RenderDiffusion, and baselines GIRAFFE [8], pi-GAN [2] and EG3D [ 1], on ShapeNet
and CLEVRI1 datasets. We report FID for train viewpoints for all methods, and also for test viewpoints with ours and EG3D, as well as

coverage (cov.) and density (dens.) [7]

ShapeNet

CLEVRI1

car plane

chair average

FID,. FID; cov. dens. FID, FID; cov. dens. FID, FID; cov. dens. FID, FID; cov. dens. FID, FID; cov. dens.

GIRAFFE [8] 30.5 - 0.11 0.03 56.1 - 045 041 352
pi-GAN[2] 256 — 0.07 0.02 335 - 0.16 0.08 414
EG3D [1]

- 039 030 406 - 032 025 - - - -
- 0.14 0.05 335 - 0.12 0.15 36.0 - 0.04 0.002

14.4 179 0.70 1.32 15.0 209 0.61 1.02 10.5 14.2 0.71 1.18 13.3 17.7 0.67 1.17 15.6 19.6 0.97 0.90

Ours 42.1 46.5 0.46 0.26 38.5 43.5 0.84 1.31 48.0 53.3 0.85 1.46 42.8 47.8 0.72 1.01 15.7 19.6 0.99 0.65

Table S2. 3D generation performance for our model RenderDif-
fusion, and baselines GIRAFFE [&], pi-GAN [2] and EG3D [1],
on FFHQ (faces) and AFHQ (cats). We report FID for train view-
points, as well as coverage (cov.) and density (dens.) [7]. For GI-
RAFFE and pi-GAN FID, we use the results from [!]; for EG3D
we use resolution 64 x 64, i.e. the same as ours; we omit pi-GAN
coverage and density due to lack of a publicly-available check-
point on which to calculate these.

FFHQ AFHQ
FID,. cov. dens. FID,. cov. dens.

GIRAFFE [8] 31.5 0.66 1.17 16.1 0.07 0.20

pi-GAN[2] 299 - - 160 - -
EG3D [1] 19.8 0.68 1.20 23.7 0.37 0.94
Ours 59.3 0.31 1.01 18.0 0.26 0.37

one generated sample, with a neighborhood defined based
on the 3-nearest neighbors. Similarly, the density metric
(dens.) [7] measures how close generated samples are to the
data distribution, by calculating the average number of real
samples whose neighborhoods contain each generated sam-
ple. Neighborhoods are defined in the feature space of a
VGG-16 network (last hidden layer) that was applied to all
training set views of a generated scene. The latter two met-
rics are similar to the improved recall and precision metrics
of [6], but avoid certain pathological behaviors [7].

Results on the synthetic datasets are presented in Tab. S1.
We see that EG3D performs well on the FID metric, with
ours second for CLEVR and pi-GAN second for ShapeNet.
Our approach tends to perform better on the coverage and
density metrics, while pi-GAN is particularly poor on these.
To interpret our quantitative performance relative to EG3D,
we refer to the qualitative results shown in Figure 5 of
the main paper, where we see that our shapes are slightly
more blurry than EG3D, but exhibit more variety and simi-
lar shape quality, apart from the blurriness. We hypothesize
that the blurriness introduces a bias that the FID metric is
highly sensitive to (as the blurriness may affect the feature
average that the FID is based on). Coverage and density are
less sensitive to the blurriness, as they don’t rely on an aver-
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Figure S2. Multi-category generation results. We show gener-
ated scenes from a single RenderDiffusion model trained on both
chair and airplane categories.

age over all samples and instead provide a more detailed
comparison of the sample distributions by working with
sample neighborhoods. This interpretation of the quantita-
tive results suggests that, leaving aside the blurriness, our
method generates samples that better cover the data dis-
tribution, at a comparable sample quality. This is in line
with current understanding of the differences between dif-
fusion models like RenderDiffusion, and GANs like EG3D.
Note that our models were not fully converged at the time
of measuring these results, and we observed that the blur-
riness gradually decreases over the course of the training,
making it likely that the blurriness can be reduced with
additional training. Tab. S2 shows quantitative results on
the real datasets FFHQ (photos of human faces) and AFHQ
(photos of cat faces); see also the qualitative results in the
main paper.



Figure S3. Uncurated samples from pi-GAN (left four columns)
and GIRAFEFE (right four columns), on the three ShapeNet classes.
Compare with results from ours and EG3D in the main paper.

Additional qualitative results The supplementary video
shows additional uncurated (not cherry-picked) qualitative
results for unconditional generation, shown from a camera
that rotates around the object. Fig. S3 shows uncurated gen-
erated samples from GIRAFFE and pi-GAN, on the three
ShapeNet classes.

S4. Additional Inpainting Results

To quantitatively measure how well our generative
model inpaints 3D scenes, we treat inpainting as a 3D re-
construction task with occlusions, where the mask is the
occluder. Similar to the unoccluded case, we compare ren-
ders of the reconstructed scene from test set viewpoints to
ground truth renders using PSNR and SSIM as metrics.
Since there are often many plausible inpaintings (i.e. the
task is ambiguous), we sample K different inpaintings with
our model and select the best matching one. For CLEVR
we choose K = 25 as the mask often hides majority of
the object (increasing the degree of ambiguity), while for
ShapeNet we choose K = 10. This gives as an indication
if the distribution of generated scenes for a given masked
input image includes the ground truth scene. To choose
the masked-out region of each image, we use a square with
width and height equal to 40% of the image resolution (e.g.
for an image of size 64 x 64 the mask will be of size 26 x 26).
The mask is placed uniformly at random within a square re-
gion of side length 1573 of the image size, itself centered in
the image. This ensures the mask always covers part of the
foreground object, not just the background. Illustration of
masked inputs and diversity in RenderDiffusion predictions
is shown in Fig. S1.

Quantitative results on this task are given in Tab. S3. We
compare the reconstruction performance with and without
masked input. We can see that in most cases, the perfor-
mance for the two cases is comparable, indicating that a
scene resembling the ground truth is contained in the out-
put distribution. We show additional qualitative results with
multiple seeds in the supplementary video.

input
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Figure S4. Additional reconstructions from out-of-distribution im-
ages. We show reconstructions with different amounts of added
noise for out-of-distribution input. We use the same random seed
for all reconstructions. Note how the amount of noise trades of
between reconstruction quality and fidelity to the input image.

SS. Multi-Category Generation Results

To further demonstrate that our model can represent
complex, multi-modal distributions, we perform an addi-
tional experiment where a single model is trained jointly on
multiple ShapeNet categories. Specifically, we train Ren-
derDiffusion on the union of the chair and plane cate-
gories, otherwise using the same architecture and training
protocol as described in the main paper.

In Fig. S2, we show qualitative results from this model.
We see that RenderDiffusion has successfully captured
both modes of the dataset, sampling plausible chairs and
airplanes. As in the single-category experiments in the
main paper, the samples are 3D-consistent, exhibit plausible
depth-maps, and look realistic from novel test viewpoints.

S6. Additional Reconstruction Results

In Figure S5, we show addditional reconstruction re-
sults for CLEVR1 and ShapeNet chair datasets. In Fig-



Table S3. 3D reconstruction performance when part of the input image is masked. For easier comparison, we copy the unmasked results
from the table in the main paper.

ShapeNet CLEVRI1

car plane chair average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
unmasked input 254  0.805 263 0834 266 0830 26.1 0823 39.8 0.976
masked input 247 0790 27.6 0870 262 0.820 262 0.827 389 0970
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Figure S5. Reconstruction results for ShapeNet chair and CLEVRI. Similar to the results on car and plane datasets in the main
paper, our reconstructions better preserve shape identity than EG3D, and are sharper and more detailed than PixeINeRF.

ure S4, we show reconstruction from out-of-distribution im-
ages with different amounts of added noise, ranging from no
noise at £ = 0 to 50 noise steps at £ = 50. Adding larger
amounts of noise results in reconstructions that are more
generic and increasingly diverge from the input image, as
the generative model fills in details covered by the noise,
but also show increasingly higher-quality shapes.
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