
RangeViT: Towards Vision Transformers
for 3D Semantic Segmentation in Autonomous Driving

— Supplementary Material —

Angelika Ando1,2,*, Spyros Gidaris1, Andrei Bursuc1, Gilles Puy1, Alexandre Boulch1, Renaud Marlet1,3

1Valeo.ai, Paris, France 2Centre for Robotics, Mines Paris, Université PSL, Paris, France
3LIGM, Ecole des Ponts, Univ. Gustave Eiffel, CNRS, Marne-la-Vallée, France

Contents

A. Additional visualizations 1

B. Model parameter count analysis 1

C. Computation cost comparison 1

D. Additional ablation analysis 2

E. Additional implementation details 2

A. Additional visualizations
Figs. 6 and 7 show visualizations of the segmentation ac-

curacy of RangeViT and Fig. 8 shows instances of correct
and incorrect predictions. The visualizations are made on
nuScenes validation point clouds. More information is pro-
vided in the captions of these figures.

B. Model parameter count analysis
In Tab. 1 of the main paper, we studied the impact of the

non-linear convolutional stem and the UpConv decoder. In
Tab. 9, we complete the results of Tab. 1 with a model (e)
which, like model (a), has a linear stem and a linear decoder
but for which the ViT backbone contains L = 14 trans-
former layers1 instead of L = 12. Hence, this additional
model (e) and our full RangeViT solution (model (d)) have
a similar number of parameters. This experiment shows that
the significant performance improvement of our full solu-
tion (d) is not simply due to a higher number of parameters,
since model (e) performs much worse than our RangeViT
(d). Besides, our full RangeViT solution with Dh = 64
(model (f)) also reaches a significantly better mIoU than

*This project was done during an internship at Valeo.ai.
1Note that, as pre-trained weights for the additional 2 transformer lay-

ers of model (e), which were placed on top of the existing 12 transformer
layers of ViT-S, we used the pre-trained weights from the last available
transformer layer.

Stem Decoder Refiner LLL DhDhDh mIoU #Params

(a) Linear Linear 12 N/A 65.52 22.0M
(b) Conv Linear 12 192 69.82 22.8M
(c) Conv UpConv 12 192 73.83 24.6M
(d) Conv UpConv ✓ 12 192 74.60 25.2M

(e) Linear Linear 14 192 65.52 25.6M

(f) Conv UpConv ✓ 12 64 74.00 22.7M

Table 9. Model ablations. Results on the nuScenes validation set.
The linear stem refers to the linear patch embedding layer. When
the 3D refiner layer (Refiner column) is not used, we use the K-
NN post-processing technique [3].

Method #Params Inference time

SalsaNext [1] 6.7M 28 ms
KPRNet [2] 213.2M -
Cylinder3D [8] 55.9M 49 ms
RangeViT (ours) 27.1M 25 ms

Table 10. Parameter count and inference time. Results on the
nuScenes validation set.

models (a), (b) and (e) while having nearly the same number
of parameters as model (a). This confirms that the proposed
convolutional stem and UpConv decoder play an important
role in the performance improvement.

C. Computation cost comparison

In Tab. 10, we compare the number of parameters and
the inference time of RangeViT with other LiDAR segmen-
tation methods. RangeViT has 27.1M parameters, which
is four times more than SalsaNext [1] (6.73M), half of
Cylinder3D [8] (55.9M) and eight times less than KPR-
Net [2] (213.2M). The inference time on nuScenes using
the same GeForce RTX 2080 GPU is: 25ms for RangeViT,
28ms for SalsaNext with K-NN post-processing (15ms
without it), and 49ms for Cylinder3D (using the simplified
and faster re-implementation of [4]).

1



k 
= 

1

k 
= 

3

k 
= 

3,
 d

 =
 2

 L
ea

ky
 R

eL
U

 L
ea

ky
 R

eL
U

B
N

B
N

 L
ea

ky
 R

eL
U

+
k 

= 
1

k 
= 

3

k 
= 

3,
 d

 =
 2

 L
ea

ky
 R

eL
U

 L
ea

ky
 R

eL
U

B
N

B
N

 L
ea

ky
 R

eL
U

c

k 
= 

2,
 d

 =
 2

 L
ea

ky
 R

eL
U

B
N

k 
= 

1

 L
ea

ky
 R

eL
U

B
N +

Av
g 

P
oo

l

k 
= 

1

ViT
Encoder

Convolutional Stem

k 
= 

1

P
ix

el
 S

hu
ffl

e

Skip Connection

UpConv Decoder

UpConv Decoder

Convolutional Stem

3x

c

k 
= 

3

 L
ea

ky
 R

eL
U

B
N

k 
= 

1

 L
ea

ky
 R

eL
U

B
N

c+ Element-wise Addition ConcatenationSkip Connection

Figure 5. Convolutional stem and UpConv decoder architecture. In the upper left corner, there is an overview of the RangeViT
architecture from the convolutional stem until the UpConv decoder. The stem and the decoder are also shown in more details. A convolution
with kernel size (s, s) is denoted by k = s and the dilation is denoted by d, where it is applied. Note that all the rectangles in the figure
with k inside them are convolutional layers. The batch normalisation layers are denoted by BN.

Crop size 32× 256 32× 384 32× 512

mIoU 74.40 75.21 74.51

Table 11. Impact of crop size. Effect of the training crop size on
the nuScenes validation set with Cityscapes pre-training.

D. Additional ablation analysis

Impact of crop size. During training, we take a fixed-
sized random crop from the range image, which is the input
of the model. This design choice avoids computing self-
attention on the whole range image in the ViT encoder, but
it lacks the global information carried by the whole image.
Nevertheless, our method is still successful for the semantic
segmentation task since the H × 384 window crop covers
the whole vertical field-of-view (FOV) and one fifth of the
horizontal (azimuthal) FOV (67.5 degrees). This is what
a single nuScenes camera captures and where objects are
already well identifiable. Moreover, we recall that sliding
windows are also successfully used for 2D semantic seg-
mentation with ViTs, e.g., in Segmenter [5].

In Tab. 11, we experiment with different crop sizes. As
we see, the crop size has a small impact on the performance.
It is also likely that tuning the learning rate and the number
of epochs for these new crop sizes will reduce these small
gaps even further.

Role of the classification token. The classification token
interacts with the patch embeddings in the ViT encoder, but
it is removed from the encoder output. As we do not use
it directly for the semantic segmentation task, we explored
its role by omitting it completely from the pipeline. Thus
omitting the class token makes the mIoU drop from 75.21%
to 74.64% and from 72.37% to 72.24% for the Cityscapes
pre-training and no pre-training (random initialization), re-
spectively. We hypothesize that the larger mIoU drop for
Cityscapes pre-training is because, during 2D segmentation
pre-training, the class token learned to carry global informa-
tion that the patch tokens exploit via self-attention in order
to extract better features for the segmentation task. In any
case, the differences are small and thus feature extraction
can still be achieved without adding the class token.

E. Additional implementation details

Convolutional stem and UpConv decoder. Fig. 5 shows
the detailed architecture of the convolutional stem and the
UpConv decoder. All convolutions that are applied before
the average pooling layer in the convolutional stem or after
the Pixel Shuffle layer in the decoder do not change the spa-
tial dimensions of the feature map H × W , so appropriate
paddings were applied where necessary.



As described in Sec. 3 of the main paper, the average
pooling layer reduces the spatial dimensions from H ×W
to (H/PH)× (W/PW ). To achieve this, we use kernel size
(PH +1)× (PW +1), kernel stride PH ×PW and padding
(PH/2)× (PW /2).

In the stem, the first three residual blocks use 32 fea-
ture channels and the change of dimensions from C = 5
input channels to 32 channels happens in the first convolu-
tional layer of the first residual block. The fourth residual
block in the stem uses Dh feature channels and similarly the
change of dimensions from 32 input channels to Dh chan-
nels happens again in the first convolutional layer. Finally,
the last convolutional layer in the stem (that is after the av-
erage pooling layer) uses D output feature channels.

KPConv layer of the 3D Refiner. The KPConv [6] layer
of the 3D Refine has Dh input and output feature channels.
Its kernel size is 15 points and the influence radius of each
kernel point is 1.2.

Replacing ViT-S with ResNet-50. In Tab. 6 of the main
paper, we report the results that we achieve with our
model when we replace the ViT-S encoder backbone with
a ResNet-50 (RN50) backbone. To implement this RN50-
based model, instead of the ViT-S we use the four residual
blocks of RN50, to which we introduced dilations to main-
tain a constant spatial resolution as in ViTs. The stem and
decoder remain the same, except for the number of output
channels of the stem (64) and the input channels of the de-
coder (2048) to make them compatible with RN50. The re-
sulting model has comparable FLOPs (the inference time
for both is 25ms) but much more parameters (25.2M vs
35.3M).

Range-projection for the SemanticKITTI experiments.
To generate the 2D range images for the SemanticKITTI
experiments, instead of using the spherical projection de-
scribed by Eq. (1) of the main paper, we follow [2, 7] and
unfold the LiDAR scans according to the order in which
they are captured by the sensor.

References
[1] Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy. Sal-

saNext: Fast, uncertainty-aware semantic segmentation of Li-
DAR point clouds. In ISVC, 2020. 1

[2] Deyvid Kochanov, Fatemeh Karimi Nejadasl, and Olaf Booij.
KPRNet: Improving projection-based LiDAR semantic seg-
mentation. In ECCV, 2020. 1, 3

[3] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stach-
niss. RangeNet++: Fast and accurate LiDAR semantic seg-
mentation. In IROS, 2019. 1

[4] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre
Boulch, Andrei Bursuc, and Renaud Marlet. Image-to-LiDAR
self-supervised distillation for autonomous driving data. In
CVPR, 2022. 1

[5] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmentation.
In ICCV, 2021. 2

[6] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. KPConv: Flexible and deformable convolution for
point clouds. In CVPR, 2019. 3

[7] Larissa T Triess, David Peter, Christoph B Rist, and J Mar-
ius Zöllner. Scan-based semantic segmentation of lidar point
clouds: An experimental study. In IV, 2020. 3

[8] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Wei Li,
Yuexin Ma, Hongsheng Li, Ruigang Yang, and Dahua Lin.
Cylindrical and asymmetrical 3D convolution networks for
LiDAR-based perception. In CVPR, 2021. 1



Segmentation AccuracyGround Truth Prediction

Figure 6. Segmentation accuracy visualizations of RangeViT on validation point clouds of nuScenes. In the left column, the points are
coloured with their ground truth label colours and in the right column they are coloured with the colour of the predicted label colours. In
the middle column, the good predictions are colored in blue and the bad predictions are colored in red.



Segmentation AccuracyGround Truth Prediction

Figure 7. Segmentation accuracy visualizations of RangeViT on validation point clouds of nuScenes. In the left column, the points are
coloured with their ground truth label colours and in the right column they are coloured with the colour of the predicted label colours. In
the middle column, the good predictions are colored in blue and the bad predictions are colored in red.



Ground Truth Prediction

PredictionGround Truth

Ground Truth
Label Colours

Bicycle Bus Car

Traffic ConeMotorcycle Driveable SurfacePedestrianTruck

Sidewalk Terrain

Vegetation

Manmade

Noise

Figure 8. Segmentation accuracy visualizations of RangeViT on validation point clouds of nuScenes. The correct predictions are circled
in blue, the incorrect ones in red and predictions that are mostly correct except for a few points are circled in half blue-half red. In the first
example, the truck, the bus and the pedestrians are correctly predicted. The motorcycles are mostly correctly predicted except for a few
points that were predicted as vegetation or manmade. However, part of the sidewalk is predicted as driveable surface and as we can see in
the image, there is no height difference between the two, so it is difficult to recognize the sidewalk. In the second example, the truck was
correctly predicted. In the third example, the truck was incorrectly predicted as a car and the traffic cones next to the bicycle were predicted
as bicycle. The traffic cone next to the truck was however correctly predicted as well as the bicycle.


	. Additional visualizations
	. Model parameter count analysis
	. Computation cost comparison
	. Additional ablation analysis
	. Additional implementation details

