
Appendix

A. Preliminaries

Equivariance. For a specified function f : X → Y as
well as a specified group G, f is said to be equivariant with
respect to a group action g ∈ G if,

f(g ◦ x) = g ◦ f(x), x ∈ X. (9)

Vector Neuron. Since an SO(3)-equivariant operation
i.e., Vector Neuron (VN) [13] is utilized in our Point-wise
Learner, here we provide a brief introduction of VN to make
the paper self-contained.

The basic idea behind VN is to augment a scalar z ∈ R to
a vector v ∈ R3 to maintain SO(3) equivariance. For a point
cloud P , the Vector Neuron firstly formulates the raw rep-
resentation P ∈ RN×3 into a set of vector representations
V ∈ RN×C×3 (the simplest condition is C = 1). Sub-
sequently, it defines a linear mapping flin(;W) acting on
V to change the number of latent channels: flin(V;W) =
WV ∈ RN×C′×3, where W represents the weight matrix
RC′×C . It can be demonstrated that such mapping is equiv-
ariant to arbitrary SO(3) rotations R: flin(r ◦ V;W) =
WVrT = r ◦ flin(V;W), where r is a group action in R.

Moreover, the nonlinear layer fReLU (·), pooling layer
fp(·) and normalization layer fn(·) are redefined in VN. For
more details, please refer to [13]. In this case, Eq. 2 in the
main paper can be reformulated by:

vl+1
i = VN(vl

j ;W) = fp(fReLU (fn(flin(v
l
j ;W)))).

(10)

Invariant Transformation. In Section 3.2, we adopt
an invariant transformation [13] to generate the rotation-
invariant signal IP . Specifically, for a set of equivariant vec-
tor representations V ∈ RN×C×3, a list of reference frames
F ∈ RN×3×3 can be calculated via multiple VN layers
(i.e., an equivariant mapping M : RN×C×3 → RN×3×3).
The corresponding invariant signal is then produced by
I = VFT = VM(V)T ∈ RN×C×3. Suppose a group
action r ∈ SO(3) operating on V, we have:

I′ = (r ◦V)
(
M(r ◦V)

)T
= (VrT)

(
M(VrT)

)T

= VrTrM(V)T = VFT = I.
(11)

It is obvious that this signal is invariant to arbitrary SO(3)
rotations.

B. Theoretical Proof

Lemma 1. The linear combinations of rotation-
equivariant maps are still equivariant to rotations.

Proof: Given two rotation-equivariant maps M1 : X →
Y , M2 : X → H and a group action r in SO(3), we have:

r ◦M3(x) = r ◦
(
AM1(x) +BM2(x)

)
= A

(
r ◦M1(x)

)
+B

(
r ◦M2(x)

)
= AM1(r ◦ x) +BM2(r ◦ x)
= M3(r ◦ x), x ∈ X,

(12)

where A, B are the linear coefficients. Based on Eq. 12, we
can infer that the linear combinations of M1 and M2 are
still equivariant to rotations.

Lemma 2. The v0
j = [pji;nj ;nj × pji; ci]

T is equivari-
ant to the rotation group SO(3) and invariant to the trans-
lation group.

Proof: According to the geometrical relationship between
points, we can know that pji is inherently equivariant to
SO(3) and invariant to translations. Since ci is the linear
combination of pji, we can conclude that ci also have the
same properties according to Lemma 1.

Given a covariance matrix Σ = 1
|Ni|

∑
pj∈Ni

pT
jipji, we

get Σ = UΛUT using the Singular Value Decomposition
(SVD), where Λ is the 3 × 3 diagonal matrices of singular
values, and U is the 3×3 eigenvectors. For the convenience
of proof, we regard Σ as a mapping Mc : R1×3 → R3×3.
For a group action r in SO(3), we have:

Mc(r ◦ pi) =
1

|Ni|
∑

pj∈Ni

(r ◦ pji)
T(r ◦ pji)

=
1

|Ni|
∑

pj∈Ni

(pjir
T)T(pjir

T)

=
1

|Ni|
∑

pj∈Ni

rpT
jipjir

T

= rΣrT = rUΛUTrT.

(13)

It can be seen that the eigenvector ni is also rotated equally
when pi is rotated. Therefore, ni is equivariant to rotations
and invariant to translations. Since each element in v0

j is
equivariant to the rotation group SO(3) and invariant to the
translation group, v0

j also have the same properties.

C. Detailed Network Architecture
Equivariant Fully Convolutional Network. The pro-

posed EFCN is based on the hierarchical architecture of
KPConv. To ensure reproducibility, we provide the detailed
network structure of our EFCN, as shown in Fig. 5. Note
that, the “Attributes” represents extracting three geometrical
attributes for each neighboring point to yield the v0

j ∈ R4×3

in Sect. 3.2. By stacking multiple VN layers, a series of



Method Voxelization 3D Cylinderical Convolutional Layers Time
Np J K L δ kv [kernel size, number of filters] (ms)

SpinNet 2048 5 20 40 0.8 30 [3× 3× 3, 32] → [3× 3× 3, 64] → [1× 3× 3, 64] → [1× 3× 3, 128] → [1× 3× 3, 128] → 0.75
[1× 3× 3, 256] → [1× 3× 3, 256] → [1× 2× 2, 32] → [1× 2× 2, 32] → [1× 2× 2, 32]

Mini-SpinNet 512 3 7 20 0.8 10 [3× 3× 3, 64] → [1× 3× 3, 64] → [1× 3× 3, 128] → [1× 3× 3, 128] → [1× 3× 3, 64] → 0.09
[1× 3× 3, 64] → [1× 3× 3, 32] → [1× 3× 3, 32]

Table 8. The architecture discrepancies between SpinNet and Mini-SpinNet. Np represents the number of sampling points in a local patch.
J , K and L denote the number of divisions along the radial, elevation, azimuth dimension, respectively. δ and kv represent the size of
receptive field and the number of points in each voxel, respectively. Time indicates the consumption to compute per feature.
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Figure 5. The detailed architecture of the proposed EFCN, where
“Ups. + Concat.” represents the nearest upsampling followed by a
concatenation.
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Figure 6. The detailed architecture of the Mini-SpinNet.
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Figure 7. The detailed architecture of the 3DCCN.

equivariant features can be obtained progressively, further
generating the rotation-invariant saliencies SP and rotation-
equivariant orientations OP . It can be seen that the whole
network only leverages a smaller number of channels and
simple steps to extract features. Therefore, our EFCN is
lightweight and highly efficient.

Additionally, it also can be seen that the EFCN mainly
consists of multiple VN layers, sampling/upsampling, and
feature concatenation. The VN layer is inherently an equiv-
ariant map for the rotation group SO(3), and the sam-
pling/upsampling and concatenation do not affect the ro-

tational equivariance of features. Therefore, the EFCN is
equivariant to SO(3) rotations.

Mini-SpinNet. To improve the efficiency and reduce
memory usage, we adopt a lightweight patch-wise network,
i.e., Mini-SpinNet, to learn compact and general feature
descriptors. The detailed architecture of Mini-SpinNet is
depicted in Fig. 6 and the discrepancies between Spinnet
and Mini-SpinNet are listed in Table 8. It can be observed
that the Mini-SpinNet is responsible for encoding the input
patch into a 32-dimensional feature descriptor. In particu-
lar, the Mini-SpinNet is nearly 9 times faster than the vanilla
SpinNet by decreasing the hyperparameters in Voxelization
and simplifing the 3DCC layers.

3D Cylindrical Convolutional Network. In the pro-
posed Inliers Generator, we leverage a 3D Cylindrical Con-
volutional Network (3DCCN) to aggregate the cost, fur-
ther obtaining a probability volume. The detailed archi-
tecture of 3DCCN is shown in Fig. 7. Unlike the 3DCC
layers in Mini-SpinNet, each convolution in 3DCCN does
not need to maintain the SO(2) equivariance. This is be-
cause the SO(2) rotation estimation is ready formulated into
a permutation problem by building the cylindrical cost vol-
ume. Therefore, the 3DCCN actually degenerates into the
3DCNN in our Inliers Generator.

D. Details of Datasets
This section provides the details of the datasets used in

the experiments. The main differences between the four
datasets are shown in Fig. 9.

3DMatch [66] (training and test): This dataset con-
tains a number of RGB-D frames, which consists of 62 real-
world indoor scenes. We follow the official protocol in [66]
to perform the training and test splits. All fragment pairs
in 3DMatch have overlapping regions over 30%. We obtain
35,297 fragment pairs for training and 1,623 fragment pairs
for testing.

3DLoMatch [26] (only test): This dataset can be re-
garded as a more challenging test set in the 3DMatch
dataset. Different from the 3DMatch test set with over 30%
overlaps, the 3DLoMatch only contains fragment pairs with
overlaps between 10% and 30% and a total of 1,781 frag-
ment pairs are selected for testing.

KITTI [20] (training and test): This dataset is com-



No. Dataset Acquisition #Training #Test Type Quality Scale Scenario
1 3DMatch [66] RGBD camera 35,297 1,623 Real-World Dense Indoor Room
2 3DLoMatch [26] RGBD camera - 1,781 Real-World Dense Indoor Room
3 KITTI [20] Velodyne-64 LiDAR sensor 1,358 555 Real-World Sparse Outdoor Urban
4 ETH [49] Hokuyo UTM-30LX Laser scanner - 713 Real-World Sparse Outdoor Street

Table 9. Datasets used in the evaluation.

posed of 11 sequences of outdoor scans acquired by
Velodyne-64 3D LiDAR scanners. We follow the same
dataset splits and preprocessing methods as used in [10].
Each pair of point cloud fragments is separated by at least
10m, where 1358 fragment pairs are used for training, 180
fragment pairs for validation, and 555 fragment pairs for
testing.

ETH [49] (only test): This dataset is an outdoor street-
level dataset captured by a Hokuyo UTM-30LX laser scan-
ner. It consists of four scenes from different seasons and
713 point cloud fragments with overlaps larger than 30%
are used for testing.

E. Implementation Details of BUFFER

Training. To make the whole network converge quickly,
we first pre-train each module and then train the whole net-
work. We apply random rotation augmentation on the target
point cloud and then calculate the matched correspondences
using the ground-truth transformation for training. For the
Point-wise Learner, we exploit the same hyperparameters
(such as voxel size and convolutional radius) as [5]. For the
patch-wise Embedder, the support radius we use is same
to [1]. The Adam optimizer with default parameters was
used for network training. The learning rate is initially set
to 0.001. We train each module for 10 epochs, halving the
learning rate every 2 epochs.

Inference. On the ETH dataset, we employ 0.08m as the
voxel size with a maximum point number of 30,000 to sam-
ple the raw scan. To select keypoints, a sigmoid function is
first applied to the predicted point saliencies, and then those
points with scores ≥ 0.5 are remained, finally 1500 points
are randomly picked up from these remaining points as key-
points. For those datasets whose point clouds are gravity-
aligned, we follow [1] to skip the alignment with a canoni-
cal orientation in the Patch-wise Embedder. To search inlier
correspondences, we correlate the inlier distance threshold
τ with keypoints pi, where τ = ∥pi∥π/W . In the hypoth-
esis generation stage, we use RANSAC with 50,000 max
iterations as well as default parameters.

F. Implementation Details of Baselines

We leverage the code and pre-trained models released
by authors to conduct experiments. All baselines are im-
plemented with PyTorch and run on the same hardware

platform. Since the PyTorch implementation of D3Feat is
unavailable on the KITTI dataset, we do not consider its
running time in relevant experiments. For FCGF, D3Feat,
Predator, YOHO, Gedi, and SpinNet, we find these methods
can achieve better registration performance when more key-
points are adopted. To balance their efficiency and general-
ization, we follow [1,5] to select 5000 keypoints for feature
matching and use a RANSAC with 50,000 max iterations to
estimate the transformation matrices.

G. Detailed Evaluation Metrics

Due to the discrepancies in scale and range between
indoor and outdoor scenarios, we adopt different metrics
to evaluate the registration quality on indoor and outdoor
datasets.

Evaluation Metrics on 3DMatch and 3DLoMatch. On
both indoor 3DMatch and 3DLoMatch datasets, we use
the Registration Recall (RR) in [63] as evaluation metrics,
which is defined as:

RR =

1

H

H∑
h=1

1

(√√√√ 1

Nc

∑
(pi,qi)∈Ω∗

∥∥∥R̂pi+t̂−qi

∥∥∥2 < τr

)
,

(14)

where H is the total number of fragments pairs, Ω∗ =
{pi, qi}i=1...Nc

is a set of ground-truth point correspon-
dences between P and Q, and T̂ = {R̂, t̂} is the estimated
rigid transformation. τr is the Mean Squared Error (MSE)
threshold and set to 0.2m.

Evalution Metrics on KITTI and ETH. On both out-
door KITTI and ETH datasets, the Relative Translational
Error (RTE), Relative Rotation Error (RRE), and Success
rate are used as the evaluation metrics [41]. The RRE is
defined as:

RRE = arccos

(
trace(R̂TR)− 1

2

)
180

π
, (15)

Correspondingly, the RTE is defined as:

RTE =
∥∥t̂− t

∥∥ . (16)

Here, T̂ = {R̂, t̂} and T = {R, t} represent the estimated
and the ground-truth transformations, respectively. At last,



Method 3DMatch Generalized to ETH
RR(%)↑ Time(s)↓ Success(%)↑ Time(s)↓

SpinNet 92.4 7.12 97.62 7.12
USIP [33]+SpinNet 85.4 0.90 77.42 0.78

D3Feat+SpinNet 91.6 2.28 90.18 2.40
PREDATOR+SpinNet 93.0 2.56 93.69 2.51

Ours 92.9 0.20 99.30 0.26

Table 10. Quantitative results of combining point-wise detector
with the patch-wise descriptor, where SpinNet randomly samples
5,000 keypoints, USIP detects 512 keypoints, and others extract
1,500 keypoints.

Method 3DMatch Generalized to ETH
RR(%)↑ Time(s)↓ Success(%)↑ Time(s)↓

with RANSAC [18] 92.9 0.20 99.30 0.26
with PointDSC [4] 92.2 0.23 99.58 0.30

Table 11. Quantitative results of our BUFFER with different out-
lier rejection methods.

Success rate can be calculated by:

SR =
1

H

H∑
h=1

1

(
RRE < τ1 and RTE < τ2

)
. (17)

On the KITTI dataset, we adopt the setting of τ1 = 1◦ and
τ2 = 0.3m. On the ETH dataset, τ1 and τ2 are set to 2◦ and
0.3m, respectively.

H. Additional Quantitative Results
Point-wise Detector & Patch-wise Descriptor. In addi-

tion to combining point-wise and patch-wise networks like
our BUFFER, another way is to directly connect the point-
wise detector with the patch-wise descriptor. We combine
a patch-wise descriptor with three point-wise detectors and
conduct a series of comparative experiments to test the ac-
curacy, efficiency, and generalizability of these methods.
The quantitative results are shown in Fig. 10. It is found that
the combination of detector and descriptor can achieve en-
couraging registration accuracy with fewer keypoints. This
is primarily because the detected keypoints are more likely
to be correctly matched. However, the simple combinations
between detector and descriptor still suffer from low effi-
ciency and inferior generalizability, which are difficult to
meet practical requirements.

Ablation on Outlier Rejection. As explained in the
main paper, our BUFFER does not contradict existing out-
lier rejection techniques and can also be combined with
these methods to estimate an accurate rigid transformation.
Here, we conduct two groups of experiments to investi-
gate the impact of different outlier rejection modules on our
BUFFER. Table 11 shows the quantitative results. We can
find that the traditional method RANSAC achieves better
accuracy and efficiency than the learned method PointDSC.
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Figure 8. Comparison of the registration accuracy, generalization
ability, efficiency, and lightweight of different methods.

This demonstrates that the RANSAC is effective for point
correspondences with a high inlier rate. When being di-
rectly generalized to unseen domains, the PointDSC out-
performs RANSAC marginally. This indicates that the our
BUFFER could be further improved when combined with a
better outlier rejection technique.

I. Additional Qualitative Results
The quantitative results in Sect. 4 have demonstrated our

BUFFER has superior accuracy, satisfactory efficiency, and
strong generalization ability. In this section, we show more
qualitative results.

Comprehensive Performance. To have an intuitive idea
of the registration performance of different methods, we vi-
sualize the results in Sect. 4 as a “radar chart,” as shown in
Fig. 8. It is clear that our BUFFER is the most comprehen-
sive registration method, achieving the best of both worlds
in accuracy, efficiency, and generalization.

Generalization across unseen domains. The detailed
qualitative results of generalization across unseen domains
are shown in Fig. 9 and Fig. 10. Notice that the GeoTrans
and SpinNet usually fail to align 3D scans when there are
many planes or featureless regions such as floors and walls
in indoor scenarios. Additionally, those geometrically-
symmetric objects (e.g., indoor desks and outdoor build-
ings) also cause the registration failure for GeoTrans and
SpinNet. It also can be found that the scenes and data dis-
tribution in the 3DMatch dataset are significantly different
from those in the KITTI dataset. Although these exper-
iments are very challenging, the proposed BUFFER still
achieves superior registration performance.
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Figure 9. Qualitative results of generalization from outdoor KITTI to indoor 3DMatch.
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Figure 10. Qualitative results of generalization from indoor 3DMatch to outdoor KITTI.
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