A. Proofs of Remarks

We took Theorems 1 and 2 from Theorem 9.44 and 9.46
in the reference [43]. Their proofs require many defini-
tions and propositions that have not been directly used in
this manuscript. Hence, interested readers are referred to
the reference [43]. We provide the proofs of remarks as fol-
lows:

Proof of Remark 1. A method that assumes linear attribute
arithmetic edits an attribute k£ by adding an attribute vec-
tor ag, which is independent of the position z, scaled by a
change amount ¢, that is, z + t ax. We can define a vector
field Zy(z) = ay, and the flow ¢}(2) = 2 + [} Zpdr =
z + tay. Therefore, it is a special case of a method that
assumes attribute vector fields. Moreover, because it holds
that (¢f o %) (2) = (z+tar) +sa = (z+sa;) +tay =
(¢4 o ¢7)(2), its edits are commutative. O

Proof of Remark 2. According to Theorem 1, the flows of
two vector fields do not commute in general. Edits by
a method that assumes attribute vector fields follow their
flows, which are not commuting in general. O

Proof of Remark 3. While the flow 15, on the Cartesianized
latent space V is linear, the mapping f can be nonlinear. As
aresult, the flow ¢, on the latent space Z can be nonlinear.
For commutativity,

¢iodl=ftoyfofof T ovof
= ftoyfoyof

=floyjoyfof (Al
=floyjofoftoyiof
= ¢ 0 ¢}

O

Proof of Remark 4. Given DeCurvEd, we can always de-
fine an attribute vector filed Z; on the latent space Z by
pushforwarding the coordinate vector field Z,, on the Carte-
sianized latent space V; in particular,

Zi(2) = (F V) (Zg) = U5 We, (A2)

at point z for v = f(z). Hence, DeCurvEd always assumes
a set of NV vector fields. O

Proof of Remark 5. Suppose the mapping f of DeCurvEd
is linear and non-degenerate (i.e., f(z) = Mz for a non-
degenerate matrix M) and that the attribute vector a; on
the latent space Z is defined as ap, = M ~lep. Then, it

holds that
$u(2) = (F ot o f)(@)
= M~} (Mz)
=M Ytey + Mz)
=z +tag,

(A3)

implying that an edit by a method that assumes linear
attribute arithmetic is a special case of an edit by De-
CurvEd. O

B. Algorithms

We summarize the edit by DeCurvEd in Algorithm 1.
We adopted the unsupervised training framework for GANs
proposed by Voynov and Babenko [62]; we summarize the
framework in Algorithm 2. The only difference from the
original implementation is the latent variable manipulation
and loss function at lines 4 and 8, respectively.

For the change amount distribution P., we first sam-
pled the change amount ¢’ from a continuous uniform dis-
tribution ¢[—6,6]. Because the regression of very small
changes does not contribute to proper learning, we rounded
up small change amounts ¢€; in particular, we considered
e = sign(€’) - max(|€'[,0.1).

Algorithm 1 Edit Attribute k&

Input: latent variable z,attribute index k,change amount e
Output: edited latent variable 2’
1: Obtain a mapped latent variable v = f(z).
2: Obtain the edited mapped latent variable v’ = v + eey,.
3. Obtain the edited latent variable 2’ = f~1(v").

Algorithm 2 Training CurvilinearGANSpace

1: Sample a latent variable z from its prior p(z).

2: Sample an attribute index k to be changed from the dis-
crete uniform distribution /{1, N'}.

3: Sample a change amount e from a continuous probabil-
ity distribution P..

4: Edit latent variable z using Algorithm 1.

5: Generate a pair of images © = G(z) and 2’ = G(2')
using the generator G.

6: Feed the pair (z, 2’) to the reconstructor R, and get two
outputs (k, ¢).

7: Obtain the loss function that compares the outputs
(k,é) and the actual edit (k, €).

8: Train the mapping f and the reconstructor R jointly to
minimize the loss function in Eq. (7).

C. Details of Experiments
C.1. Datasets and Backbones

In the experiments, we used the same combinations of
the datasets, GANs, and reconstructors used in previous
studies [00,62]. GANs were pre-trained before being com-
bined with the proposed method. SNGANSs were trained by
us, and the other GANs were obtained from external repos-

itories. Reconstructors were trained jointly with the map-
ping f from scratch. We summarize them below.

1. MNIST [42] + Spectral Norm GAN (SNGAN) [48]
+ LeNet [41]. MNIST is a dataset of 32 x 32
monochrome images of hand-written digits. SNGAN
had ResNet-like architecture composed of three resid-
ual blocks. The dimension number N of the latent
space Z is N = 128.

2. AnimeFaces dataset [31] + SNGAN + LeNet. Anime-
Faces dataset contains 64 x 64 RGB images of cartoon
characters’ faces. SNGAN had ResNet-like architec-
ture composed of four residual blocks with N = 128.

3. ILSVRC dataset [14] + BigGAN [7] + ResNet-18 [23].
ILSVRC dataset contains 128 x 128 RGB natural im-
ages. We obtained a pre-trained BigGAN with N =
120.

4. CelebA-HQ dataset [47] + ProgGAN [33] + ResNet-
18. CelebA-HQ dataset contains 1024 x 1024 RGB
images of celebrities’ faces. We obtained a pre-trained
ProgGAN with N = 512.

5. CelebA-HQ dataset + StyleGAN2 [36] + ResNet-18.
We obtained a pre-trained StyleGAN2 with N = 512.

6. LSUN Car dataset [40] + StyleGAN2 [36] + ResNet-
18. We obtained a pre-trained StyleGAN2 with N =
512.

C.2. Normalizing Flow

For a smooth bijective mapping f, we employ a flow-
based model [39], namely a continuous normalizing flow
(CNF) [9,21]. The CNF assumes an ordinary differential
equation (ODE) % = g(u(t),t;0) on the space equiva-
lent to the latent space Z, where u denotes a state vari-
able, ¢ denotes the time, and the function g parameterized
by 6 maps the state u to its time derivative. Given an ini-
tial condition u(0) = wug, the solution u(t) is given by
u(t) = ug + jgg(u(r),T;G)dT. The function g is mod-
eled by a neural network. We define mapping f as the inte-
gration of the above ODE from 0 to 7', namely f : z =
u(0) — v = u(T). One can regard the mapping f to
be parameterized by 6. Additionally, its inverse mapping
f~! is defined by the integration from 7 to 0. Owing to
the characteristics of ODE, the mapping f is differentiable
and bijective. In practice, a numerical integration (such as a
Runge-Kutta method) is required to solve the above ODE;
numerical errors are introduced in the mapping f, but they
are negligible. We used the Dormand-Prince method to in-
tegrate the ODE for 7' = 0.1. For CurvilinearGANSpace,
the log-determinant log det g—]; of the Jacobian of the map-
ping f is stochastically obtainable using Hutchinson’s esti-
mator [9,21].

The CNF is guaranteed to be bijective, and serves as
a universal approximator for smooth bijections, as proven
in [57]. Hence, DeCurvEd’s editing is guaranteed to be
commutative at the design stage, not trained to be commuta-
tive. In practice, numerical errors during numerical integra-
tion cause a slight increase in the commutative error, but it
remains negligible, as shown in Tables 3, A1, and A2. Note
that other normalizing flows are available [39].

C.3. Evaluation Metrics

Index Identification This process adopts the official im-
plementation of WarpedGANSpace [60]. We considered
prepared latent variables z, edited the index k by ¢ € [—7, 7]
in increments of J, measured the attribute scores of gener-
ated images by the attribute predictors, and obtained the co-
variances between the change amount ¢ and the measured
attribute scores. 7 and ¢ were setto 7 = 3 and § = 0.15
for StyleGAN2 and 7 = 4.5 and § = 0.15 for Prog-
GAN. We selected index k with the largest covariance as
the one corresponding to that attribute. Note that the orig-
inal manuscript [60] suggests using correlation; however,
the implementation actually uses covariance.

Normalization We sampled 100 latent variables z, edited
attribute k£ by ¢, and obtained the edited latent variables
Z = ¢t (z). We generated the original = G(z) and
edited 2’ = G(z') images. Using a separate attribute pre-
dictor Ay, we obtained the change in the attribute score in
the image space X, that is, Ag(z’) — Ag(x). We obtained
the average change E,[A;(G(¢L(2))) — Ax(G(2))] of the
measured attribute score. We identified the change amount
t in the latent space Z with which the average change was
5 degrees for the pitch and yaw attributes, and 0.1 for other
attributes. We normalized the change amount ¢ as ¢ = 0.1
for each attribute and method separately.

Commutativity Error Intuitively, commutativity error is
the error when edits of two attributes & and [are applied
in reversed orders. We defined it as follows: Obtain a la-
tent variable z, and edit attributes k£ and [by amounts ¢
and s of latent variable z in both orders; namely, obtain
two latent variables z1 = ¢7 (¢} (2)) and 22 = ¢} (45 (2)).
Then, generate images x1 = G(z1) and 22 = G(z2), and
evaluate the attributes scores of the generated images
and x5 by separate attribute predictors Ay and A;. The
commutativity error for attribute k is the absolute differ-
ence |Ay(z1) — Ag(x2)| in the attribute scores Ay (z1) and
Ag(x2). We obtained the errors for attributes k and [;
namely

| Ak(G(] (1(2)))) — Ax(G (R (67 ()],
[A1(G (67 (91(2))) — 4G40 (2))))]-

Table Al. Commutativity Errors [%] of ProgGAN.

ProgGAN

S+Y

B+P S+B+Y+P

LinearGANSpace [62]
WarpedGANSpace [60]
CurvilinearGANSpace (ours)

0.09/0.12 0.09/0.13 0.08/0.07/0.12/0.20
5.86/1.97 5.87/2.49
0.32/044 0.24/0.59 0.22/0.25/0.64/0.51

1.51/7.80/3.00/2.08

S: “Smile”, B: “bangs”, P: “pitch”, Y: “yaw”.

Table A2. Commutativity Errors [%] of StyleGAN?2.

StyleGAN2
G+B+Y A+R+P A+B+G+R+Y+P
LinearGANSpace [62] 0.04/0.02/0.21 0.01/0.01/0.16 0.02/0.02/0.06/0.02/0.12/0.45
WarpedGANSpace [60] 3.58/1.05/854 3.77/3.28/3.33 9.48/1.71/7.43/1.19/6.90/6.52
CurvilinearGANSpace (ours) 0.23/0.07/0.51 0.09/0.07/0.90 0.06/0.03/0.27/0.10/0.89/0.60

A: “age”, G: “gender”, R:

efflindee
iaans

+V —-B +S -V +B —-S (6]

Ours Warped Linear

%

“race”, B: “bangs”

, P: “pitch”, Y: “yaw”.

00090000

00000
100 00000

—A +T -W

Ours Warped Linear

Figure Al. Results of sequential editing of attributes from left to right. (left) ILSVRC+BigGAN. (right) MNIST+SNGAN. Each row
shows the results of LinearGANSpace, WarpedGANSpace, and CurvilinearGANSpace, from top to bottom. The signs + and — denote the
addition and the subtraction of the corresponding attributes, respectively. O: original, V: “vertical position”, B: “background”, S: “object

size”. A: “angle”, T: “thickness”, W: “width”.

We set the change amount to = 3 = 0.1 in the normalized
scale. This error vanishes if edits of attributes k£ and [are
commutative. For over two attributes, we obtained the dif-
ference in attribute score between edited results in the given
order and in the reverse order.

Side Effect Error We defined the side effect error as fol-
lows: Obtain a latent variable z, and edit attribute k& by
t, obtaining 2/ = ¢! (z). Then, measure the difference
|A;(x) — A;(2')| in the score of other attribute [between
generated images = G(z) and 2’ = G(2’), and normalize
it by that for the target attribute k; namely

|Ai(G(2)) — Ai(G(9(2)))]
|Ak(G(2)) — Ap(G(¢,(2)))]
We set the change amount to £ = 0.1 in the normalized

scale. This error vanishes if the edit of attribute &£ has no
side effect on attribute /.

(A5)

Identity Error We defined the identity error as follows:
Obtain a latent variable z, and edit attribute k by ¢, obtain-

ing 2/ = ¢}.(z). Then, evaluate the identity score I(z, ")
between the generated images z = G(z) and ' = G(%').
The identity error is defined as 1.0 minus the identity score;
namely,

1—I(G(2), G(¢(2)))- (A6)

We set the change amount to £ = 0.1 in the normalized
scale. For more than two attributes, we also obtained 1.0
minus the identity score between the original and edited im-
ages.

D. Additional Results
D.1. Commutativity

In this section, we provide additional results for demon-
strating the commutativity of image editing methods. In a
way similar to Table 3, Tables Al and A2 show the com-
mutativity errors. For any combination of attributes, the er-
rors of LinearGANSpace and CurvilinearGANSpace were
always less than 0.9 %, whereas those of WarpedGANSpace
varied between 1.0 % and 9.5 %.

Following Fig. 2, we edited image attributes sequentially

P

FTITT T T e e s

(a) MNIST, “rotation”. (d) AnimeFaces, “rotation”. (g) ILSVRC, “Ckground”.

3 3 3 3 3 3 3Esdéteduded T 31 141

(b) MNIST, “thickness”. (e) AnimeFaces, “hair length’;. '

(c) MNIST, “width”. (f) AnimeFaces, “hair color”.

(n) StyleGAN2, “age”.

29029@9

15

—0.1 ')] 10.1
(1) ProgGAN, “smile”. (0) StyleGAN2, “yaw”.

Figure A2. Visualization results of CurvilinearGANSpace. The models and edited attributes k& are shown below the panels. The image in
the center is the original, the images on the right have attributes added, and the images on the left have attributes subtracted, in the same
way as Figs. 3 and 4.

so that the total amount of change is zero and summarized
the results in Fig. Al. When using LinearGANSpace or
CurvilinearGANSpace, the images returned to their origi-
nal states. WarpedGANSpace did not restore the original
images; the position and background of the dog were not
restored, and the digit was thickened.

These results also demonstrate that the image editing by
LinearGANSpace and CurvilinearGANSpace is commuta-
tive and that by WarpedGANSpace is non-commutative.

D.2. More Visualization

We provide further visualization results of Curvilinear-
GANSpace in Fig. A2, demonstrating that Curvilinear-
GANSpace identified and edited various attributes without
severe side effects.

