
Ham2Pose: Animating Sign Language Notation into Pose Sequences —
Supplementary Material

Rotem Shalev Arkushin
Reichman University
rotemroo@gmail.com

Amit Moryossef
Bar Ilan University

amitmoryossef@gmail.com

Ohad Fried
Reichman University
ofried@runi.ac.il

In this supplementary document, we present more eval-
uation results of our model, both qualitative and quantita-
tive, as well as ablation studies of experimenting with dif-
ferent step amounts, shared vs. separate positional embed-
dings, hidden dimensions, and feedforward dimensions. In
addition, we show the importance of weights in our loss
function, by comparing it to the same loss without weights.
Moreover, we provide hardware details, train & inference
times, and more details about the model architecture and
data. We also show a full derivation for our loss scaling
factor.

A. Evaluation
A.1. Qualitative results

We supply additional qualitative results in Figure 4 and
in the attached videos. We show examples of signs gener-
ated from a single HamNoSys sequence, and examples of
sentences generated by concatenating a few signs generated
one after the other. To generate a continuous sentence, we
cut 20% off the end of each generated sign, and give the
last frame of this sequence to the model as the reference
start frame for the subsequent sign. As demonstrated, our
model is able to generate correct movements, even when the
ground truth pose detected by the pose estimation model is
not full or incorrect, and is able to generate multiple signs
one after the other to generate sentences.

A.2. Number of glyph occurrences vs. score

In Figure 1 we plot nDTW-MJE distance vs. the number
of glyph occurrences of the rarest glyph per sequence, and
observe that the more occurrences a glyph has, the lower
the distance is. However, it is noisy, which suggests that
the meaning of a glyph and the number of rare glyphs in a
sequence may also affect the results.

A.3. Sequence length

We test the sequence length predictor separately from the
full model using absolute difference between the real se-
quence length and the predicted one, and show a histogram

Figure 1. Minimal glyph occurrences number from sequence (split
to bins) vs. nDTW-MJE distance.

of the differences in Figure 2. In addition, Figure 3 shows
the percentage of error of the sequence length predictor. As
demonstrated by the figures, the difference is low for most
videos, both absolutely and relatively to the actual sequence
length. Moreover, in both cases, as the sequence length dif-
ference error increases, the amount of samples with that dif-
ference decreases.

B. Ablation studies

We conduct several ablation studies, experimenting with
the amount of steps in the model, shared vs. separate po-
sitional embeddings for the text and pose, different hid-
den dimensions, and different feedforward dimensions. We
present their results in Tables 1 to 4. For each of them, we
train our model with the changed feature and perform the
same evaluations explained in the main paper under Dis-
tance Ranks.

Change in step amounts: although the results of the
20-steps model are slightly better than the results of the 10-
steps model, there is a trade-off between the number of steps

1

Figure 2. Absolute error between the real sequence length and the
predicted one, in number of frames.

Figure 3. Signed percentage error, relative to the real sequence
length, of the predicted sequence length. Negative values indicate
that the predicted length is shorter than the real length; positive
values indicate the opposite.

and the training time of the model, as can be seen in Table 5.
Moreover, when looking at the results visually, while some
results of the 20-steps model look better, others look worse.
Therefore, since the improvement in the quality of the re-
sults is not drastic, we prefer to use less steps. Finally, the
5-steps model generates results that are worse both quanti-
tatively when looking at the prediction reference, and quan-
titatively, hence we chose to use 10 steps in our model. We
show qualitative results for each number of steps in the at-
tached video.

Shared vs. separate positional embedding: as can be
seen in Table 2, having two separate positional embeddings
for the text and pose instead of having a shared one has a
large effect on the results.

Reference #steps Rank 1 ↑ Rank 5 ↑ Rank 10 ↑

Prediction
5 0.09 0.16 0.28
10 0.08 0.2 0.35
20 0.09 0.22 0.35

Ground
Truth

5 0.25 0.44 0.54
10 0.21 0.44 0.56
20 0.27 0.44 0.54

Table 1. Ablation: different step amounts. Top: distance to
prediction. Bottom: distance to ground truth pose.

Reference PE Rank 1 ↑ Rank 5 ↑ Rank 10 ↑

Prediction Shared 0.06 0.19 0.28
Separate 0.08 0.2 0.35

Ground
Truth

Shared 0.16 0.37 0.51
Separate 0.21 0.44 0.56

Table 2. Ablation: shared vs. separate positional embeddings.
Top: distance to prediction. Bottom: distance to ground truth

pose.

Reference Hidden dim Rank 1 ↑ Rank 5 ↑ Rank 10 ↑

Prediction
64 0.06 0.19 0.35

128 0.08 0.2 0.35
256 0 0.002 0.007

Ground
Truth

64 0.22 0.41 0.53
128 0.21 0.44 0.56
256 0.005 0.13 0.34

Table 3. Ablation: different hidden dimensions. Top: distance to
prediction. Bottom: distance to ground truth pose.

Reference FF dim Rank 1 ↑ Rank 5 ↑ Rank 10 ↑

Prediction
512 0.08 0.23 0.36

1024 0.06 0.18 0.32
2048 0.08 0.2 0.35

Ground
Truth

512 0.2 0.43 0.53
1024 0.19 0.42 0.54
2048 0.21 0.44 0.56

Table 4. Ablation: different feedforward dimensions. Top:
distance to prediction. Bottom: distance to ground truth pose.

Varying hidden and feedforward dimensions: al-
though the hidden and feedforward dimensions do not have
a large effect, they still yield slightly better results (Tables 3
and 4).

or
ig

in
al

po
se

ge
ne

ra
te

d
po

se

Figure 4. Result example. Top row: ground truth pose detected by OpenPose, bottom row: generated pose.

original pose MSE prediction WMSE prediction

Figure 5. MSE vs. weighted MSE loss example. Left to right:
original pose, pose generated by a model trained with MSE, pose
generated by our model trained with weighted MSE. Regular MSE
doesn’t take missing keypoints into account, hence the model
doesn’t learn to generate a full pose.

C. Loss function importance

To show the importance of the weights in our weighted
MSE loss function, we experiment with two other loss func-
tions for the training of our model: regular MSE, and half-
masked MSE—ignoring low confidence keypoints, but with
equal weight for other keypoints. As our data contains many
missing keypoints, a loss function that considers them is
needed, so the model can learn to fill in the missing key-
points and predict a full pose. Therefore, when using reg-
ular MSE, as demonstrated in Figure 5, the model does not
predict a full pose, and instead maps a lot of the keypoints
to (0, 0). The half-masked MSE loss performed better, but
as keypoints with higher confidence are more likely to have
correct locations, we wanted them to effect the loss of the
model more than keypoints with low confidence, and indeed
our masked MSE loss gave the best results.

#steps train (hrs) inference (sec)

5 9 0.03
10 20 0.06
20 39 0.12

Table 5. Train and inference duration for different number of
steps. Train time is in hours, inference is in seconds.

D. Train and Inference Duration

We train our models on one machine with 4 NVIDIA
GeForce GTX TITAN X GPUs. The training and inference
time for 2000 epochs over all languages is presented in Ta-
ble 5 for different step amounts. As demonstrated in the
table, doubling the number of steps doubles the train and
inference duration as well. Having said that, the inference
time for either number of steps is very low.

E. Model Architecture Details

Our model is composed of two parts: the text processor
and the pose generator. The text processor consists of:

• HamNoSys tokenizer which converts each glyph into
a unique identifier (token).

• Learned embedding layer with dimension 128 to em-
bed the HamNoSys text.

• Learned embedding layer with dimension 128 to em-
bed the text tokens positions (positional embedding).

• Transformer encoder [3] with 2 heads and depths 2,
with a feedforward dimension of 2048.

Step T pose
input

FC, 128

FC, 128

Swish activation

concatenate

Current step
number t

Transformer Encoder, 128

FC, 128

FC, 137*2

Swish activation

Step t pose

Element-wise addition

input Initial input

A
t inference

Encoded text

Encoded
step t pose

HamNoSys tokenizer

HamNoSys text
input

Embedding, 128

FC, 1

E
m

bedding, 128 Transformer Encoder, 128

Sequence length
prediction

Embedding, 128

FC, 128

FC, 128

Swish activation

Swish activation

Encoded step

Embedded
sequence
positions

E
m

bedding, 128

Embedded sequence
positions

xT

Output pose

Figure 6. Detailed model architecture.

• Fully connected layer which acts as the sequence
length predictor, that gets the encoded text as input and
returns a single predicted number.

The pose generator consists of:

• Pose encoding: composed of two fully connected lay-
ers with dimension 128 for the hidden and output sizes,
with a Swish [2] activation between them; and a po-
sitional embedding for the pose sequence locations,
composed of a learned embedding layer. They are
summed into pose embeddings of dimension 128.

• Step number encoding: composed of a learned embed-
ding layer followed by two fully connected layers with
Swish activations between them with hidden and out-
put sizes of 128 as well.

• Encoding of the concatenation of all three encodings
of the text, pose, and step. The encoding consists of a
transformer encoder with 2 heads and depth 4, with a
feedforward dimension of 2048, followed by a pose
projection, which is composed of 2 fully connected
layers with Swish activation between them, with hid-
den size of 128 and output size of the pose dimension,
which is 137× 2 in our case.

The pose is gradually generated over T = 10 steps,
where each step gets the output of the previous step as input.
Finally, after T steps, the output of the model is the output
of the pose projection.
A detailed overview of our model architecture is presented
in Figure 6.

F. Data

Our data consists of videos of Sign languages signs with
their HamNoSys transcriptions. To use these videos as
ground truth for pose sequence generation, we extract es-
timated pose keypoints from them using the OpenPose [1]
pose estimation model. Each keypoint ki ∈ K consists of
a 2D location (x, y) and the confidence of the model in the
location of that keypoint, ci. The number of extracted key-
points is 137 per video frame, spanning the body (KB , 25
keypoints), face (KF , 70 keypoints), and hands (KH , 21
keypoints per hand).

We process the keypoints further to use them, and define
cmin = 0.2 to be the minimal confidence for a keypoint to
be considered as identified. As part of the pre-process, we
define the following criteria:∑

i∈KF

ci ≤ cmin · |KF | or

cr wrist + cl wrist ≤ cmin

(1)

and remove each leading or trailing frame for which they
hold. Meaning, frames in which the face average keypoints
confidence is less than cmin, or both hands are not identi-
fied, are removed.

G. Loss Scaling Factor Derivation

The pose generation process is gradual over T steps,
where in each step we use a different step size as defined in
the Method section in the main paper. The step size at each
time step depends on the chosen number of steps. Since we
calculate a refinement loss for each step, Lp, to avoid af-
fecting the learning rate when experimenting with different

step values, we scale the loss by ln(T)2. This scaling factor
emerges from the following derivation:

0∑
t=T−2

αt =

0∑
t=T−2

δt − δt+1 =

0∑
t=T−2

logT (T − t)− logT (T − (t+ 1)) =

0∑
t=T−2

logT
T − t

T − t− 1
=

T−1∑
t=1

logT
t+ 1

t
=

T−1∑
t=1

ln(t+1
t)

ln(T)

(2)

We do not include t = T − 1 in the sum since we define
αT−1 to be the same constant regardless of the step size, to
avoid illegal calculations. As we can see from the equation
above, in a full cycle of the pose generator, the denomina-
tor is the only part that depends on the step number, thus
multiplying the loss by the square of the denominator elim-
inates the step number effect. Therefore, after scaling, the
refinement loss term is: ln(T)2Lp.

References
[1] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017. 4

[2] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Swish: a self-gated activation function. arXiv preprint
arXiv:1710.05941, 7(1):5, 2017. 4

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3

	. Evaluation
	. Qualitative results
	. Number of glyph occurrences vs. score
	. Sequence length

	. Ablation studies
	. Loss function importance
	. Train and Inference Duration
	. Model Architecture Details
	. Data
	. Loss Scaling Factor Derivation

