
Appendix
In this appendix, we provide additional clarifications and

experiments as follows:
• Section A: Additional training details
• Section B: Additional studies on geometric-aware

properties in the learned representation
• Section C: Additional details on multiple object local-

ization in the learned representation
• Section D: Datasets used in the downstream tasks
• Section E: Semantic segmentation results
• Section F: Experiments on larger pre-train datasets
• Section G: Effects of the choice of pseudo pair selec-

tion policy.
• Section H: Effects of the choice of CAD model pre-

processing method
• Section I: Potential negative societal impacts

A. Additional training details
In the ResNet-50 [11] backbone setting, we trained our

proposed model using an SGD optimizer with a learning
rate of 0.001 and a momentum of 0.9, decayed by a polyno-
mial decay scheduler. In the ViT-B [15] setting, we trained
our model using AdamW [18] optimizer with a learning rate
of 0.0001, β1 = 0.9, and β2 = 0.99 using a polynomial de-
cay scheduler.

B. Additional details on geometric-aware
properties in the learned representation

B.1. Geometric-aware properties in learned repre-
sentations of other categories

Fig. 1 extends Fig. 2 in the main paper to include more
object categories in addition to the Sofa class. This Fig. 1
visualizes the pairwise cosine similarities between the en-
codings of objects from several categories in the Pix3D [21]
validation set.

B.2. Geometric-aware properties in learned repre-
sentations of other competitors

In Fig. 2, we provide an additional visualization of the
pairwise cosine similarities from our method and more
competitors in the ResNet-50 2D backbone setting. The
competitors are alternative positive point cloud choices in
LGEO (Eq. 2) using point cloud augmentations (i.e., Aug)
and supervised discrete signals like object labels (i.e., Sup),
which are the same baselines used in the ablation study in
Section 5.5.1 of the main paper.

We found that Aug achieves geometric awareness but
performs worse than ours in inter and intra-category pair-
wise similarities, as shown in Fig. 4 in the main paper. On
the other hand, Sup fails to group intra-subcategories im-

ages. Such drawbacks may cause these alternatives to per-
form poorly during fine-tuning and on the downstream tasks
in the main paper.

Fig. 2 also visualizes the learned representations from
our model using ViT-B 2D encoder backbone. The encoded
features from ViT-B show better main category and subcat-
egory grouping and discrimination than ResNet-50. Com-
pared to the recent state-of-the-art 2D representation learn-
ing, DINO [1] and MAE [10], both Ours and Ours (pseudo)
clearly show better geometric-aware properties.

B.3. Geometric-aware properties in learned repre-
sentations of a model trained on pseudo pairs

We further demonstrate the effectiveness of learning rep-
resentation on pseudo-RGB-CAD pairs over off-the-shelf
self-supervised representation learning.

We first start by analyzing the performance of our model
trained on pseudo pairs (i.e., Ours (pseudo)). As in Fig. 1
and Fig. 2 of the main paper, Ours (pseudo) struggles
with grouping intra-subcategory images and discriminat-
ing between inter-subcategory images. We observe that our
pseudo-pair generator, ROCA [9], retrieves CAD models
with limited model variations and has moderate retrieval ac-
curacy (54-87%). Only 64.33% of Pix3D [21] images were
correctly paired with CAD models in the same category. We
suspect that these poor assignments can be because ROCA
uses a different CAD database, i.e., ShapeNet [2], which is
different from those used in Pix3D, which are IKEA prod-
ucts. These incorrect assignments directly affect positive
pairing used in the training objectives, leading to weaker
geometric awareness compared to that obtained from real
RGB-CAD pairs.

We then conduct additional experiments to evaluate
whether Ours (pseudo), which is trained with imperfect
CAD assignments, can really help induce geometric-aware
properties in the 2D representation. Table 2 shows the mean
pairwise cosine similarity of objects within the same sub-
category and across subcategories within the same category,
averaged across all 395 subcategories in the Pix3D valida-
tion set.

We found that Ours (pseudo) can improve the mean co-
sine similarity from the baseline with no 3D priors, Sim-
CLR [4] using the ResNet-50 backbone. Compared to
SimCLR, our representations have a 1.71% lower inter-
subcategory mean and a 2.34% higher difference between
the means of inter-subcategory and intra-subcategory. We
achieve larger inter-intra differences in 241 out of 395 sub-
categories, which indicates that our representations can bet-
ter discriminate one subcategory from other subcategories.
We visualize the distribution of pairwise cosine similarities
in Fig. 3. Such improvements in intra-subcategory differ-
ences and intra-inter-differences reflect improved geometric
awareness and could help improve 2D object understanding
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Figure 1. Visualization of the pairwise cosine similarities between the learned representations of objects from each method. The bright
color indicates higher similarity. Each row shows the similarities of validation images in Pix3D [21] for each category, sorted by object’s
subcategory (i.e., object models). Our method shows a better grouping of the same subcategory than others for all category types.

results, as demonstrated by the experiments in the main pa-
per.

C. Additional details on multiple object local-
ization in the learned representation

In Section 5.1 of the main paper, we demonstrated how
our method handles images with multiple objects. To
achieve this, we use encoded features extracted from the
ViT-B backbone to create a codebook for object category
prediction and patch-wise features of unseen inference im-
ages.

We construct the codebook by extracting the global fea-

ture (i.e., [CLS] embedding) of each Pix3D image from the
ViT-B encoder. We then compute the mean [CLS] embed-
ding of each category by averaging embeddings of all im-
ages belonging to the same category. The codebook con-
tains the means for seven object categories in Pix3D, includ-
ing bed, bookcase, chair, desk, sofa, table, and wardrobe.

For the inference image, we randomly select one from
the NYUv2 dataset and encode it using the ViT-B encoder
to obtain a patch-wise feature with a size of 196× 768.

Given the codebook and the inference image, we com-
pute the cosine similarity between each patch-wise feature
from the image and each mean category feature in the code-
book. This enables us to obtain the object category with the
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Figure 2. Visualization of the pairwise cosine similarities between the learned representations of objects from each method. The bright
color indicates higher similarity. The first row shows the similarities of all validation images in Pix3D [21] dataset, sorted by object
category and subcategory (i.e., object models). The second row zooms in on a single category (Sofa) from the first row. Point cloud
augmentation (Aug) and supervised category labels (Sup) are less capable of grouping the same sofa than Ours, which are trained using
geometric priors based on the Chamfer distance. While in the ViT-B [15] backbone setting, our methods also clearly show better grouping
between the same sofa and better category classification than SOTAs like DINO [1] and MAE [10].

Classes Original Predictied Matching
CADs # CADs # acc.

All pred. classes 351 42 64.33
bed 20 6 53.76

bookcase 17 2 86.97
chair 221 3 61.68
sofa 20 19 83.09
table 63 2 72.38

wardrobe 10 10 84.38

Table 1. Performance of pseudo-pair generator (ROCA [9]) on
Pix3D [21] dataset. ROCA predicts CAD models with very lim-
ited model variations for some categories compared to the original
ground-truth variations. The matching accuracy is also low for
some categories.

Metrics SimCLR Ours (pseudo)

Intra-subcategory mean ↑ 0.8057 (172) 0.8121 (223)
Inter-subcategory mean ↓ 0.58.97 (115) 0.5798 (280)
Intra-Inter differences ↑ 0.2223 (154) 0.2275 (241)

Table 2. The mean pairwise cosine similarity of the learned
representations for each of the 395 subcategories in the Pix3D
dataset. Intra-Inter differences denote the differences between the
mean pairwise cosine similarity of intra-subcategory images and
inter-subcategory images of each subcategory. The numbers in the
parentheses show the numbers of subcategories with better (higher
or lower) values.

highest similarity score for each patch. We then use these
predicted patch-wise categories to create the segmentation
map visualization shown in Fig. 6 of the main paper.

Additional results from different NYUv2 inference im-
ages are presented in Fig. 4

D. Datasets used in the downstream tasks
D.1. NYUv2 [19]

The NYUv2 dataset provides recorded RGB-D frames
of indoor scenes and labeled segmentation masks, instance
segmentation masks, and object detection bounding boxes.
For the evaluations in the main paper, we followed the pro-
cedure in prior works [3, 12] and used the official train-test
split (795 for training and 654 for testing).

D.2. ScanNet [5]

The ScanNet dataset provides 3D scans of indoor scenes,
their corresponding recorded RGB-D videos, and ground
truths, e.g., segmentation masks for various 3D and 2D
scene understanding tasks. Similar to prior works [3, 12],
we used the standard ScanNet 2D semantic segmentation
benchmark that samples 25,000 RGB frames (20,000 for
training and 5,000 for testing) from the RGB-D videos for
evaluating semantic segmentation fine-tuning performance.

D.3. ADE20k [23]

The ADE20k (2016) dataset consists of RGB scene im-
ages from various places and their semantic segmentation
labels. In our experiments, we filtered the dataset to con-
tain only indoor scenes for a fair comparison with two pre-
training datasets used in the experiments (i.e., Pix3D [21]
and ScanNet [5]). In particular, we selected 9 scene cate-
gories to include: attic, bedroom, child room, dining room,
dorm room, closet, hotel room, living room, and television
room. This selection results in 2951 training images and



296 validation images used in our experiments. We also
ignored classes that were never seen in the pre-trained mod-
els, resulting in eight classes: bed, cabinet, table, chair, sofa,
desk, wardrobe, and bookcase.

D.4. SUNRGB-D [20]

The SUNRGB-D dataset consists of 10,000 RGB-D
frames (5,000 for training and 5,000 for testing) with seg-
mentation mask labels. We excluded a total of 24 classes
since SUNRGB-D segmentation masks contain 38 classes
of segmentation labels with several categories that were not
provided in our pre-trained dataset (i.e., Pix3D). This ends
up in 14 classes using in our fine-tuning experiments: wall,
floor, cabinet, bed, chair, sofa, table, door, window, book-
shelf, picture, desk, ceiling, and background. These classes
are the same as the NYUv2 class filtering setting provided
in [12].

D.5. COCO [17]

COCO [17] is a well-known object detection and in-
stance segmentation benchmark with various types of ob-
jects (e.g., objects in indoor and outdoor scenes, sports
equipment, kitchenware, person, or animals).

Indoor COCO. In our experiments, we use COCO-2014
split, including only images with 24 object classes related to
indoor scene objects. The chosen classes consist of chairs,
beds, TV, remotes, microwave, sink, clocks, teddy bears,
couches, dining tables, laptops, keyboards, ovens, refrig-
erators, vases, hair drier, potted plants, toilets, mice, cell
phones, toaster, book, scissors, and toothbrush. This split
contains 32,186 training images and 15,954 validation im-
ages.

Outdoor COCO. We use the same COCO-2014 train-
test split and selected a different set of images consisting
of 12 object classes that are associated with both indoor
and outdoor scenes. These classes include bicycle, airplane,
truck, couch, car, bus, boat, dining table, motorcycle, train,
chair, and TV. This split contains 82,783 training images
and 40,504 validation images.

D.6. PASCAL3D+ [22]

The PASCAL3D+ dataset consists of RGB-CAD pairs
of 12 categories that mix indoor and outdoor objects, in-
cluding airplane, bicycle, boat, bottle, bus, car, chair, din-
ing table, motorbike, sofa, train, and TV. The official train-
test split was used for pre-training, with 22,054 training im-
ages and 7,352 validation images. The RGB images in this
dataset were sourced from ImageNet [6] and PASCAL VOC
2012 [7] dataset.

D.7. Pix3D [21]

Pix3D was used in both the pre-training stage and the
fine-tuning stage in the object retrieval task in the main

paper. Pix3D consists of 10,069 images of indoor objects
categorized into eight main categories (i.e., bed, bookcase,
chair, desk, sofa, table, tool, wardrobe, miscellaneous) and
395 subcategories based on furniture models. Each im-
age represents one primary object with its associated CAD
model. In object retrieval fine-tuning, we used S1 train-test
split [8] with 7,539 training images and 2,530 validation im-
ages. We trained our model using their given main category
or subcategory labels, then tested the model using Coarse
Recall@1 for the main category or Fine Recall@1 for the
subcategory.

E. Semantic segmentation results

We provide additional qualitative segmentation results
on NYUv2, ADE20k, SUNRGB-D, and ScanNet datasets
in Fig. 5, Fig. 6, Fig. 7, and Fig. 8, respectively. All of the
results are from the ResNet-50 backbone setting. Our meth-
ods show better segmentation results than 2D representa-
tion learning baselines. In some cases, we also outperform
Pri3D [12], which requires 3D scene scans.

F. Experiments on larger pre-train datasets

We additionally pre-trained our model on an expanded
dataset by generating pseudo pairs for each indoor image in
the ImageNet [6] and COCO [17] datasets. This resulted
in a larger RGB-CAD dataset than the original training set
(i.e., Pix3D), which contains only 7,359 images.

ImageNet [6]. We selected 11,875 images from 11
classes (bookcase, bathtub, studio couch, file, china cab-
inet, folding chair, rocking chair, barber chair, dining ta-
ble, and monitor) in the official training split of ImageNet.
The selected classes are chosen to be matched with Pix3D’s
classes.

COCO [17]. We use the same protocol in D.5 to filter
the dataset. We chose only 13 classes (chairs, beds, clocks,
teddy bears, toilets, couches, dining tables, vases, hair drier,
potted plants, books, scissors, and toothbrushes). The cho-
sen classes consist of 26,396 images. Like the setting in Im-
ageNet, these selected classes are also resembling Pix3D’s
classes.

By combining these two datasets with Pix3D, we ob-
tained a total of 44,903 pairs, which is 5.95 times larger
than Pix3D.

Table 3 compares the fine-tuning results of our method in
ResNet-50 backbone trained on the original Pix3D dataset
and this new dataset, referred to as Mixed. Training our
method on the Mixed dataset, which contained more avail-
able RGB-CAD pairs, can improve semantic segmentation
performance on NYUv2 compared to training on the origi-
nal dataset.



Pre-train NYUv2
dataset GT pair Method mIoU mIoU [12]

Pix3D
2D only SimCLR 47.94 53.32
pseudo Ours (pseudo) 49.46 54.62
2D-3D Ours 49.77 55.24

ScanNet 2D-3D Pri3D 49.52 54.7
Set-InfoNCE - 55.4

Mixed 2D only SimCLR 48.97 54.16
pseudo Ours (pseudo) 49.92 55.55

Table 3. Semantic segmentation results of ours and com-
petitors trained on different pre-train datasets. Training our
method on a larger RGB-CAD dataset (Mixed) yields the best re-
sults.

NYUv2 ADE20k
Choices mIoU mIoU

Cropping 49.06 38.56
Highest conf. 48.44 37.95
Largest bbox 49.46 39.13

Table 4. Effects of predicted pseudo-pair choices. Selecting the
largest bounding box yields the best performance.

G. Effects of the choice of pseudo pair selection
policy

We provide an ablation study that shows the effect of
changing the method to construct each pseudo-RGB-CAD
pair in ROCA [9]. After detecting a set of objects from
a given RGB image using Mask-RCNN, we have to select
one (or more) objects from the prediction to represent the
associated CAD model of the given image. We define three
policies for selecting the object:

Cropping all detected boxes: We use all detected ob-
jects in the prediction to construct multiple RGB-CAD
pairs. The input RGB image is cropped based on the pre-
dicted bounding box of each detected object and then fur-
ther paired with its predicted CAD model. This results in
multiple RGB-CAD pairs for each input RGB image.

Highest confidence: This policy selects the CAD model
with the highest confidence score given by Mask-RCNN.
This results in one RGB-CAD pair for each input RGB im-
age.

Largest detected box: This policy selects the CAD
model with the largest bounding box. This also results in
one RGB-CAD pair for each input.

Table 4 shows the experimental results evaluated on the
NYUv2 and indoor ADE20k semantic segmentation tasks
using our revised mIoU metric on ResNet-50 architecture.
We found that using the largest detected box policy yields
the best performance.

NYUv2 ADE20k
Nat. Img. Rend. Img. PC mIoU mIoU

✓ - - 47.94 38.19
✓ ✓ - 47.53 38.22
✓ - ✓ 48.46 38.47
✓ ✓ ✓ 48.09 38.36

Table 5. Effects of CAD 3D data structure choices. Cross-
learning between natural images (Nat. Img.) and point clouds
(PC) yields the best performance.

H. Effects of the choice of CAD model prepro-
cessing method

This experiment evaluates an alternative CAD model
preprocessing method that renders CAD models into 2D im-
ages used in prior works [13, 14, 16] against point clouds
used in our work. We also show whether training on RGB
images with both options at the same time (i.e., trimodal
learning) can further enhance downstream performance.

For rendered images, we use a 2D encoder based on
ResNet-18 [11] and a modality-specific projection head to
encode four rendered views of each input, similar to [13].
The fine-tuning results shown in Table 5 are evaluated on
the NYUv2 and indoor ADE20k semantic segmentation
tasks using our revised mIoU metric on ResNet-50 archi-
tecture. We found that training on RGB images along with
point clouds achieves better results than using rendered im-
ages. In addition, using natural images, rendered images,
and point clouds all together has shown decreased task per-
formance.

I. Potential negative societal impacts
Similar to 2D object detection or recognition algorithms

trained on predefined object categories, our models, once
fine-tuned on downstream tasks, may not generalize to un-
seen categories outside the training set. This could lead
to social exclusion. For example, the models might ig-
nore specific items from minority groups, countries, or cul-
tures, leading to cultural discrimination. Nonetheless, our
method’s ability to learn from generated RGB-CAD pairs
enables training on a wide variety of domains where paired
datasets do not exist. This can help scale up the number of
known classes and increase social inclusion.
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Figure 3. Distribution of pairwise cosine similarities among
intra-subcategory and inter-subcategory samples. The higher
mean intra-subcategory similarity and the lower mean inter-
subcategory similarity in Ours (pseudo) demonstrate better dis-
crimination between each subcategory compared to SimCLR.

Ours DINO

bed bookcase chair desk sofa table wardrobe

Figure 4. More qualitative results of unsupervised multiple object
localization on NYUv2 [19] dataset.
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Figure 5. More qualitative results of semantic segmentation on NYUv2 [19] dataset.
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Figure 6. Qualitative results of semantic segmentation on ADE20k [23] dataset.



Input GT SimCLR SupCon Pri3D Ours Ours(Pseudo)

Figure 7. Qualitative results of semantic segmentation on SUNRGB-D [20] dataset.
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Figure 8. Qualitative results of semantic segmentation on ScanNet [5] dataset.
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