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Overview of the Supplementary Material
The Supplementary Material comprises this Supporting Document of appendices, the source codes of this project, consisting

of the implementations of various Spider GAN variants and SID metric, and animations corresponding to (a) Evaluating
the signed distance on Gaussain data; and (ii) Interpolation in the input, and intermediate stages of Spider StyleGAN. The
appendices contains the additional discussions on identifying the friendly neighborhood in Spider GANs, ablation studies on
SID, implementation details, and additional experiments on the Spider GAN variants considered in the Main Manuscript. The
citations to prior art in the Supporting Document are with respect to the references listed herein.

A. Baselines for Identifying the Friendly Neighborhood
Approaches that compute the intrinsic dimensionality nD of a dataset are either computationally intensive [1] or do not

scale with sample size [2, 3]. Campadelli et al. [4] presented a survey of various nearest-neighbor and maximum-likelihood
estimators of nD for low-dimensional datasets. A well-known approach for computing nD is provided in the Davis-Kahan
sin Θ theorem [5], which provides an upper bound on the distance between two subspaces in terms of the eigen-gap between
them. A practically implementable version [6] is based on the sample covariance matrix of the two datasets and their
eigenvalues. Along a parallel vertical, multiple works have derived convergence guarantees on the GAN training algorithms,
given nD [7, 8, 9]. We now discuss the Davis-Kahan sin Θ theorem, and compare its performance against the FID, KID and
CSIDm approaches in terms of the friendliest neighbors picked by them.

A.1. The Davis-Kahan Theorem

The Davis-Kahan sin Θ Theorem [5] upper-bounds the distance between subspaces in terms of the eigen-gap between
them. Let Σp,Σq ∈ Rn×n denote the sample covariance matrices of two datasets Dp and Dq, respectively, with λ1p ≥
λ2p ≥ · · · ≥ λnp and λ1q ≥ λ2q ≥ · · · ≥ λnq denoting their respective eigenvalues in order. Consider 1 ≤ r ≤ s ≤ n,
and define d := s − r + 1, λ0 := ∞ and λn+1 := −∞. Consider the subspaces Vp = span

{
vpr , v

p
r+1, . . . , v

p
s

}
and

Vq = span
{
vqr , v

q
r+1, . . . , v

q
s

}
that are spanned by the eigenvectors of Σp and Σq, respectively. The Davis-Kahan sin Θ

theorem bounds the distance between the two subspaces Vp and Vq as follows:

‖ sin Θ(Vp,Vq)‖F ≤
‖Σp − Σq‖F

δ
, (1)

where δ = inf
{
|λ̂− λ| : λ ∈ [λqs, λ

q
r] , λ̂ ∈

(
−∞, λ̂ps−1

] ⋃ [
λ̂pr+1,∞

)}
.

As noted by Yu et al. [6], evaluating the infimum among all pairs of eigenvalues requires a huge computational overhead,
particularly on high-dimensional data. They derived a loose, but computationally efficient upper bound:

‖sin Θ(Vp,Vq)) ‖F ≤
2 min

{
d

1
2 ‖Σp − Σq‖op, ‖Σp − Σq‖F

}
min

{
λqr−1 − λqr, λqs − λqs+1

} , (2)

where ‖ · ‖op and ‖ · ‖F denote the operator and Frobenius norms, respectively. For large n, the operator norm can be
approximated by the `∞ norm of the difference between the eigenvalues of Σp and Σq [6]. The form of the sin Θ distance in
Equation (2) replaces the infimum amongst all pairs with the minimum between only two pairs of eigenvalues, which requires
less computation.

We now discuss a variant of the sin Θ distance between the subspaces spanned by two datasets. Since the intrinsic
dimensionality of the data is not known priori, we compute the sin Θ distance for various choices of r and s, and pick the best
amongst them, which we call the min sin Θ distance.
The min sin Θ Distance: Consider the space spanned by the (vectorized) images in the datasets. Since the pixel resolution of
the images across datasets is not the same, it is appropriate to first rescale them to the same dimension, for instance, using
bilinear interpolation. Depending on whether the rescaled image dimension is greater or smaller than the image dimension,
there is a trade-off between the image quality (superior at higher resolution) and computational efficiency (superior at lower
resolution). We found out experimentally that resizing all images to 32× 32× 3 is a viable compromise. We consider r = 1
and compute the sin Θ(Vp,Vq; s), for s = 3, 4, . . . dn/10e, where n = 3072 = 32× 32× 3. The friendly neighborhood as
indicated by the min sin Θ distance is mins{sin Θ(Vp,Vq; s)}. In other words, the closest source dataset given all s is deemed
the friendliest neighbor of the target.
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A.2. Comparison of Approaches for Identifying the Friendly Neighborhood

We compare the min sin Θ, FID, KID and CSIDm distances in terms of the friendliest neighbor predicted by these methods.
FID, KID and CSIDm distances have been defined in Section 3 of the Main Manuscript. Table 1 shows the min sin Θ distance
for the various datasets considered in Section 3 of the Main Manuscript. We also present KID between the various datasets
in Table 3 of this document. Tables 2 and 4 present the remaining combinations between datasets left out from the Main
Manuscript. The first, second and third friendly neighbors are color-coded for quick and easy identification. We observe
across all datasets that, FID and KID are highly correlated in terms of the friendly neighbors they identify for a given target.
CSIDm is also in agreement with the observations when the target is more diverse, but in scenarios such as TinyImageNet or
CIFAR-10, it is able to indicate the less diverse sources as a poor input choice. The experiments on learning Tiny-ImageNet
within the Spider GAN framework in Appendix D.2 are more in agreement with the friendly neighbors identified by CSIDm.

Across all distances, we observe that the results obtained on MNIST or Fashion-MNIST as the source do not correlate
well with the experimental results (cf. Appendix D.2). This is attributed to the limitation of the Inception-Net embedding in
handling grayscale images. Inception-Net operates on color images and offers limited performance on grayscale images.

Table 1 shows that the min sin Θ distance is unable to identify the friendliest neighbor accurately and consistently. For
instance, the ordering of the top three neighbors on MNIST, CelebA or LSUN-Churches identified by using the min sin Θ
distance is not consistent with the ordering suggested by CSIDm and that verified experimentally. However, on the other
datasets, min sin Θ is worse than the InceptionNet approaches for identifying the friendliest neighborhood.

Table 1. The best-case min sin Θ(·) distance between the spaces spanned by the eigenvectors of the source and target datasets. The rows
represent the sources and the columns correspond to the target datasets. The first, second and third friendly neighbors (color coded) of
the target is the source with the three lowest min sin Θ(·) values is that column. We observe that the friendliest neighbor identified by the
min sin Θ distance are generally not in agreement with those identified by FID, KID or CSIDm.

Src

Tar
MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 0 60.74 63.25 85.73 43.19 27.43 23.79 35.35

F-MNIST 96.68 0 69.01 110.7 53.77 36.69 45.02 48.29

SVHN 79.91 54.77 0 57.99 23.62 19.86 25.95 29.55

CIFAR-10 72.16 58.56 35.97 0 7.521 14.63 21.16 15.89
T-ImgNet 70.86 55.43 30.67 14.67 0 13.97 20.05 15.52
CelebA 72.13 60.62 41.35 45.74 22.39 0 19.16 23.48

Ukiyo-E 54.09 59.30 43.08 52.75 25.65 15.29 0 22.50
Church 66.54 57.11 44.02 35.55 17.81 16.80 20.19 0
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Table 2. A comparison of FID between popular training datasets. The rows correspond to the source (Src) and the columns correspond to the
target (Tar). The first, second and third friendly neighbors (color coded) of the target are the sources with the three lowest FID values. FID
fails to detect scenarios where the source possesses lower sample diverse that the target, as in the case of CIFAR-10 and LSUN-Church
sources in comparison to the Tiny-ImageNet target.

Src
Tar

MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 1.2491 175.739 234.850 258.246 264.250 360.622 398.280 357.428

F-MNIST 176.813 2.4936 212.619 188.367 197.057 365.222 387.049 345.011

SVHN 236.707 214.262 3.4766 168.615 189.133 357.193 372.444 356.148

CIFAR-10 259.045 188.710 168.113 5.0724 64.3941 305.528 303.694 256.207

T-ImgNet 264.309 197.918 188.823 64.0312 6.4845 251.198 257.078 203.899

CelebA 360.773 364.586 357.383 303.490 250.735 2.5846 301.108 265.954

Ukiyo-E 396.791 387.088 372.557 300.511 254.102 300.259 5.9137 267.624

Church 350.708 343.781 354.885 254.991 204.162 266.508 267.638 2.5085

Table 3. KID between popular training datasets. The first, second and third friendly neighbors (color coded) of the target (column) are
the sources (rows) with the three lowest KID values. We observe that, akin to FID, the KID measure is also unable to compare the leave
diversity between the source and target datasets, as is the case between Tiny-ImageNet and CIFAR-10.

Src
Tar

MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 2×10−6 0.1587 0.2428 0.2380 0.2393 0.4284 0.5082 0.4376

F-MNIST 0.1606 1× 10−6 0.1922 0.1353 0.1578 0.4291 0.4751 0.3963

SVHN 0.2458 0.1943 2×10−7 0.1377 0.1674 0.4059 0.4393 0.3962

CIFAR-10 0.2404 0.1357 0.1377 6× 10−6 0.0334 0.3205 0.3229 0.2453

T-ImgNet 0.2397 0.1579 0.1667 0.0321 8× 10−6 0.2403 0.2595 0.1692

CelebA 0.4388 0.4265 0.4054 0.3165 0.2406 7×10−6 0.3620 0.2856

Ukiyo-E 0.5064 0.4746 0.4408 0.3183 0.2568 0.3610 2×10−5 0.3022

Church 0.4379 0.3916 0.3932 0.2408 0.1695 0.2857 0.3019 3×10−5

Table 4. A comparison of CSIDm between popular training datasets for m = bn
2
c. The rows represent the source (Src) and the columns

represent to the target (Tar). The first, second and third friendly neighbors (color coded) of the target are the sources with the three lowest
positive CSIDm values, respectively. CSIDm is superior to FID or KID, as it assigns negative values to source datasets that are less diverse
than the target.

Src
Tar

MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 0.1865 21.886 37.227 29.298 9.436 198.714 201.550 205.322

F-MNIST 162.962 0.1097 46.938 19.051 -0.5571 167.840 191.010 181.458

SVHN 212.473 77.357 -0.0566 34.534 21.668 195.631 214.507 219.790

CIFAR-10 221.337 65.426 52.051 -0.1478 -7.109 180.491 198.991 173.655

T-ImgNet 230.916 75.737 67.902 12.892 0.6743 157.520 197.447 184.977

CelebA 204.794 68.828 65.299 23.685 8.829 0.6241 184.170 191.927

Ukiyo-E 250.226 92.741 82.157 39.792 18.727 191.930 0.5494 180.697

Church 212.452 48.676 56.136 -4.655 -23.115 185.740 198.750 -0.5258
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Figure 1. SIDm,r as a function of the hyper-cube length r. We observe that MNIST is the closest neighbor to both Fashion-MNIST and
SVHN, while CelebA is marginally closer to Ukiyo-E than the other baselines considered. In scenarios such as case when the target is
CelebA or Ukiyo-E Faces, the SID curve alone cannot be used to conclude the friendliest neighbor of a target dataset, and the area under the
curve, CSIDm is more informative (cf. Table 4) .
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B. The Signed Inception Distance (SID)
In this appendix, we derive a favorable theoretical guarantee of the SID metric, discuss the algorithm for the computation of

SID with relevant ablation experiments on synthetic Gaussian and image datasets.

B.1. Asymptotic Behavior of the Signed Distance

Without loss of generality, consider the signed distance presented in Equation (2) of the Main Manuscript:

SDm,r(µp‖µq) =
1

Mx

Mx∑
`=1

x̃`∈Cq,r

 1

Nq

Nq∑
j=1

cj∼µq

Φ(x`, cj)−
1

Np

Np∑
i=1

c̃i∼µp

Φ(x`, c̃i)

 .

Asymptotically, when infinite samples are drawn from the test space, Cq,r, we get

SDm,r(µp‖µq) = lim
Mx→∞


1

Mx

Mx∑
`=1

x̃`∈Cq,r

 1

Nq

Nq∑
j=1

cj∼µq

Φ(x`, cj)−
1

Np

Np∑
i=1

c̃i∼µp

Φ(x`, c̃i)


 .

= κ

∫
x∈Cq,r

{ 1

Nq

Nq∑
j=1

cj∼µq

Φ(x, cj)−
1

Np

Np∑
i=1

c̃i∼µp

Φ(x, c̃i)
}

dx,

for some positive constant κ. Similarly, when the number of centers drawn from µp and µq tends to infinity, the inner
summations can be replaced with their corresponding expectations, resulting in

SDm,r(µp‖µq) = κ

∫
x∈Cq,r

lim
Nq→∞

{ 1

Nq

Nq∑
j=1

cj∼µq

Φ(x, cj)
}
− lim
Np→∞

{ 1

Np

Np∑
i=1

c̃i∼µp

Φ(x, c̃i)
}

dx.

= κ′
∫
x∈Cq,r

(∫
y

Φ(x,y)µq(y) dy −
∫
y

Φ(x,y)µp(y) dy

)
dx.

= κ′
∫
x∈Cq,r

(
Ey∼µq

[Φ(x,y)]− Ey∼µp
[Φ(x,y)]

)
dx.

Recall that the samples x` are drawn uniformly at random from Cq,r (cf. Section 3.1 of the Main Manuscript). This allows us
to replace the outer integral with another expectation, resulting in

SDm,r(µp‖µq) = Ex∼Cq,r,y∼µq
[Φ(x,y)]− Ex∼Cq,r,y∼µp

[Φ(x,y)] .

The above result links the SD to kernel statistics and provides the asymptotic guarantee that when the two distributions µp and
µq coincide, i.e., µp = µq , and therefore, SDm,r(µp‖µp) := 0.

B.2. SID Computation

The procedure to compute the signed distance between the samples drawn from two distributions is given in Algorithm 1.
While the algorithm is easily implementable for low-dimensional data, an extension to practical settings with images
necessitates computing Inception embeddings over batches of samples. The signed distance (SD) computed over Inception
embeddings is called SID. To extend the SID computation algorithm for evaluating GANs, we consider Dq , the target dataset,
and Dp, samples drawn from the generator. We set |Dq| = |Dp| = 5000. For each r, we average SIDm,r over batches of
size NB = 100. This allows for efficient computation of the Inception features for high-resolution images. Algorithm 2
presents this modified approach for evaluating GANs with SID. We implement the SID computation atop the publicly available
Clean-FID [10] library. Similar to the Clean-FID framework, SID can be computed between any two image folders using the
Clean-FID backend. As a result, the InceptionV3 mapping and resizing functions are consistent with the existing Clean-FID
approach. Details regarding the public release of the Python + TensorFlow/PyTorch library for SID computation are discussed
in Appendix E of this document.
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Algorithm 1: Signed distance (SD) between two distributions
Input: Source data Dp = {c̃i | i = 1, 2, 3, . . . , Np; c̃i ∼ µp}, kernel order m, dimensionality n,

Target data Dq = {cj | j = 1, 2, 3, . . . , Nq; cj ∼ µq}, max radius rmax, step size η,
batch size Mx

Compute: µq = mean (cj ∼ Dq) ; Σq = covariance (cj ∼ Dq)
for k = 0, 1, 2, ...rmax do

Compute: Hypercube length r = η × k ×max(diag(Σq))
Define: Hypercube Cq,r: Center = µq
Sample: x` ∼ Uniform [Cq,r] ; ` = 1, 2, 3, . . . ,Mx

Compute: SDm,r(µp‖µq) based on Equation (2) of the Main Manuscript
Output: Plot of SDm,r versus r

Algorithm 2: Signed inception distance (SID) between the generator output and target data
Input: Target data Dq = {cj | j = 1, 2, . . . , Nq; cj ∼ µq}, kernel order m, dimensionality n,

max radius rmax, step size η, hypercube sample batch size Mx, Generator G,
Generator batch size NB , Inception model ψ.

Compute: µq = mean (cj ∼ Dq) ; Σq = covariance (cj ∼ Dq)
for k = 0, 1, 2, ...rmax do

for Batches i = 1, 2, . . .
Nq

NB
do

Sample: z` ∼ pZ(z); ` = 1, 2, 3, . . . , NB – Generator inputs
Sample: c̃` ∼ G(z); ` = 1, 2, 3, . . . , NB – Generator outputs
Sample: cj ∼ Dq; ` = 1, 2, 3, . . . , NB – Target data samples
Compute: ψ(c̃`) and ψ(cj) – Inception embeddings of generator output and target data.
Compute: Hypercube length r = η × k ×max(diag(Σq))
Define: Hypercube Cq,r: Center = µq
Sample: x` ∼ Uniform [Cq,r] ; ` = 1, 2, 3, . . . ,Mx

Compute: SIDm,r between ψ(c̃`) and ψ(cj) based on Equation (3) of the Main Manuscript

Compute: CSIDm =
∑
r SIDm,r(µp‖µq)

Output: Plot of SIDm,r versus r; Measure CSIDm

B.3. Experiments on Gaussian Data

To begin with, we present results on computing the signed distance (SD) for various representative Gaussian and Gaussian
mixture source and target distributions.

Figures 2(a)-(c) present the visualization of SD versus r for a Gaussian target distribution with µq = N (5.512, 0.75I2),
where 12 denotes a 2-D vector with all entries equal to 1. Consider the scenario where the source and target Gaussians possess
the same variance, but different means. Consider three different sources µp = N (mp,Σp), given by: (a) mp = 02 and
Σp = 0.75I2; (b) mp = 2.512 and Σp = 0.75I2; and (c) mp = 5.512 and Σp = 0.75I2. We observe that, when the source is
far away from the target, SD is positive-valued and gradually approaches zero. When the two distributions are identical, SD is
zero for all r. In the context of identifying a friendly neighbor, a closer source dataset is expected to converge faster to zero
than one that is far away.

Figures 3(a)-(c) present the results for the other scenario where the mean is fixed, but the variances are different. Consider
the same target as before, but with the following source distributions: (a) mp = 512 and Σp = 0.1I2; (b) mp = 512 and
Σp = 0.25I2; and (c) mp = 12 and Σp = I2. We observe that when the spread of the source is smaller than the target, SD
initially goes negative, and subsequently converges to zero once the hypercube Cq,r encompasses the source. On the other
hand, when the spread of the source is greater than that of the target (as desired for identifying friendly neighbors), SD is
always positive, and converges to zero faster if the relative spread between the source and target is smaller.

To evaluate SD on a Gaussian mixture target, consider an 8-component Gaussian mixture model (GMM) with means drawn
from [0, 1]× [0, 1] and identical covariance matrices 0.02I2. Consider three source distributions: (a) A Gaussian with first
and second moments matching that of the target; (b) An 8-component GMM distinct from the target; and (c) A 4-component
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GMM that has mode-collapsed on to some of the modes of the target. Figures 4(a)-(c) present these three scenarios and the
associated SD versus r. For Scenario (a), although the mean and covariance of both the source and target are identical, we
observe that SD is negative, as the two distributions do not have a large overlap, preventing the positive and negative charges
from cancelling each other. In Scenario (b), SD is able to capture the change in concentration between µp and µq , indicated by
the sudden sign change in SD. When µp converges to a few modes of the target µq, SD is not zero for all r, which indicates
that the two distributions are not identical. In this scenario, however, FID between the two distribution would be close to zero
as they have approximately the same first and second moments.

Animations pertaining to these experiments are available at https://github.com/DarthSid95/clean-sid.

B.4. Evaluating GANs with SID

We consider evaluating pre-trained models with the SID measure to compare the performance with FID and KID. As a
demonstration, we consider StyleGAN2 [11] and StyleGAN3 [12] models with weights trained on 512× 512 high-quality
Animal Faces (AFHQ) dataset [11]. As a reference/benchmark, we also consider SID of the AFHQ dataset with itself. We
consider orders in the range m = bn2 c− 3, bn2 c− 2, . . . bn2 c+ 2. Figure 5 shows SID for select orders, comparing StyleGAN2
and StyleGAN3. For positive orders, we flip the sign of SID to maintain consistency with the interpretations developed for
the negative order. Across all test cases, we observe that StyleGAN3 outperforms StyleGAN2, as suggested by the FID and
KID values [10]. As the order m reduces, GAN models with lower FID/KID/CSIDm approach zero more rapidly, which can
be used to quantity the relative performance of converged GAN models. For m < bn2 c − 3 numerical instability causes SID
to approach zero and for m > bn2 c+ 2 numerical instability blows up SID computation. While these experiments serve to
demonstrate the feasibility in evaluating pre-trained GAN models with CSIDm, comparisons between Spider DCGAN and the
corresponding baselines are provided in Section 4 of the Main Manuscript and Appendix D.2 of this Supporting Document,
while comparisons of Spider StyleGANs and baseline StyleGANs on FFHQ and MetFaces is provided in Appendix D.5.

SID can also be used to compare the relative performance of GAN generators. Consider three GANs trained on the MNIST
dataset where one generator has learnt the distribution accurately, while the other two have mode-collapsed on to a subset
of the classes (specifically, digits 0,8,6 and 9) or a single class (digit 4) of the target dataset. Figure 6 presents samples
output by these generators and the SID versus r plot for the corresponding pair of generators. We observe that, when the
reference generator has learnt the target accurately, the SID of a test generator’s output with respect to the reference will
always be negative, as the test generator has less diversity. However, the SID between the output of two generators that have
mode-collapsed would be positive if there is no overlap between the classes they have collapsed to. This could be used to
evaluate GANs with ensemble-generators [13], where each network is trained to learn a different mode/class.
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(a)

(b)

(c)

Figure 2. Plots of the signed distance SDm,r between a source Gaussian µp = N (m, 0.75I2) from a target Gaussian µq =
N (5.512, 0.75I2) for (a) mp = 02; (b) mp = 2.512 ; and (c) mp = 5.512. The closer the source Gaussian is to the target, the
faster SDm,r(µp‖µq) approaches zero. When the two distributions coincide, SDm,r(µp‖µq) is zero for all r.
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(a)

(b)

(c)

Figure 3. Plots comparing the signed distance SDm,r between a source Gaussian µp = N (5.512, 0.75I2) and a target Gaussian
µq = N (5.512,Σp) for (a) Σp = 0.1I2; (b) Σp = 0.25I2; and (c) Σp = I2. When the source Gaussian overlaps with the target
but with a smaller variance, SDm,r is negative. However, if the source has a larger variance than the target, SDm,r is positive.
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(a)

(b)

(c)

Figure 4. Plots comparing the signed distance SDm,r when the target is a Gaussian mixture density. (a) Unimodal Gaussian source with
identical first and second moments as the target; SDm,r is negative as the source has lower diversity than the target. (b) A Gaussian mixture
distinct from the target; SDm,r flips sign based on the relative concentrations of the source and target samples. (c) A mode-collapsed source
results in a non-zero SDm,r although FID and KID between these distributions would be zero.
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Figure 5. SID versus r for multiple choices of 2m − n for the case when the target dataset is 512 × 512 Animal Faces HQ. Images
generated by StyleGAN2 and StyleGAN3 are compared with the AFHQ dataset as the target. We observe that StyleGAN3 has a performance
comparable to StyleGAN2 for higher orders m. Convergence for lower orders is indicative of superior performance, as the penalty for
mismatch between the source and target distributions increases with decrease in the order. The SID for StyleGAN3 closely matches the
SID of the target data with itself for 2m− n = −5, indicating superior performance to StyleGAN2. This finding is in agreement with the
comparison between StyleGAN2 and StyleGAN3 in terms of FID/KID reported in [10].
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Figure 6. SID versus r when the source and target samples are drawn from GAN generators trained on various subsets of MNIST. When the
source generator has mode-collapsed, either to a single digit or a subset of digits, the corresponding SID is negative. When comparing two
mode-collapsed generators, the SID will be positive as the distributions of the Inception embeddings are less likely to overlap.
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C. Implementation Details
We provide details on the experimental setup, evaluation metrics and computational resources employed in the various

experiments reported in the Main Manuscript and this Supporting Document.

C.1. Experimental Setup

Spider DCGAN: The experiments presented in Section 4 consider the DCGAN [14] architecture for the generator and
discriminator. For the baseline GANs, the parametric input is drawn from R100. We consider the Gaussian, Gamma [15] and
non-parametric [16] input distributions drawn from R100 as baselines. In the case of Spider GAN, we conducted experiments
by resizing the input data to 16 × 16 × 3. To bridge the gap between the two noise variants, we also consider Gaussian
noise drawn from R16×16×3 provided as input in a similar fashion to the datasets. We did not observe improvement in
performance with higher-resolution images for the input dataset. The images are vectorized and provided as input to the
generator. Both Spider DCGAN and the baselines are trained on the Wasserstein GAN [17] loss with a stable version of the
gradient penalty [18] enforced only on samples drawn from pd. The choice was motivated by its successful usage in baseline
StyleGAN2 and StyleGAN3 variants.

The networks are trained on batches of 100 samples. The Adam [19] optimizer is used with a learning rate η = 2× 10−4,
and the exponential decay parameters for the first and second moments are β1 = 0.5 and β2 = 0.999, respectively. The
implementation was carried out using TensorFlow 2.0 [20]. The networks are trained for 15× 103 iterations on MNIST and
Fashion-MNIST, 104 iterations on SVHN and CIFAR-10, and 3× 104 iterations on Celeb-A, Ukiyo-E and Tiny-ImageNet
learning tasks.
Spider PGGAN: The publicly available PGGAN GitHub repository (URL: https://github.com/tkarras/
progressive_growing_of_gans) was extended to incorporate the Spider framework. The implementation was
carried out using TensorFlow 2.0 [20]. The input distributions are drawn from PGGAN models, trained on Tiny-ImageNet
images of resolution 16 × 16 × 3. The input PGGAN was trained for 12 × 103 iterations. Samples drawn from the input
PGGAN are resized to 14× 14× 3, vectorized, and provided as input to the cascaded Spider PGGAN layer.
Spider StyleGAN: The publicly available, PyTorch 1.10 [21] based StyleGAN3 GitHub repository (URL: https://
github.com/NVlabs/stylegan3) was extended to incorporate the Spider framework, allowing for the implementation
of both StyleGAN2, StyleGAN2-ADA and StyleGAN3 variants. The input distributions are drawn from StyleGAN2-ADA
models, trained on (a) Tiny-ImageNet images of resolution 16× 16× 3; and (b) Images from the AFHQ-Dogs dataset, resized
to 16× 16× 3. The input StyleGAN was trained for 25× 103 iterations in both cases. We considered the following two input
transformations to obtained 512-dimensional input vectors: (i) Samples drawn from the input StyleGAN are averaged across
the color channels, resized to 16×32×1, vectorized, and provided as input to the cascaded layer; and (ii) Samples drawn from
the input StyleGAN are averaged across the color channels, resized to 23× 23× 1 and vectorized. The vectors are truncated
to 512 entries, and provided as input to the cascaded stage. We did not observe a significant difference in performance when
considering either of the two configurations. As in classical StyleGANs, the cascaded StyleGAN network transforms the input
dataset to the latentW-space, and subsequently learn the target. Spider StyleGANs are trained with transformation-(i) on
FFHQ and AFHQ-Cats data, while transformation-(ii) is used to train the Spider StyleGAN variants on Ukiyo-E faces and
MetFaces.

C.2. Evaluation Metrics

To draw a fair comparison with the baseline approaches, we evaluate various Spider GAN and baseline models in terms
of their FID, KID and CSIDm. We also compare the interpolation quality of the networks based on the sharpness of the
interpolated images.
Fréchet Inception Distance (FID): Proposed by Heusel et al. [22], FID can be used to quantify how real samples generated by
GANs are. FID is computed as the Wasserstein distance between Gaussian distributed embeddings of the generated and target
images. To compute the image embedding, we consider the InceptionV3 [23] model without the topmost layer, loaded with
weights for the ImageNet [24] classification task. Images are resized to 299× 299× 3 and given as input to these networks.
Grayscale images are replicated across the color channels. FID is computed by assuming a Gaussian prior on the embeddings
of real and fake images. The means and covariances are estimated using 10, 000 samples. The publicly available TensorFlow
based Clean-FID library [10] is used to compute FID. As noted by Parmar et al. [10], the Clean-FID is generally found to
be a few points higher than those computed through base PyTorch and TensorFlow implementations. Our implementation
of the DCGAN baselines [15, 16] also exhibit similar offsets between the reported FID and those computed by Clean-FID.
However, in our experiments, we were able to reproduce the scores reported in [10] for PGGAN and StyleGAN architectures
fairly accurately.
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Kernel Inception Distance (KID): The kernel inception distance [25] is an unbiased alternative to FID. The KID computes
the squared maximum-mean discrepancy (MMD) between the InceptionV3 embeddings of data in Rn. The embeddings are
computed as in the FID case. The third-order polynomial kernel K(x,y) =

(
1
nx

Ty + 1
)3

is used to compute the MMD over
a batch of 5000 samples. As in the case of FID, to maintain consistency, we use the Clean-FID [10] library implementation of
KID.
Image Interpolation and Sharpness: In order to compare the performance of GAN for generating unseen images, we evaluate
the output of the generator when the interpolated points between two input distribution samples are provided to the generator.
We use the sharpness metric introduces by Tolstikhin et al. [26] in the context of Wasserstein autoencoders. The edge-map of
an image is obtained using the Laplacian operator. The average sharpness of the images is then defined as the variance in
pixel intensities on the edge-map, averaged over batches of 50, 000 images. In the case of of baseline GAN, the inputs are
interpolated points between random samples drawn from the parametric noise distribution, while in the case of Spider GAN,
the interpolation between two images from the input dataset are fed to the generator.

C.3. Computational Resources

All experiments on low-resolution (≤ 32× 32× 3) images with the DCGAN architecture were conducted on workstations
with one of two configuration: (a) 4× NVIDIA 2080Ti GPUs with 11 GB visual RAM (VRAM) each, and 256 GB system
RAM; and (b) 2× NVIDIA 3090 GPUs with 24 GB VRAM and 256 GB system RAM. The high-resolution experimentation
involving PGGAN or StyleGAN was carried out on workstations with one of the two configurations: (i) NVIDIA DGX with
8× Tesla V100 GPUs with 32 GB VRAM each, and 512 GB system RAM; and (ii) 8× NVIDIA A6000 GPUs with 48 GB
VRAM each, and 512 GB system RAM. The memory requirements and training times for StyleGAN and PGGAN variants are
on par with training times reported for the baselines [27, 12].

DCGAN CAE

Figure 7. Images generated by Spider GAN on Fashion-MNIST and Ukiyo-E Faces, given the friendliest neighbor input as identified by SID.
Both CAE and DCGAN result in images of comparable visual quality on Fashion-MNIST. However, for high-resolution image generation
on 256-dimensional Ukiyo-E Faces, the fully convolutional structure of the CAE generator result in images of poorer visual quality than
those generated by DCGAN.
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Figure 8. FID versus iterations for training baseline and Spider GAN variants. Spider GAN trained with the friendliest neighbor identified in
Section 3 (of the Main Manuscript) result in the best (lowest) FID scores. On MNIST, Spider DCGAN approaches converge an order faster
than the baseline counterparts.

Table 5. Comparison of FID, KID and CSIDm for the Spider DCGAN and baseline variants on Fashion-MNIST, SVHN, Tiny-ImageNet,
and CelebA datasets. Spider DCGANs with friendly neighborhood inputs outperform the baselines with parametric and non-parametric
priors. The performance of Spider DCGAN with MNIST or Fashion-MNIST as the input is sub par when the target is a color-image dataset.

Input Distribution
Fashion-MNIST SVHN Tiny-ImageNet CelebA

B
as

el
in

es

FID KID CSIDm FID KID CSIDm FID KID CSIDm FID KID CSIDm

Gaussian (R100) 76.60 0.0557 22.24 135.4 0.1245 30.02 89.94 0.0657 18.06 50.32 0.0554 24.31

Gamma (R100) 65.36 0.0513 19.72 130.8 0.1181 27.13 83.33 0.0536 14.63 40.69 0.0544 20.98

Non-Parametric (R100) 62.42 0.0426 21.96 107.2 0.1053 33.52 82.37 0.0579 13.25 40.41 0.0543 72.18

Gaussian (RH×W×C) 119.2 0.0905 28.96 113.7 0.1121 31.45 103.0 0.0844 15.62 83.61 0.0912 113.4

Sp
id

er
G

A
N

MNIST 56.59 0.0387 18.50 95.71 0.0817 20.62 96.91 0.0669 14.95 40.78 0.0595 32.70

Fashion MNIST – – – 115.0 0.1096 32.57 108.8 0.0667 13.06 35.18 0.0574 23.98

SVHN 79.14 0.0526 24.67 – – – 98.11 0.0655 15.62 40.27 0.0575 20.64

CIFAR-10 92.60 0.0658 30.21 101.8 0.0998 32.40 98.22 0.0642 17.90 36.16 0.0508 22.16

TinyImageNet 130.5 0.0883 22.26 111.7 0.1082 31.77 – – – 29.47 0.0468 18.16
CelebA 81.38 0.0604 24.73 108.9 0.1029 22.77 75.68 0.0511 12.42 – – –

Ukiyo-E 66.90 0.0475 23.29 114.8 0.1145 38.28 88.51 0.0612 16.01 39.41 0.0630 28.23

LSUN-Churches 102.9 0.0774 33.87 106.8 0.1020 26.52 92.86 0.0697 15.98 53.01 0.0636 25.72

D. Additional Experimentation on Spider GAN
We now discuss additional experimental results and ablation studies on various Spider GAN flavors presented in the Main

Manuscript. One could also extend the Spider philosophy to VQGAN [28, 29] or diverse class-conditional models [30, 31]

D.1. Exploring Generator Architectures

We now discuss the choice of the generator architecture in Spider GAN (cf. Section 4 of the Main Manuscript). We consider
two network architectures:

• DCGAN: We consider standard DCGAN where the images from the friendly neighborhoot are resized, vectorized, and
provided as input to generator as described in Appendix C.1.
• Convolutional autoencoder (CAE): In this setup, the images are resized to 16 × 16 × 3 and provided as input to

convolutional layers to learn a low-dimensional latent representation. The output image is generated by deconvolution
layers.
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Table 6. A comparison of FID and KID in Spider GAN for various noise perturbations considered when the input dataset is Ukiyo-E
Faces. Gaussian perturbations such asN (0, 0.25I) andN (0, 0.1I) that are concentrated about their mean result in the best performance
improvements over the baseline Spider GAN.

Input Distribution Fashion-MNIST CIFAR-10
FID ↓ KID ↓ FID ↓ KID ↓

Ukiyo-E Faces 55.1200 0.0376 74.7085 0.0518

Ukiyo-E + N (0, 0.1I) 47.2873 0.0285 70.101 0.0488

Ukiyo-E + N (0, 0.25I) 50.2150 0.0345 68.7473 0.0473
Ukiyo-E + N (0, I) 79.8415 0.0690 71.9181 0.0531

Ukiyo-E + Gamma noise 51.8201 0.0343 70.362 0.0476

Ukiyo-E + Non-parametric noise 50.8536 0.0329 72.9138 0.0495

The number of trainable parameters are fewer for the CAE architecture than the DCGAN approach in both cases. Figure 7
shows the output images generated by these approaches considering the friendliest neighbor (as suggested by Tables 1-4)
provided as input when learning the Fashion-MNIST and Ukiyo-E Faces datasets. We observe that the CAE based Spider
GAN outperforms the DCGAN approach on Fashion-MNIST. However, on higher resolution images, multiple visual artifacts
were found as a consequence of the fully convolutional architecture. We observed similar degradation in image quality when
training Spider GAN with CAE on other high-resolution datasets such as CelebA. We therefore consider the DCGAN approach
in the experiments presented in Section 4 of the Main Manuscript and Appendix D.2.

D.2. Additional Experiments on Spider DCGAN

We now present results on additional experimental validation run on the Spider DCGAN architecture. The experimental
setup is the same as the one described in Appendix C.1. First, we consider training Spider GAN on Fashion-MNIST, SVHN,
Tiny-ImageNet and 64-dimensional CelebA datasets. The FID and KID of the converged models are presented in Table 5. On
the Fashion-MNIST, SVHN, and CelebA datasets, we observe that the Spider GAN approach with the friendliest neighbor
(as identified by FID, KID and CSIDm), results in improved learning over the baselines. On the Tiny-ImageNet learning
task, we observe that a source dataset with less diversity (such as CIFAR-10, as suggested by FID and KID) performs poorly,
while a more diverse source dataset, such as CelebA, improves the best-case FID over the baselines. These results validate the
friendly neighborhood of Tiny-ImageNet identified using CSIDm in Section 3 of the Main Manuscript, where CIFAR-10 and
LSUN-Churches are less diverse, having a negative CSIDm. Figures 10-16 present the images generated by Spider GAN and
the baseline variants on various datasets considered. Figure 8 presents the convergence of FID as a function of iterations for the
remaining source dataset combinations of Spider GAN models considered in Section 4 and Figure 4 of the Main Manuscript.

D.2.1 Noise Perturbations on the Input Dataset

The SpiderGAN framework relies on the variability present in the chosen input dataset to learn the target better. As discussed
in Section 4 of the Main Manuscript, we considered addition of noise to the dataset input to the Spider GAN generator when
the cardinality of the input is small. We observed that CelebA or Tiny-ImageNet are more diverse and perform better than small
datasets such as Ukiyo-E Faces. To overcome the lack of diversity in small datasets, we consider additive-noise perturbations
to augment the data. While Gaussians are a popular choice, we also consider the Gamma density and non-parametric densities
to generate noise, which are known to improve the performance of the GANs on latent-space interpolation. We consider three
Gaussian examples: the standard normal N (0, I), N (0, 0.25I), and N (0, 0.1I). Three variances are considered to highlight
the trade-off between generating noisy images (Gaussians with high variance) and low diversity in the input dataset (Gaussians
with low variance). We present results on learning MNIST and CIFAR-10 datasets with Ukiyo-E Faces dataset as input.
Results: Figures 17(a)-(f) show the images generated by Spider GAN with various noise perturbations applied to Ukiyo-E
Faces. Adding Gaussian noise with a small variance, or Gamma distributed noise results in diverse images and better visual
quality of generated images. On the other hand, models trained with the standard normal or non-parametric densities resulted
in poor learning, with several out-of-distribution images. The performance of the converged models in presented in Table 6.
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Perturbations that are Gaussian, and concentrated about the mean, such as N (0, 0.1I) or N (0, 0.25I) resulted in the lowest
FID and KID. Therefore, Gaussian perturbations with a small variance result in better performance when the input datasets
have small cardinality.

Table 7. Comparison of sharpness metric evaluated on interpolated images in MNIST, CIFAR-10 and Ukiyo-E learning tasks. The benchmark
sharpness is computed on target data samples. Spider GAN variants outperform the baselines on CIFAR-10 and MNIST, while being on par
with the non-parametric prior on the Ukiyo-E Faces. The values shown in bold are closest to the benchmark sharpness.

Input Distribution Sharpness of the Interpolated Image

B
as

el
in

es

MNIST CIFAR-10 Ukiyo-E

Gaussian 0.0868 0.587 1.730
Gamma 0.0536 1.217 1.981

Non-parametric 0.2522 0.785 2.538

Sp
id

er
G

A
N

MNIST – 0.467 2.008
Fashion MNIST 0.1408 0.377 1.353

SVHN 0.0898 1.214 1.480
CIFAR-10 0.0859 – 2.533

TinyImageNet 0.0623 0.906 1.274
CelebA 0.1735 0.449 2.104

Benchmark 0.1396 0.993 2.748

Table 8. Comparison of Interpolation FID and Interpolation KID for the Spider GAN and baseline variants on MNIST, CIFAR-10, and
Ukiyo-E Faces datasets. The input provided to the generator zin = z1+z2

2
; z1,z2 ∼ pZ is the mid-point between two samples drawn from

the input distribution pZ , either of parametric form in the case of the baselines, or the friendly neighborhood datasets, in the case of Spider
GAN. The values in the parentheses indicate the relative increase in the FID/KID scores, in comparison to those reported in Table 2 of the
Main Manuscript. Spider GANs with friendliest neighborhood input datasets achieve FID and KID scores on par with the best-case baseline.

Input Distribution
MNIST CIFAR10 Ukiyo-E Faces

FID KID FID KID FID KID

B
as

el
in

es

Gaussian (R100)
25.111 0.0181 121.198 0.0848 74.241 0.0612

(+16.8%) (+30.2%) (+68.7%) (+36.9%) (+3.1%) (+14.4%)

Gamma (R100)
23.564 0.0149 77.113 0.0492 70.302 0.0558

(+11.3%) (+12.1%) (+6.1%) (+1.8%) (+0.4%) (+18.7%)

Non-Parametric (R100)
22.301 0.0142 87.478 0.0568 66.022 0.0434

(+6.4%) (+3.6%) (+16.7%) (+7.1%) (+1.0%) (+3.0%)

Sp
id

er
G

A
N

MNIST – –
122.084 0.0790 103.80 0.0732
(+71.2%) (+47.5%) (+51.4%) (+67.1%)

Fashion MNIST
20.644 0.0147 113.109 0.0731 89.901 0.0654

(+22.8%) (+42.7%) (+46.7%) (+32.9%) (+23.6%) (+43.7%)

SVHN
27.630 0.0208 89.161 0.0558 77.302 0.0542

(+1.8%) (+1.5%) (+39.1%) (+23.7%) (+10.0%) (+12.4%)

CIFAR-10
30.214 0.0305

– –
87.981 0.0621

(+3.4%) (+38.6%) (+24.2%) (+17.1%)

TinyImageNet
46.233 0.0397 86.708 0.0520 79.848 0.0565

(+41.6%) (+50.4%) (+47.3%) (+70.4%) (+28.9%) (+29.5%)

CelebA
21.517 0.0152 86.475 0.0534 68.849 0.0449

(+4.6%) (+5.5%) (+43.9%) (+23.0%) (+27.2%) (+10.1%)

Ukiyo-E
38.950 0.0318 98.045 0.0671

– –
(+26.9%) (+39.4%) (+60.6%) (+83.8%)
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D.2.2 Input-space Interpolation with Spider DCGAN

Gamma and non-parametric priors were introduced to the GAN landscape to improve the quality of interpolated images in
GANs [15, 16]. We compare the image interpolation quality of Spider GAN with respect to the gamma and non-parametric
baselines. The experimental setup is similar to that in Appendix C.1. We compare the visual quality of images generated by
interpolated inputs to the generator. In the baseline GANs, we provide the generator with eight linearly interpolated points
between two random samples drawn from the prior densities. In the case of Spider GAN, we draw two random samples from
the input dataset, and generate eight linearly interpolated images that are input to the Spider GAN generator. The quality of the
interpolation is evaluated in terms of the sharpness metric. We present results on MNIST, CIFAR-10, and Ukiyo-E Faces.

Figures 18-20 present the images generated by the interpolated input vectors by the three baseline GAN variants and Spider
GAN with the three friendliest neighbors as the input datasets. We observe that, Spider GAN, although not trained for the task,
is able to generate realistic interpolated images. The visual quality is on par with the non-parametric interpolation scheme in
the case of MNIST, and superior to the baselines on the Ukiyo-E Faces learning task. All variants fail to generate realistic
images on CIFAR-10. Table 7 shows the sharpness metric computed on the interpolated images. We observe that Spider
GAN variants attain values closer to the benchmark in comparison with the baselines. As discussed in the Main Manuscript,
the best performance of Spider GAN is achieved when the input dataset is the friendliest neighbor of all the target datasets
under consideration. Table 8 presents the FID and KID scores of the Spider GAN and baseline variants, when computed
on a batch of 104 samples obtained by proving the mid-point sample zin = z1+z2

2 ; z1, z2 ∼ pZ as input to the generator.
The inputs z1 and z2 are samples drawn from parametric distributions as in the case of the baselines, or images from the
friendly neighborhood input dataset as in the case of Spider GAN. Table 8 also shows the relative increase in FID and KID
compared to those obtained when unaltered samples drawn from pZ are provided as input to the generator (cf. Table 2 of the
Main Manuscript). Across all the datasets considered, we observe that Spider GAN variants with the friendliest neighbor
input result in a performance comparable with the best-case baselines in terms of FID and KID. However, the baselines GAN
with the non-parametric or gamma-distributed priors, which are designed to minimize the interpolation error [15, 16], and
consequently, result in lower relative change in the scores. The results suggest that, while Spider GAN is superior to Gaussian
latent spaces, a trade-off exists between the interpolated image quality offered by non-parametric or gamma priors, and the
overall superior performance offered by Spider GAN. A detailed discussion on the input-space control over the generated
images is discussed in the context of Spider StyleGAN2-ADA in Appendix D.5.1

D.2.3 Impact of Diversity and Dataset Bias on Spider GANs

The friendly neighbourhood of a target in SpiderGAN is chosen based on the SID metric, which compares the distance between
data manifolds. SpiderGAN does not enforce image-level structure to learn pairwise transformations. We therefore expect that
the diversity of the source dataset (such as racial or gender bias) should not affect the diversity in the learnt distribution. To
demonstrate this, consider the task of learning Ukiyo-E faces dataset with CelebA dataset as input. We consider three variants
of CelebA – (i) The entire dataset of 2 × 105 images, comprising an even split of the male and females classes; (ii) Only
the female class comprising 105 images; and (iii) A simulated imbalance, created by including the entire male class and 200
images from the female class. The input resolution is 64× 64, while the output resolution is set to 128× 128. The models are
trained using the DCGAN architecture with hyperparameters as described in Appendix C.1. All the models are trained for 105

generator iterations.
The images output by the Spider GAN model in each case are presented in Figure 21 (a.1-a.3). We did not observe bias in

the images generated by the three models. To demonstrate this further, we compared the Spider GAN outputs for the same
20 samples of the female class images provided as input (cf. Figure 21 (a)). The results indicate that, while correspondence
between images is not learnt, the bias in the source dataset of the generator in SpiderGAN does not affect the target diversity.
The bias in these datasets is neither leveraged, nor exemplified by Spider GAN.

D.2.4 Mode Coverage in Spider GANs

In order to evaluate the mode coverage in Spider GAN learning, consider the partial MNIST experiment proposed by Zhong et
al. [32] involving the 11-class augmented Fashion-MNIST dataset consisting of an additional 100 images drawn from from the
digit 1 class of MNIST. We train SpiderGAN on the Fashion-MNIST dataset with the CAE architecture (cf. Appendix D.1).
We consider two input datasets: CIFAR-10 and Tiny-ImageNet.

In order to evaluate mode coverage, the trained GAN generators are compared on the ability to faithfully generate samples
from the underrepresented digit 1 class. For evaluation, a 11-class fully-connected classifier is trained on the augmented
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dataset consisting of all 10 classes from Fashion-MNIST and the entire digit 1 class from MNSIT. Following the approach
presented in [32], the GANs are evaluated by sampling a batch of 9× 105 images, and computing the number of instances of
digit 1 generated, as indicated by the output of the classifier. We compare against the DCGAN, AdaGAN [33] and the GAN
with mixture of generators (MixGAN) [32]. The images from digit class 1 generated by the Spider GAN variants are presented
in Figure 9, while Table 9 summarizes the performance of the baseline and Spider GAN models. The results highlight the need
for class diversity in the input dataset. When SpiderGAN is trained with CIFAR-10, consisting of fewer classes than the target,
the minority digit 1 class is poorly represented. On the other hand, for Spider GAN with Tiny-ImageNet or CelebA as the
input, the minority class is generated faithfully.

D.2.5 Learning the Identity Mapping

Based on the intuition that GAN generators perform entropy minimization [34], we expect the generator to learn an identity
mapping when the same dataset is provided as both input and output. To validate this, we consider the Fashion-MNIST
learning task with the DCGAN architecture. We considered all four combinations of adding noise to the input or target datasets.
The learnt input-output pairs are presented in Figure 22. In all four scenarios, although pairwise consistency is not explicitly
enforced, it was discovered by Spider GAN, resulting in a GAN generator that approximates an identity function. When the
input and output datasets are both noisy, the generator attempts to retain the noise in the generated images. However, when the
input dataset is clean but the target dataset incorporates noise, artifacts are introduced in the generated images as the models
attempts to create noise (which has a higher entropy than the dataset).

Table 9. Mode coverage of Spider GAN in comparison to baseline GANs on the Fashion-MNIST and partial MNIST experiment. The ∗

indicates values reported by Zhong et al. [32]. The measure #1s indicates the number of the samples from the digit class 1 predicted in a
batch of 9× 105 samples drawn the generator. Avg. Prob. denotes the average classification probability of digit class 1 samples output
by a pre-trained classifier. Spider GAN trained with an input dataset that posses higher diversity than the target, such as Tiny-ImageNet,
outperforms the baselines.

Measure
(↑)

DCGAN∗ AdaGAN∗ MixGAN∗ Spider GAN (CIFAR-10
Source)

Spider GAN
(Tiny-ImageNet Source)

#1s 13 60 289 201 345
Avg. Prob. 0.49 0.45 0.69 0.81 0.89

(a) (b)

Figure 9. Images from the digit class 1 generated by Spider GAN with input images drawn from (a) CIFAR-10, and (b) Tiny-ImageNet
datasets. The samples were identified based on the output of a pre-trained 11-class classifier network. Spider GAN with an input class
diversity lower than the target (CIFAR-10 dataset) generated images of inferior quality in comparison to the Spider GAN trained on a more
diverse input dataset such as Tiny-ImageNet.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) Fashion-MNIST input

(e) SVHN input (f) CIFAR-10 input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 10. Images generated by the baseline GAN and Spider GAN for various input distributions, with MNIST being the target. Spider
GAN trained with Fashion-MNIST input (the friendliest neighbor of MNIST as identified by SID) generates sharper output images.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) SVHN input (f) CIFAR-10 input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 11. Images generated by the baseline GAN and Spider GAN for various input distributions, with Fashion-MNIST chosen as the
target. A poor choice of the input distribution results in a suboptimal generator that outputs low-quality images. For instance, the output
generated for inputs coming from CelebA or a non-parametric distribution.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) CIFAR-10 input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 12. Images generated by the baseline GAN and Spider GAN for various input distributions, when trained with SVHN as the target. A
poor choice of the input distribution results in low-quality images output by the generator.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 13. Images generated by the baseline GAN and Spider GAN with CIFAR-10 as the target, for various input distributions. While some
classes, such as the horse, car or boat are well generated by all GAN, neither the baseline GANs nor the Spider GANs are able to reliably
learn all the classes in CIFAR-10.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) CIFAR-10 input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 14. Images generated by the baseline GAN and Spider GAN on Tiny-ImageNet as the target, for various input distributions as
indicated. While Spider GAN approaches achieve a lower FID than the baselines on this task, none of the GAN variants generate realistic
output images.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) CIFAR-10 input (h) Tiny-ImageNet input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 15. Images generated by the baseline GAN and Spider GAN on the low resolution CelebA (64×64), given various input distributions.
Images generated by Spider GAN trained with Tiny-ImageNet and Ukiyo-E Faces as the input outperform other GAN flavors.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) CIFAR-10 input (h) Tiny-ImageNet input

(i) CelebA input (j) LSUN-Churches input

Figure 16. Images generated by the baseline GAN and Spider GAN variants on the Ukiyo-E Faces for different inputs to the generator.
Images generated by Spider GAN with Tiny-ImageNet or CelebA images as input results in sharper images in comparison to the baselines.
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(a) Input Samples from the Female Class of the source CelebA dataset.

(a.1) Corresponding outputs for balanced source data.

(a.2) Corresponding outputs for source data bias: 100% Males class + 0.2% Female Class.

(a.3) Corresponding outputs for source data bias: 0% Males class + 100% Female Class.

Figure 21. Images generated by Spider GAN when trained on the Ukiyo-E Faces as the target dataset, with varying levels of bias simulated
in the source CelebA dataset. The output images (a.1-a.3) correspond to the generator input with the same Females class CelebA images
depicted. The bias in the input dataset does not carry over to the generator outputs in Spider GAN formulation. Irrespetive of the class
imbalance in the source CelebA images, the generated Ukiyo-E Faces posses sufficient class diversity.
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(a) Input Samples drawn from Fashion-MNIST.

(a.1) Spider GAN ouptut when trained on noisy Fashion-MNIST as target.

(a.2) Spider GAN output when trained on Fashion-MNIST as target.

(b) Input Samples drawn from noisy Fashion-MNIST.

(b.1) Spider GAN ouptut when trained on noisy Fashion-MNIST as target.

(b.2) Spider GAN output when trained on Fashion-MNIST as target.

Figure 22. Images generated by Spider GAN when trained on various combinations of noisy and clean Fashion-MNIST images provided as
the input and output to the GAN. In all scenarios, although pairwise consistency was not explicitly enforced, it was discovered by Spider
GAN network. When the input and output datasets are (a.2) both clean, or (b.1) both noisy, the generator attempts to learn an identity
mapping. When the input dataset is clean but the target dataset incorporates noise (a.1), we observe artifacts in the generated images.
SpiderGAN with a noisy input dataset and clean target samples learns a denoising network.
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Figure 23. Spider GAN based progressively growing GAN (PGGAN) architecture. The output distribution of PGGAN trained on Tiny-
ImageNet data is provided as input to the second Spider PGGAN stage that is trained to learn a high-resolution, small-sized dataset such as
Ukiyo-E Faces.

D.3. Class-conditional Spider GAN

We present a Spider counterpart to the auxiliary classifier GAN (ACGAN [35]) formulation, entitled Spider ACGAN.
In Spider ACGAN, the discriminator not only provides a real versus fake classification of its input, but also provides a
prediction of the class from which the sample is drawn. The discriminator is trained to minimize both the WGAN loss with
the Rd penalty [18], and the classification cross-entropy loss. We consider two variants of the generator, one without class
information, and the other with the class label provided as a fully-connected embedding to the input layer. The Spider ACGAN
variants are compared with the un-conditioned Spider GAN baseline. We present experiments on learning Fashion-MNIST
dataset with MNIST as the input. The pairwise correspondences between the input and output images are presented in
Figures 24-26. While Spider ACGAN without generator embeddings is superior to the baseline Spider GAN in learning
class-level consistency, mixing between the classes is not eliminated. However, with the inclusion of class embeddings in the
generator, the disentanglement of classes can be achieved in Spider ACGAN.

While this experiment demonstrates the feasibility of employing Spider GAN in class-conditional settings, scenarios
involving mismatch between the number of classes in the input and output datasets, is a promising direction for future research.

D.4. Additional Experiments on Spider PGGAN

We now present additional experiments conducted with the Spider PGGAN architecture, and present the images generated
by the Spider PGGAN variants. Figure 23 depicts the philosophy employed in a two-stage cascaded Spider PGGAN model
considered in Section 5.1 of the Main Manuscript, where the input-stage PGGAN generated Tiny-ImageNet images, while the
second Spider PGGAN stage transforms Tiny-ImageNet into Ukiyo-E Faces. Consider two extensions of the Spider PGGAN
training algorithms: (a) The Spider PGGAN is trained on 32× 32× 3 CIFAR-10 data with the input images drawn from the
output of a PGGAN pre-trained on Tiny-ImageNet. Additionally, weights from PGGAN pre-trained on Tiny-ImageNet are
transferred to Spider PGGAN for all layers but the first because the dimensionality in the first layer does not match. The
trained model achieves an FID of 9.56, which is an improvement over the base Spider GAN trained on CIFAR-10 without
the weight transfer. Images generated by Spider PGGAN with weight transfer are shown in Figure 28. This suggests that
other network modifications and augmentations can be used in combination with the Spider GAN framework to improve the
performance of PGGAN. (b) We train the Spider PGGAN with multiple cascade layers. The output of a Stage-I PGGAN
pre-trained on Tiny-ImageNet is used to train a Spider PGGAN (Stage-II) to generate CIFAR-10 images. The output of the
converged second stage model is used to generate high-resolution Ukiyo-E and MetFaces images (Stage-III). The final model
achieves an FID of 45.32 on MetFaces (a 12% improvement over a single-stage Spider PGGAN), and 57.63 on Ukiyo-E Faces
(a 10% improvement over single stage). The MetFaces images generated by the cascade network, juxtaposed the images
generated by the baseline methods are provided in Figure 32. These results suggest that having multiple stages of pre-trained
networks in the Spider PGGAN, and training incrementally results in superior performance than a single-stage Spider PGGAN.

D.5. Additional Experimental on Spider StyleGAN

The philosophy behind StyleGAN [11, 12] architectures run parallel to our proposed philosophy, where a mapping network
is used to learn editable intermediate representations of the input noise distribution. A synthesis network subsequently
transforms this representation into an image. The Spider GAN approach can be incorporated readily into any StyleGAN
network, by replacing the input noise distribution to the mapping network with samples from the input dataset, drawn from a
pre-trained GAN.

We trained the Spider variants of StyleGAN2, StyleGAN2-ADA [11] and StyleGAN3 [12] on the Ukiyo-E Faces, MetFaces,
FFHQ, animal faces HQ Cats (AFHQ-Cats) dataset using the various combinations that included adaptive regularization and
weight transfer. Across all experiments, two pre-trained networks were employed to generated the input dataset distribution
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– (i) A StyleGAN2-ADA network trained on the AFHQ-Dogs dataset of resolution 32 × 32; and (ii) A StyleGAN2-ADA
network trained on the Tiny-ImageNet dataset of resolution 32 × 32. The outputs are transformed based on the approach
described in Appendix C.1. To generate higher-quality samples, we adopted the popular truncation trick [30] in sampling from
the input-stage generator – The input-stage baseline generator is trained to transform samples drawn from the standard normal
distribution to those coming from Tiny-ImageNet, or AFHQ-Dogs datasets. When generating the inputs to the cascaded
SpiderGAN stage, samples are drawn from a truncated Gaussian, where a sample is re-drawn if it lies outside the [−2, 2]n

hypercube (a 2σ interval). This was shown to improve the generator output quality at a small cost of marginally reduced sample
diversity [30]. On the experiments on learning Ukiyo-E Faces, MetFaces, and FFHQ with cascaded Spider StyleGAN2-ADA,
the truncation trick resulted in a 10% improvement in FID on the average. Figure 29 presents the images generated by these
models considering baseline sampling and the truncation trick.

The comparison of FID and CSIDm of the StyleGAN variants trained on FFHQ are provided in Table 10. Spider StyleGAN2-
ADA with the Tiny-ImageNet input achieved an FID score on par with StyleGAN-XL, a model with three-fold higher network
complexity. However, in terms of CSIDm, Spider StyleGAN2-ADA achieves state-of-the-art performance, which suggests that
the diversity of images generated by Spider StyleGAN2-ADA is superior to that of StyleGAN-XL. The Spider StyleGAN3
model with weight transfer achieves a state-of-the-art FID of 3.07 on AFHQ-Cats, with one-fourth of the training iterations
as the baselines. The accelerated convergence can be attributed to the superior initialization in the Spider GAN framework,
as opposed to initializing with high-dimensional Gaussian inputs. Figures 30- 41 show the images generated by the various
models and side-by-side comparison of the images generated by Spider StyleGAN and baseline variants.

D.5.1 Interpolating with Spider StyleGAN3

In order to better understand the control over representations that the Spider framework provides, we consider interpolation
experiments on cascaded Spider StyleGAN2-ADA. A pre-trained SpiderStyleGAN2 with Gaussian distributed input and
AFHQ-Dogs as output forms the input-stage network. The outputs of this network serve as the input to Spider StyleGAN2-ADA.
As discussed in Section 5.2, we consider the following two interpolation schemes:

• Scheme-1, where interpolation is carried out between the AFHQ-Dogs images generated by the input-stage GAN, and
subsequently fed to cascaded Spider GAN stage. Figures 42, 44 and 46 present the outputs of the first- and second-stage
GANs, when trained on Ukiyo-E Faces, MetFaces and FFHQ images, respectively.

• Scheme-2, where linear interpolation is performed in the Gaussian space. The corresponding samples are used to generate
AFHQ-Dogs images, which are fed as input to the Spider GAN stage. Figures 43, 45 and 47 show the intermediate
AFHQ-Dogs and Spider GAN outputs for this configuration, when trained on Ukiyo-E Faces, MetFaces and FFHQ
images, respectively.

Across all datasets, we observe that Scheme-1 results in superior control over the features, with gradual, fine-grained transitions
between the images. On the other hand, images generated by Scheme-2 are affected by the known caveats of Gaussian-space
interpolation [15, 16]. Interpolations of Gaussian-distributed points have a very low probability of lying on the Gaussian
manifold. Consequently, the generated AFHQ-Dogs images, and the the subsequent target-dataset images possess unnatural
discontinuities, appearing unrealistic. In the case of generating FFHQ and Ukiyo-E Faces, this results in the generation of
noisy images at intermediate locations.
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Table 10. A comparison of StyleGAN2-ADA and StyleGAN3 variants, in terms of FID, KID and CSIDm, on learning FFHQ. A † indicates a
reported score. Spider StyleGAN2-ADA performs on par with the state-of-the-art StyleGAN-XL (three fold higher network complexity) [36]
in terms of FID and KID. However, Spider StyleGAN2-ADA variants achieved the best (lowest) CSIDm scores, which suggests that the
Spider variants learnt more diverse representations of the target dataset when compared against the baselines.

Architecture Input Clean-FID [10] Clean-KID [10] CSIDm

StyleGAN2-ADA [11] Gaussian 2.70† 0.906× 10−3 2.65

StyleGAN3-T [12] Gaussian 2.79† 1.031× 10−3 2.95

StyleGAN-XL [36] Gaussian 2.02† 0.287× 10−3 3.94

Spider StyleGAN2-ADA (Ours) TinyImageNet 2.45 0.915× 10−3 1.99

Spider StyleGAN2-ADA (Ours) AFHQ-Dogs 3.07 0.795× 10−3 2.55
Spider StyleGAN3-T (Ours) TinyImageNet 2.86 1.162× 10−3 3.25
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(a) Baseline sampling (b) Sampling with the truncation trick [30]
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Figure 29. Images generated by cascaded Spider GAN variants when the Gaussian samples provided to the input-stage are (a) retained
as-is; and (b) resampled when lying outside of the 2σ interval [−2, 2] (the truncation trick [30]). Images generated using truncated input
samples are of a superior visual quality. Baseline sampling results in distorted faces in the case of FFHQ and Ukiyo-E faces datasets, while
on MetFaces, poor quality samples resulted in alien patterns.
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Figure 30. Ukiyo-E images generated by the Spider variant of StyleGAN2, trained on AFHQ-Dogs input. Since the AGFQ-Dogs dataset has
relatively lower diversity than the target, the generated Ukiyo-E samples are visually sup-par compared to the performance of the baseline
StyleGAN2-ADA.
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Figure 31. Ukiyo-E face images generated by the Spider variant of StyleGAN2, trained on Tiny-ImageNet input. The Spider variant achieves
state-of-the-art FID of 20.44, compared to 26.74 of the baseline StyleGAN2-ADA (lower FID is better).
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Figure 32. A comparison of MetFaces images generated by the baseline and Spider GAN variants. Spider StyleGAN2 with the TIny-
ImageNet (TIN) input data outperforms all other variants, generating sharper and more diverse images, achieving a state-of-the-art FID of
15.60 as opposed to an FID of 18.75 achieved by StyleGAN2-ADA.
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Figure 33. Representative MetFaces images generated by the Spider variant of StyleGAN2, trained on AFHQ-Dogs input. The model
achieved an FID score of 29.82, which is lower than the FID of the StyleGAN2-ADA baseline (18.75). This is expected, as the AFHQ-Dogs
is not a friendly neighbor of the target dataset.
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Figure 34. Sample images generated by the Spider variant of StyleGAN2, trained on Tiny-ImageNet input and MetFaces as output. The
Spider StyleGAN variant achieves state-of-the-art FID of 15.60, against an FID of 18.75 achieved by the StyleGAN2-ADA baseline.
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Figure 35. A comparison of FFHQ ages generated by the baseline and Spider GAN variants trained with AFHQ-Dogs and Tiny-ImageNet
(TIN) inputs. Spider StyleGAN2-ADA with the Tiny-ImageNet input performs on par with the StyelGAN-XL baseline (FID of 2.45 for the
proposed approach versus FID of 2.07 for the baseline), with a mere one-third of the network complexity.
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Figure 36. FFHQ images generated by the Spider variant of StyleGAN2-ADA, trained on a model incorporating weight transfer from
the StyleGAN2-ADA model trained on AFHQ-Dogs. The input samples are drawn from a StyleGAN2-ADA model model pre-trained on
32× 32 Tiny-ImageNet images. The converged model achieved an FID of 3.07 as opposed to 2.70 of the baseline model. The lower FID
can be attributed to the choice of a poor neighbor of the target dataset.
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Figure 37. FFHQ images generated by the Spider variant of StyleGAN2-ADA, trained on a model incorporating weight transfer from the
StyleGAN2-ADA model trained on AFHQ-Dogs images. The model achieves an FID of 2.45, superior to the baseline StyleGAN2-ADA,
Polarity-StyleGAN2 and MaGNET-StyleGAN2 (with FID scores of 2.70, 2.57 and 2.66, respectively).
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Figure 38. FFHQ images generated by the Spider variant of StyleGAN3-T, trained on Tiny-ImageNet dataset. The model achieved an FID of
2.86.
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Figure 39. AFHQ-Cat images generated by the Spider variant of StyleGAN2-ADA, trained on a model incorporating weight transfer from
the StyleGAN2-ADA model trained on AFHQ-Dogs. The input samples are drawn from a StyleGAN2-ADA model model pre-trained on
32× 32 Tiny-ImageNet images. The converged model achieves an FID of 3.86 in one-fifth of he training iterations required by the baseline.
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Figure 40. AFHQ-Cat images generated by the Spider variant of StyleGAN3-T from scratch. The input samples are drawn from a
StyleGAN3-T model model pre-trained on 32× 32 AFHQ-Dog images. The converged model achieves an FID of 6.29, which is on par with
the baselines, in a mere one-fifth of the suggested [12] training iterations.
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Figure 41. AFHQ-Cat images generated by the Spider variant of StyleGAN3-T, trained on a model incorporating weight transfer from the
StyleGAN3-T model trained on AFHQv2-Dog. The input samples are drawn from a StyleGAN2-ADA model model pre-trained on 32× 32
Tiny-ImageNet images. The converged model achieves a state-of-the-art FID of 3.07 and KID of 0.23× 10−3 in one-fourth of the training
iterations of baseline StyleGAN3 [12].
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Figure 42. A grid of interpolated Ukiyo-E images generated by Spider StyleGAN2-ADA, trained on AFHQ-Dogs. Images are generated
by transforming Gaussian noise to AFHQ-Dogs images via an input-stage model, whose subsequent outputs serve as the input to Spider
StyleGAN2-ADA. The interpolation is performed in the AFHQ-Dogs space, and provided as input to Spider StyleGAN2-ADA. We observe
smooth transitions between the interpolated images, which allows for fine-grained control of the features.
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Figure 43. A grid of interpolated Ukiyo-E images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. Images are generated
by transforming Gaussian noise to AFHQ-Dogs images via an input-stage model, whose subsequent outputs serve as the input Spider
StyleGAN2-ADA. In this case, the interpolation is performed in the Gaussian space and fed to the input-stage pre-trained StyleGAN. The
corresponding AFHQ-Dogs images generated are provided as input to the Spider StyleGAN2-ADA. We observe abrupt and unnatural
transitions between images. Some images also appear to be unrealistic, which is not surprising, as the interpolation of points drawn from a
Gaussian manifold have an extremely low probability of lying on the manifold.
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Figure 44. Interpolations on the MetFaces images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. The inputs to
the Spider StyleGAN are linearly interpolated AFHQ-Dogs images. We observe smooth and gradual transitions between the color- and
sketch-based images generated by Spider StyleGAN, which is highly desirable for feature manipulation.
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Figure 45. Interpolated MetFaces images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. The interpolation is carried
out in the Gaussian fed to the pre-trained input-stage StyleGAN. The corresponding AFHQ-Dogs images generated are given as input to
Spider StyleGAN2-ADA. We observe unnatural and discontinuous transitions between the color and sketch images which can be attributed
to the disconnected manifold structure of the dataset.
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Figure 46. Interpolations on the FFHQ images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. The inputs to the Spider
StyleGAN are linear interpolates computed on the AFHQ-Dogs images. We observe that the proposed Spider variant generates smooth and
gradual transitions with fine-grained facial features allowing for superior control of the image generation.
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Figure 47. Interpolated FFHQ images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. Interpolation is performed in the
Gaussian space of the input-stage StyleGAN, which generate a set of AFHQ-Dogs images, which in turn serve as the input to the Spider
StyleGAN2-ADA. We observe discontinuous transitions in the hair, color, and other features of the generated images. Some images are also
noisy, as they correspond to inputs drawn from outside of the training manifold.
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E. GitHub Repository and Code Release
The codebase for implementing Spider GAN, Spider PGGAN, Spider StyleGAN and SID has been included as part of the

Supplementary. The baseline non-parametric prior [16] was implemented using the publicly released .mat file. PGGAN [27]
and StyleGAN2 and StyleGAN3 were implemented using publicly available GitHub repositories, with modification included
to implement their respective Spider variants.

The implementation for CSIDm and SID are based on the Inception features provided by the Clean-FID [10] library. In
order to maintain uniformity, SID can also be computed by providing the path to existing source and target image folders, akin
to FID and KID.

An implementation of SID atop the Clean-FID [10] backbone, with associated animations of the experiments presented
in this manuscript are available at https://github.com/DarthSid95/clean-sid. The TensorFlow-based source
code for Spider GANs built atop the DCGAN architecture, and associated pre-trained models are available at https:
//github.com/DarthSid95/SpiderDCGAN. The PyTorch-based source code for implementing the Spider variants
of PGGAN, StyleGAN2, StyleGAN2-ADA and StyleGAN3, with the corresponding pre-trained models are available at
https://github.com/DarthSid95/SpiderStyleGAN. Images in the Main Manuscript and Supplementary
Document have been compressed to meet the file-size limits of the venue. The GitHub repositories also include the full-
resolution versions of the images provided in the Main Manuscript and Supporting Document.
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