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1. Extended VOS/PET Ablations

Extended ablation results are given in Table 1 and

discussed below. For these experiments we use a

shorter/lighter training schedule compared to the results

presented in the main text: the network is pre-trained on

augmented image sequences generated from the COCO

dataset for 360k iterations on 8 GPUs, followed by fine-

tuning on actual video data from the DAVIS [13] and

BURST [2] datasets.

Table 1. Extended ablation results for VOS and PET tasks on

DAVIS [13] and BURST [2] benchmarks, respectively.

Setting VOS (J&F ) PET (HOTAall)

Without Qbg 78.0 25.9

|Qobj| = q0 = 1 80.6 28.2

Final 81.5 29.2

Background Queries (row 1). We stated in the main text

that we model the non-object pixels in the input video using

background queries for the VOS and PET task. We ablate

this design decision by training TarViS without this sort of

background modeling, i.e. for both VOS and PET tasks, the

input set of queries contains only the object queries Qobj.

This reduces the J&F score for VOS from 81.5 to 78.0,

and the HOTAall score for PET from 29.2 to 25.9. Thus,

we conclude that background modeling has a noticeable,

positive impact on prediction quality.

Number of Object Queries (row 2). We mentioned in

the main text that we modify the approach adopted by

HODOR [1] for VOS by using multiple (q0) object queries

to represent a single target object. We ablate this by training

our model using q0 = 1 (in the final setting we use q0 = 4).

We see that this causes the performance on DAVIS to re-

duce from 81.5 to 80.6, and that on BURST from 29.2 to

28.2. Note that q0 = 1 for PET even for the final setting, but

because PET inference over lengthy videos involves VOS-

style mask-guidance, the choice of q0 for VOS affects per-

Table 2. Extended results for PET on the BURST [2] validation

and test sets. (‘H’ denotes ‘HOTA’ [10]).

Method
BURST (val) BURST (test)

Hall Hcom Hunc Hall Hcom Hunc

Box Tracker [6] 12.7 31.7 7.9 10.1 24.4 7.3

STCN+M2F [3, 4] 24.4 44.0 19.5 24.9 39.5 22.0

TarViS (R-50) 30.9 43.2 27.8 32.1 41.5 30.2

TarViS (Swin-T) 36.0 47.7 33.0 36.4 45.0 34.7

TarViS (Swin-L) 37.5 51.7 34.0 36.1 47.1 33.8

formance for PET as well.

2. Detailed BURST Metrics

Due to space constraints, we only presented the final

HOTAall score for the BURST benchmark in the main pa-

per. Table 2 gives a more detailed breakdown for those re-

sults.

3. Implementation Details

Several details related to the training and inference setup

which were omitted from the main paper are given below.

Hardware Setup and Training Schedule. We train our

models on 32 Nvidia A100 GPUs with a batch size of 32

with clips of 3 frames. The pretraining takes 2-3 days de-

pending on the backbone whereas finetuning takes 10-16

hours. An AdamW optimizer is used with a learning rate of

10−4 at the start, followed by two step decays with a factor

of 0.1 each.

Inference. Inference is performed on a single RTX 3090

and runs at 6-10 fps using a Swin-T backbone. The varia-

tion mainly arises because different datasets have different

image resolutions. For most datasets, we use clips contain-

ing 12 frames with a 6 frame overlap between successive

clips.

Loss Supervision. Table 3 shows the type of loss func-

tion applied for mask regression for different tasks. Gener-

ally, the supervision signal is a combination of DICE and
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Table 3. Loss functions used for mask prediction for different tar-

gets. BCE: Binary cross-entropy, MCE: Multi-class cross-entropy,

DICE: soft IoU loss

Target Type Task Loss

Instance
VIS

DICE + BCE

Semantic Class MCE

Instance
VPS

DICE + BCE

Semantic Class MCE

Object VOS/PET DICE + BCE

cross-entropy losses. For instances/objects we apply per-

pixel binary cross-entropy whereas for semantic segmenta-

tion (where multiple classes compete for each pixel), we

apply a multi-class cross-entropy loss. We apply a sparse

loss similar to Cheng et al. [3], i.e., the loss is not applied to

every pixel in the mask, but rather only to a subset of pixels

which contain a certain fraction of hard negatives and other

randomly sampled points. This type of supervision strategy

was first proposed by Kirillov et al. [8].

Pretraining. We pretrain on synthetic video sam-

ples generated by applying random, on-the-fly augmenta-

tions from the following image-level datasets: COCO [9],

ADE20k [17], Mapillary [12], Cityscapes [5]. Since these

datasets provide panoptic annotations, we can train the

data samples as any of the four target tasks (VPS, VIS,

VOS, PET) e.g. to train for VOS/PET, we assume that the

first-frame mask/point is available for a random subset of

ground-truth objects and ignore the class labels. The task

weights for pretraining are given in Table 4.

Table 4. Task weights during pretraining stage.

Task VPS VIS VOS PET

Weight 0.3 0.3 0.28 0.12

Video Finetuning. The finetuning is done on actual video

datasets for all four tasks. The sampling weights for each

dataset/task are given in Table 5. Note that data samples

from DAVIS [13] and BURST [2] can be trained for both

VOS and PET.

Table 5. Dataset weightage during video finetuning.

Dataset Task Weight

KITTI-STEP [15] VPS 0.075

CityscapesVPS [7] VPS 0.075

VIPSeg [11] VPS 0.15

YouTube-VIS [16] VIS 0.225

OVIS [14] VIS 0.225

DAVIS [13] VOS/PET 0.05

BURST [2] VOS/PET 0.2

Point Exemplar-guided Tracking Inference. As men-

tioned in Sec. 3 of the main text, the PET task is tackled

using the same workflow as for VOS i.e. the target objects

are encoded as object queries using the Object Encoder. An

additional detail about inference on arbitrary length video

sequences which is not mentioned in the main text is as fol-

lows: the point −→ object query regression is only used for

the first clip in which the object appears. For subsequent

clips, we have access to the dense mask predictions for that

object from our model. Hence, for subsequent clips, we

regress the object query from the previous mask predictions

(as we do for VOS).

4. Query Visualization

To gain some insight into the feature representation

learned by TarViS for different targets, we provide visu-

alizations of the target queries for various tasks and input

video clips in Fig. 1,2,3. The setup is as follows: for each

video clip, we run inference twice: (1) as VIS where the tar-

gets are all instances belonging to the 40 object classes from

YouTube-VIS [16], and (2) as VOS by providing the first-

frame mask for the objects. We deliberately used videos

where the set of set of ground-truth objects would be the

same for both tasks. The plot on the right visualizes the

union of the target query set for both runs by projecting

them from 256 dimensions down to 2 using PCA. The im-

age tile on the left shows our model’s predicted masks for

the target objects (the prediction quality for these video is

very good for both VIS and VOS, so we choose one set of

results arbitrarily).

For ease of understanding, we use fixed colors for se-

mantic and background queries (as indicated in the plot leg-

end). For the object queries (VOS) and instance queries

(VIS), the color of the query point is consistent with the

color of the object mask in the image tile. Note that for

VOS we used qo = 4 object queries per target, hence there

are 4 hollow diamond shaped points per object.

We stress that not all aspects of these plots are intuitively

explainable. The main limitation here is the harsh dimen-

sionality reduction from 256 dimensions to 2. Some specu-

lative intuition based on the plots is as follows:

• The internal representation for a given object is gener-

ally consistent across tasks. As an example, consider

the horse and person targets in Fig. 1: we note that

the green query points (person) are close to each other

for both VIS and VOS. Likewise the blue query points

(horse) follow the same behavior.

• The network devotes a large portion of the feature

space for instances/objects, and relatively less for the

various semantic classes. As seen in all three plots,

the semantic queries are tightly clustered together,



whereas the instance/object queries are spread out over

a larger span of the feature space.

Iterative Evolution of Feature Representation. Fig. 4

shows a side-by-side visualization of how the query feature

representation evolves inside the transformer decoder as it

iteratively refined the queries using multiple attention lay-

ers. The plot on the left shows the queries at the ‘zeroth’

layer (i.e. prior to any interaction with the video features),

and the plot on the right shows the final output queries from

the last layer (these are identical to the plot in Fig. 1 except

for the axes range). We note that the distance between the

queries for the two objects increases after refinement, and

that the semantic queries are also slightly more spaced out

after refinement.

5. Qualitative Results

The following figures show qualitative results for the dif-

ferent tasks. Additional results are also present in the video

attached to this supplementary archive. VIS on YouTube-

VIS (Fig. 5,6,7) and OVIS (Fig. 8,9,10), VPS on KITTI-

STEP (Fig. 11,12,13), VOS on DAVIS (Fig. 14,15,16), and

PET on BURST (Fig. 17,18,19). One can see that TarViS

is able to segment a broad range of objects depending on

the target queries and overall is good at assigning consis-

tent IDs. Fig. 20 shows an example of a failure case with

several ID switches. Given that we run inference on short

overlapping clips, once an ID switch has been made, we

cannot recover the original ID. In the example, it seems that

TarViS is not able to track the elephant while they are turn-

ing around, even though before and after the turn they are

assigned consistent IDs. Given that we also train on simi-

lar short clips, it is not surprising that TarViS struggles here

and we could potentially improve this by looking into other

training schemes that span longer clips.
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Figure 1. Target query visualization for the ‘horsejump-high’ sequence in DAVIS.
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Figure 2. Target query visualization for the ‘mbike-trick’ sequence in DAVIS.
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Figure 3. Target query visualization for the ‘kitesurf’ sequence in DAVIS.
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(a) First layer queries.
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(b) Last layer queries.

Figure 4. Evolution of the different queries from the first layer to the last layer of the transformer decoder. Queries correspond to the

‘horsejump-high’ video from DAVIS as shown in Figure 1

Figure 5. VIS on a YTVIS sequence showing a cat and a dog.



Figure 6. VIS on a YTVIS sequence showing a turtle.

Figure 7. VIS on a YTVIS sequence showing a man and a lizard.

Figure 8. VIS on an OVIS sequence showing an aquarium with fish.



Figure 9. VIS on an OVIS sequence showing several sheep.

Figure 10. VIS on an OVIS sequence showing three cats.

Figure 11. VPS on a KITTI STEP sequence showing a busy intersection.

Figure 12. VPS on a KITTI STEP sequence showing how a car is followed for a while.



Figure 13. VPS on a KITTI STEP sequence showing a busy pedestrian crossing.

Figure 14. VOS on a DAVIS sequence of a dancer.

Figure 15. VOS on a DAVIS sequence showing several goldfish.



Figure 16. VOS on DAVIS sequence an action movie scene.

Figure 17. PET on a BURST sequence showing three men and a gun.

Figure 18. PET on a BURST sequence showing two bears fighting, note there is no ID switch.



Figure 19. PET on a BURST sequence showing several cars on a street.

Figure 20. VIS on an OVIS sequence of several elephants and their trainers. This sequence shows that TarVis sometimes has issues with

ID switches, especially when the appearance of objects changes, e.g. here the elephants are not tracked consistently while turning around..



References

[1] Ali Athar, Jonathon Luiten, Alexander Hermans, Deva Ra-

manan, and Bastian Leibe. Hodor: High-level object descrip-

tors for object re-segmentation in video learned from static

images. In CVPR, 2022. 1

[2] Ali Athar, Jonathon Luiten, Paul Voigtlaender, Tarasha Khu-

rana, Achal Dave, Bastian Leibe, and Deva Ramanan. Burst:

A benchmark for unifying object recognition, segmentation

and tracking in video. In WACV, 2023. 1, 2

[3] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexan-

der Kirillov, Rohit Girdhar, and Alexander G Schwing.

Mask2former for video instance segmentation. In CVPR,

2022. 1, 2

[4] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethink-

ing space-time networks with improved memory coverage

for efficient video object segmentation. In NeurIPS, 2021. 1

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 2

[6] Arne Hoffhues Jonathon Luiten. Trackeval. https://

github.com/JonathonLuiten/TrackEval, 2020.

1

[7] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So

Kweon. Video panoptic segmentation. In CVPR, 2020. 2

[8] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-

shick. Pointrend: Image segmentation as rendering. In

CVPR, 2020. 2

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 2

[10] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip

Torr, Andreas Geiger, Laura Leal-Taixé, and Bastian Leibe.
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