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In this document, we collect all the results and discus-
sions, which, due to the page limit, could not find space
in the main manuscript. This supplementary material con-
sists of two parts. First, in Appendix A, we describe more
implementation details mainly regarding our pilot study, lo-
cal feature pre-training, and experiments on downstream de-
formable shape data. Next, in Appendix B, we present addi-
tional experimental results and analysis of our local feature
pre-training strategy and its generalization in downstream
tasks, including deformable shape matching and segmenta-
tion.

A. Implementation Details
A.1. Feature Locality vs. Transferability

In Sec. 3 of the main text, we conducted a pilot study
on feature locality vs. transferability on deformable shapes.
We tested three different architectures for pre-training a lo-
cal feature extractor, and their details are as follows.

SparseConv. We used the ResNet14 architecture intro-
duced in [2]. During pre-training, given a 3D point cloud
P , a fixed-size local patch with a radius of 0.15 is cropped
at point p ∈ P and then reoriented with a local reference
frame (LRF) computed by the method in [4] for rotation in-
variance. The resulting local patch is fed to the sparse con-
volution network, which extracts a 32-dimensional feature
vector for point p.

PCPNet. It is a variant of PointNet [17] endowed with
a quaternion spatial transformer. We used the single-scale
architecture proposed by [5]. PCPNet is designed to be a lo-
cal network requiring input patches to have a fixed number
of points. Thus during pre-training, a fixed-size local patch
(radius = 0.15) is cropped at point p and reoriented by an
LRF. The local patch is then resampled to 1,024 points and
fed to the network, resulting in a 32-dimensional feature
vector for point p.

3DCNN. We used the architecture from [9] with a learnable
receptive field size and differentiable voxelization, the same
as our VADER in Sec. 4.1 of the main text. More details can
be found in Appendix A.2.

Dataset. We pre-trained the above local networks on the
3DMatch dataset, which is a collection of RGB-D scan
datasets with 62 indoor scenes and 4,142 point cloud frag-
ments. There are 13K points on average in a fragment after
downsampling.

Loss. We used the PointInfoNCE loss, in which 300 point
correspondences were randomly sampled for a pair of point
clouds for faster training and the temperature parameter τ
was set to 0.07.

We also used the cycle consistency loss Lc. During pre-
training, we use the extracted features to build correspon-
dences for rigid alignment between shapes P and Q. The
intuition for Lc is that the estimated transformation (R, t)
aligning P to Q should be the inverse of the transforma-
tion (R′, t′) aligning Q to P . Mathematically, this can be
expressed as:
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Application to deformable shape matching. In Fig. 3 of
the main text, we have shown the results of shape match-
ing on the Faust Remeshed dataset, directly using the pre-
trained feature extractors. Given two shapes S1, and S2,
we compute their respective point-wise features F1 and F2

using a specific pre-trained model. We first produce an
estimate of the point-to-point maps Tnn

21 and Tnn
12 using

nearest neighbor search between F1 and F2. We then fil-
ter the correspondences by mutual check: a pair of points
x ∈ S1, y ∈ S2 is considered to be in correspondence,
if and only if in the feature space, x is the nearest neigh-
bor of y, and y is the nearest neighbor of x. This results
in two filtered maps Tmf

21 and Tmf
12 . Finally, we further re-

fine these two maps using the ZoomOut method [13], which
is based on navigating between the spectral and spatial do-
mains while progressively increasing the number of spectral
basis functions. We emphasize that if the initial point-to-
point map is noisy or contains strong ambiguities like sym-
metry ambiguities, ZoomOut is not able to remedy these
errors, thus leading to final correspondences of bad qual-
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ity. We perform 10 iterations of ZoomOut, starting from 30
eigenfunctions up to 100 eigenfunctions.

A.2. Local Feature Pre-training

In Sec. 4.1 of the main text, we introduced our local fea-
ture pre-training strategy.

Feature extraction. We use rLRF = 0.3 and σ = 10−3

for differentiable voxelization [9], and the voxel grid reso-
lution is set to 163. We pre-trained on the 3DMatch dataset
introduced in Appendix A.1.

Pre-training loss. For the PointInfoNCE loss Lnce, its set-
tings are described in Appendix A.1. For the cycle consis-
tency loss Lc, 300 points were randomly sampled on each
point cloud for feature extraction and alignment estimation.
A relaxation-based solver is used in Lc for estimating a 3D
transformation between two point clouds, and its details can
be found in [9].

In the main text, we investigated the performance dif-
ference between the cycle consistency loss and PointIn-
foNCE loss w.r.t learned feature smoothness. Suppose that
F ∈ Rm×n is the matrix of extracted n-dimensional point-
wise features for a shape of m vertices, we measure the
Dirichlet energy as follows:

EDirichlet(F ) =
1

n

n∑
i=1

F⊤
i WFi, (5)

where Fi is the ith column of F , and W is the standard
stiffness matrix computed using the classical cotangent dis-
cretization scheme of the Laplace-Beltrami operator [15].

A.3. Baselines

In Sec. 5 of the main text, we tested our proposed
VADER features against a wide spectrum of competitors,
including both hand-crafted and learned features.

Specifically, the Heat Kernel Signature (HKS) and Wave
Kernel Signature (WKS) features are both sampled at 100
values of energy t, logarithmically spaced in the range pro-
posed in their respective original papers. SHOT descrip-
tors are 352-dimensional, and we used the implementation
from the PCL library [18]. PointContrast features are 32-
dimensional, and we used the publicly available implemen-
tation and the pre-trained weights released by the authors1.

A.4. Downstream Shape Analysis Training

In Sec. 5 of the main text, we used DiffusionNet on top
of the baselines features and our VADER respectively, in
both the shape matching and segmentation tasks. We em-
ployed the publicly available implementation of Diffusion-
Net released by the authors2. Unless specified otherwise,

1https : / / github . com / facebookresearch /
PointContrast

2https://github.com/nmwsharp/diffusion-net
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Figure 10. Visualizing the optimized receptive field for shape
pairs.

in our experiments, we used four DiffusionNet blocks of
width = 128. The DiffusionNet is trained by an ADAM op-
timizer [7] with an initial learning rate of 10−3.

In Sec. 5.1 of the main text, we also used a point-wise
MLP network on top of the baselines features and our
VADER respectively for supervised shape matching. For
this, we use the same MLP architecture as in FMNet [10].
After computing the point features with the MLP, we use
them to compute the predicted functional map Cpred as
in [3] and penalize its deviation from the ground-truth map
Cgt using the L2 loss: L = ∥Cpred − Cgt∥22.

A.5. Computational Specifications

All our experiments were executed using Pytorch [14],
on a 64-bit machine, equipped with an Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz and an RTX 2080 Ti Graphics
Card.

In terms of computational time, pertaining our method
takes about 12 hours on a single RTX 2080 Ti Graphics
Card, in contrast to the 64 hours required for PointContrast.
The receptive field optimization takes about 20 minutes per
dataset. For feature extraction, our method takes 3 seconds
to extract local features for a 5000-vertex shape, which is
on par with other local features like SHOT [19], but slower
than PointContrast (0.1s). Finally, the forward pass using
VADER takes the same time as for all baseline features,
e.g., 0.2 seconds per iteration for the unsupervised shape-
matching experiment in Sec 5.1 of the main text.

B. Additional Results and Analysis

B.1. Size of the learned receptive field

Fig. 5 of our paper provides an illustration of the opti-
mized receptive field in downstream tasks. In Fig. 10, we
include more visualizations for shape pairs for both humans
and animals. Observe that the optimized receptive field in-
deed corresponds to interpretable concepts, such as the head
or foot of a human, and is consistent across shape pairs.



Method / Dataset FR-SR SR-FR

SURFMNET 15.2 9.5
Cyclic FMaps 23 23.2
WSupFMNet 27.1 14.2
Deep Shells 6.0 3.4

DiffusionNet - XYZ 25.7 8.4
DiffusionNet - HKS 7.9 23
DiffusionNet - WKS 4.2 24.1
DiffusionNet - SHOT 7.2 4.1
DiffusionNet - PCH 11.4 8.7
DiffusionNet - PCN 20.4 9.1
DiffusionNet - VADER (ours) 4.1 3.9

Table 6. Accuracy of various features for unsupervised shape
matching on un-aligned data. X-Y means train on X and test on Y.
Values are mean geodesic error ×100 on unit-area shapes.

Ground truth Ours Ground truth Ours

Figure 11. Qualitative evaluation of RNA segmentation on the
dataset of [16]. Left: ground truth. Right: prediction by Diffu-
sionNet + VADER.

B.2. Human Shape Matching

In Sec. 5.1 of the main text, we performed unsupervised
shape matching on the FAUST-Remeshed (FR), SCAPE-
Remeshed (SR), and SHREC’19 datasets (SH) and reported
the matching performance in Tab. 1. We provide additional
quantitative results of the FR-SR and SR-FR settings in
Tab. 6. Compared with the baseline features, our VADER
has the best and most consistent performance in both set-
tings.

B.3. Molecular Surface Segmentation

In Fig. 11, we show qualitative results of RNA segmen-
tation using DiffusionNet + VADER. It can be seen that the
challenging RNA molecules can be robustly segmented into
functional components with our pre-trained features.

B.4. Human Shape Segmentation

We performed an additional experiment on the human
shape segmentation task. We used the dataset introduced in
[11], which combines segmented human models taken from
a variety of existing datasets. We used the same train/test

Method Accuracy ± s.d

GCNN [12] 86.4%
ACNN [1] 83.7%
Toric Cover [11] 88.0%
PointNet++ [17] 90.8%
MDGCNN [16] 88.6%
DGCNN [20] 89.7%
SNGC [6] 91.0%
CGConv [21] 89.9%

DiffusionNet - XYZ 91.9 ± 0.27%
DiffusionNet - HKS 91.5 ± 0.21%
DiffusionNet - WKS 91.8 ± 0.33%
DiffusionNet - SHOT 91.5 ± 0.77%
DiffusionNet - PCH 85.6 ± 0.75%
DiffusionNet - PCN 87.3 ± 0.57%
DiffusionNet - VADER (ours) 92.4 ± 0.25% (+0.9)

Table 7. Human shape segmentation on the dataset of [11]. Our
VADER achieves the state-of-the-art performance among methods
that do not perform post-processing and evaluate on the full shape
resolution. The reported numbers are the mean and standard devi-
ation of the accuracy over five runs initialized randomly.

Ground truth Ours Ground truth Ours

Figure 12. Qualitative evaluation of human shape segmentation
on the dataset of [11]. Left: ground truth. Right: prediction by
DiffusionNet + VADER.

split of 380 training and 18 test shapes as in prior works.
We compared our VADER only with methods that used the
original evaluation protocol as in [11], i.e., without using
post-processing and evaluating the results on the full shape
resolution (techniques such as Mesh Walker [8] are thus ex-
cluded).

We ran each experiment five times and report the mean
and standard deviation of the accuracy in Tab. 7. Our
VADER features achieve an accuracy of 92.4± 0.25%, the
state-of-the-art result on this dataset. In Fig. 12, we present
qualitative results of human segmentation using Diffusion-
Net + VADER. Note that the segmentation results are sim-
ply the network predictions, and we do not perform any
complex post-processing to the segmentation.



Noise level 0 Noise level 1 Noise level 2

Figure 13. Left: Evolution of the geodetic error as a function of
different input noise levels. Right: Qualitative visualization of
noise levels.

B.5. Robustness to Noise

We performed an additional experiment to evaluate the
robustness of our features to noise. For this, we followed
the same setup as in Sec. 5.1 of the main text and in Ap-
pendix B.2, by performing unsupervised learning on FR and
testing on SR with an increasing amount of noise as input.
We compared our method to the best three competing fea-
tures. The results are shown in Fig. 13 - left. It can be seen
that our features are more robust to noise, i.e., the perfor-
mance does not vary much with different noise levels (the
intensity of the noise can be seen in Fig. 13 - right), which
is not the case with other features, such as SHOT, whose
performance degrades very quickly.

B.6. Convergence Speed

In our experiments, we observed that our VADER de-
scriptors take less time to train and facilitate learning. To
demonstrate this, we show in Fig. 14 the evolution of val-
idation accuracy during learning of the RNA segmentation
task (Sec. 5.2 of the main text). It can be seen that compared
to the other features, VADER requires far fewer training it-
erations to achieve similar performance. This clearly indi-
cates the better descriptiveness and generalizability of our
features.
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