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In this document, we collect all the results and discus-
sions, which, due to the page limit, could not find space in
the main manuscript.

More precisely, we first provide the proof of the theorem
we introduced in Sec. 3.3 of the main text in Appendix A.
Then, the details of the implementation are provided in Ap-
pendix B. We present a more in-depth analysis of the modifi-
cations we introduced to the deep functional map pipeline in
Appendix C. A comparison with other shape-matching meth-
ods is provided in Appendix D, as well as additional results
regarding the generalization power of pre-trained features in
Appendix E. Finally, some qualitative results are included in
Appendix F.

A. Proof of Theorem 3.1
In Sec. 3.3 of the main text, we stated a theorem that

shows that the maps obtained with the adjoint method, or the
nearest neighbor in the feature space are equivalent under
some conditions. In this section, we formally restate it and
provide proof.

As mentioned in the main body, in our result below we
assume that all optimization problems have unique global
minima. Thus, for the problem argminC ∥CA1 − A2∥,
this means that A1 must be full row rank, whereas, for the
problem of type argminΠ ∥ΠF1 − F2∥, this means that the
rows of F1 must be distinct (i.e., no two rows are identical,
as vectors).

Theorem 3.1. Suppose the feature extractor FΘ is complete.
Let A1 = Φ+

1 F1 and A2 = Φ+
2 F2. Then, denoting Copt =

argminC ∥CA1 −A2∥, we have the following results hold:
(1) If ΠF1 = F2 for some point-to-point map Π then

C12 = Φ+
2 ΠΦ1 is basis-aligning. Moreover, C12 = Copt

and extracting the pointwise map from Copt via the adjoint
method, or via nearest neighbor search in the feature space
minΠ ∥ΠF1 − F2∥ will give the same result.

(2) Conversely, suppose that Copt is basis aligning, then
argminΠ ∥ΠF1 − F2∥ = argminΠ ∥ΠΦ1 − Φ2Copt∥.

Proof. (1) If ΠF1 = F2 and F1, F2 are complete by as-
sumption then we have F1 = Φ1A1 and F2 = Φ2A2 so

that:
ΠΦ1A1 = Φ2A2 (9)

Setting C12 = Φ+
2 ΠΦ1 and pre-multiplying Eq. (9) by

Φ+
2 we obtain C12A1 = A2. Thus, ∥C12A1 − A2∥ = 0,

and it follows that Copt = C12, since A1 assumed to be of
full row rank (and thus argminC ∥CA1−A2∥ has a unique
optimum).

Moreover, using C12A1 = A2, we get Φ2A2 =
Φ2C12A1. Combining this with Eq. (9), we get ΠΦ1A1 =
Φ2C12A1. Using the fact that A1 is full rank, this implies
that ΠΦ1 = Φ2C12, and thus C12 is basis-aligning.

Finally, we note that since the same pointwise map satis-
fies ∥ΠF1 −F2∥ = ∥ΠΦ1 −Φ2C12∥ = 0, minimizing both
energies with respect to Π would result in the same map.

(2) By assumption Copt is basis-aligning. Thus,
Π21Φ1 = Φ2Copt for some pointwise map Π21. Thus,

min
Π

∥ΠΦ1 − Φ2Copt∥ = Π21 (10)

Now let’s consider the problem

min
Π

∥ΠF1 − F2∥ = min
Π

∥ΠF1 − F2∥2 (11)

The objective can be decomposed into two parts, one
that lies within the span of Φ2 and the one outside of it, as
follows:

E(Π) =∥ΠF1 − F2∥2

=∥Φ+
2 (ΠF1 − F2)∥2 + ∥(I − Φ2Φ

+
2 )(ΠF1 − F2)∥2

=E1(Π) + E2(Π)

Using the fact that Fi are complete, we have Fi = ΦiAi.
It follows that E1 = ∥Φ+

2 ΠΦ1A1 −A2∥2.
On the other hand, using the fact that F2 is complete,

we have (I − Φ2Φ
+
2 )F2 = 0, and thus E2 = ∥(I −

Φ2Φ
+
2 )ΠF1∥2.

Now recall that by assumption Copt is basis-aligning
and thus there exists some pointwise map Π21 such that
Π21Φ1 = Φ2Copt.
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Consider E1(Π) for an arbitrary pointwise map Π. We
have:

min
C

∥CA1 −A2∥ =∥CoptA1 −A2∥

=∥Φ+
2 Π21Φ1A1 −A2∥

=E1(Π21)

It follows that we must have that E1(Π21) ≤ E1(Π) for
any pointwise map Π.

Moreover observe that for Π21 we have:

E2(Π21) =∥(I − Φ2Φ
+
2 )Π21F1∥2

=∥(I − Φ+
2 Φ

+
2 )Π21Φ1A1∥2

=∥(I − Φ2Φ
+
2 )Φ2CoptA1∥2

=∥Φ2CoptA1 − Φ2CoptA1∥
=0

Thus, for an arbitrary pointwise map Π we must have
E2(Π12) ≤ E2(Π).

It therefore follows that argminΠ ∥ΠF1 − F2∥ =
argminΠ (E1(Π) + E2(Π)) = Π21, and thus
argminΠ ∥ΠF1 −F2∥ = argminΠ ∥ΠΦ1 −Φ2Copt∥.

Verification of the assumptions of the theorem Note
that as mentioned above, we first assumed that A1 is of full
rank, and second, the rows of F1 must be distinct so that all
optimization problems have unique minima. We would like
to point out that these assumptions are very weak and easily
hold in practice.

Indeed, as far as the second condition is concerned, it
is easily verifiable because of numerical precision, as it is
very unlikely that two distinct points are assigned the exact
same feature vectors. In practice, for example, we compute
for each point in a feature produced by DiffusionNet, the
distance to its nearest neighbor, and we take the average
over the whole shape. We find that this distance is equal to
0.15, while for reference, it is equal to 0.0004 for the XYZ
coordinates, which shows that this assumption is justified.

For the first assumption, we plot in Fig. 6 the evolution
of the rank of the features produced by DiffusionNet dur-
ing training, as well as the evolution of the rank of their
projection on the spectral basis (i.e. Ai). We can see that
throughout the training, the rank of the projected features
is always equal to 30, which is the same dimension as the
spectral basis used in all our experiments, which proves that
the assumption of the full rank of A1 is verified.

Impact of the proposed modifications on the conditions
of the theorem In this paragraph, we provide measures
of the individual conditions of the theorem before and after
applying our modifications in order to shed light on their
effectiveness.
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Figure 6. Evolution of the rank of features produced by Diffu-
sionNet, as well as their projection in the Laplacian-Basis, during
training.

DGCNN DeltaConv
Property before after before after

Basis alignment (↓) 9.7 4.8 11.3 5.9
Properness (↓) 9.6 4.4 13.1 7.9
Completeness (↑) 69 % 90 % 64 % 83 %

Table 4. Impact of our modifications on the key metrics.

Given a functional map C12 predicted by the fmap frame-
work, we compute its basis aligning property by comput-
ing the Chamfer distance between Φ2C12 and Φ1 using
the notation in Definition 3.2 of the main text (note that
∥Φ2C12 − Π21Φ1∥ is a one-way Chamfer distance). For
properness, given a predicted functional map C, we com-
pute its proper version Cproper using the adjoint method
and measure properness by computing ∥C−Cproper∥22. For
completeness, using the same notation as in Eq. (4), we

measure it using 1− ∥FΘ(Si)−ΦiΦ
†
iFΘ(Si)∥2

2

∥FΘ(Si)∥2
2

, this quantity is
between 0 and 1 (higher is better).

We report these measures in Tab. 4 for the same setup
used in our ablation study, i.e., unsupervised shape matching
on "FA on FA" (see Appendix C), for two main backbones:
DGCNN and DeltaConv (note that in DiffusionNet complete-
ness is enforced by construction). It can be seen that our
modifications improve the measured properties.

B. Implementation Details
In all our experiments with functional maps, we used the

functional map size of k = 30. For the Laplace-Beltrami
computation, we used the discretization introduced in [16].

In our experiments in Sec. 5.2 of the main text, we used
three different networks, DGCNN [19], DiffusionNet [15]
and DeltaConv [21]. For this, we used the publicly available
implementations 1 2 3 released by the authors. In all our
experiments, we used the default segmentation configuration
provided by the authors in their respective papers, with an

1https://github.com/WangYueFt/dgcnn
2https://github.com/nmwsharp/diffusion-net
3https://github.com/rubenwiersma/deltaconv



output dimension of 128. For all these experiments, we used
the Adam optimizer [8], with a learning rate of 0.001. We
used data augmentation in all our experiments. In particular,
we augment the training data on the fly by randomly rotat-
ing the input shapes, varying the position of each point by
Gaussian noise, and applying random scaling in the interval
[0.9, 1.1].

For the proper map computation (Eq. 6 of the main text),
we used τ = 0.07.

To make the feature extractor smooth, we project the
features onto a Laplace-Beltrami basis of size j = 128,
which is the same size used in the original DiffusionNet
implementation.

Regarding the experiment in Sec. 5.3 of the main text,
we used the pre-trained DiffusionNet model on the Scape
Remeshed Aligned dataset, with unsupervised and proper-
ness losses. The downstream point MLP consists of 4 layers,
and we train it with the Adam optimizer for 300 iterations,
using a learning rate of 0.001. The training shape is ran-
domly sampled from the training data set.

C. Ablation Study
In Sec. 4 of the main text, we introduced two modifi-

cations to the functional map pipeline, namely imposing
properness on the functional map and requiring the features
to be as smooth as possible. Here we show the effect of
each modification independently. For illustration, we will
use the unsupervised near-isometric matching experiment
(Sec. 5.2.2 of the main text), but a similar conclusion can be
drawn in all other scenarios.

The results are summarized in Tab. 5. In this table, we
show the result for each architecture without modification
0⃝, with properness with the adjoint method 1⃝, with feature-
based properness 2⃝, using the smoothness operation 3⃝ or
the combination of the latter. Since in DiffusionNet, the
smoothing operation is performed by construction, we only
include the results with properness.

We can see that each of our modifications improves the
result of the vanilla feature extractor, and for optimal perfor-
mance, both modifications should be used. In particular, we
noticed that imposing the properness using the feature-based
method gives a slightly better result, so we advocate using
this method.

As we explained in the main text, the difference between
the result obtained with the functional map, and the result
with the nearest neighbor (NN) method is explained by the
fact that the conditions of the theorem are not fully satisfied.
Indeed, while the results of the two approaches are generally
very close, after our modifications, there is variability in
terms of which method produces the best results depending
on the dataset. Remark that if the NN approach is better,
this suggests that higher frequencies in the learned feature
functions are beneficial for correspondence. However, the

Model / Dataset FA on FA SA on SA FA on SA SA on FA FA on SHA SA on SHA
FM NN FM NN FM NN FM NN FM NN FM NN

DiffusionNet - 0⃝ 3.9 6.5 4.5 6.5 5.4 8.5 3.7 6.0 6.1 11.9 6.0 10.6
DiffusionNet - 1⃝ 3.4 3.2 4.2 4.4 4.3 4.9 3.4 3.7 5.5 5.8 5.3 6.1
DiffusionNet - 2⃝ 3.3 2.6 3.9 3.4 4.2 4.0 3.3 2.7 6.2 5.7 5.3 5.3

DGCNN - 0⃝ 3.9 9.3 5.0 11.2 7.0 13.6 4.1 11.9 6.7 17.1 6.5 16.7
DGCNN - 1⃝ 3.5 5.6 4.4 7.3 7.1 11.5 3.6 8.8 7.0 13.2 5.7 13.0
DGCNN - 2⃝ 3.7 3.5 4.8 5.2 7.4 11.3 4.0 5.1 8.0 10.7 6.3 8.4
DGCNN - 3⃝ 3.9 4.7 4.8 5.7 5.0 6.2 3.9 5.2 6.5 7.4 6.4 8.4
DGCNN - 1⃝ + 3⃝ 3.5 3.6 4.3 4.4 4.5 5.2 3.4 4.5 5.4 5.8 5.3 6.5
DGCNN - 2⃝ + 3⃝ 3.9 2.8 4.6 3.8 5.2 5.0 4.0 3.4 6.5 5.7 6.2 6.0

DeltaConv - 0⃝ 3.8 12.9 4.7 15.5 5.1 17.4 4.0 16.5 7.0 23.6 6.7 25.0
DeltaConv - 1⃝ 3.4 7.0 4.2 9.5 4.5 13.4 3.6 12.4 5.8 18.0 6.2 19.2
DeltaConv - 2⃝ 3.6 3.5 4.3 5.1 5.9 8.7 3.9 7.0 7.0 10.6 6.2 11.5
DeltaConv - 3⃝ 3.8 5.7 4.5 6.7 4.7 7.1 3.8 5.8 6.3 9.1 6.6 11.7
DeltaConv - 1⃝ + 3⃝ 3.4 3.6 4.1 4.6 4.3 5.2 3.4 4.2 5.3 6.3 5.4 7.1
DeltaConv - 2⃝ + 3⃝ 3.6 3.5 4.4 4.0 4.7 4.7 4.0 3.5 6.0 6.1 6.7 7.7

Table 5. Ablation Study on the components of our method. 0⃝:
no modification. 1⃝: use properness based on the adjoint method.
2⃝: use properness using the feature-based method. 3⃝: make the

feature extractor as smooth as possible using the method introduced
in Sec. 4.2 of the main text. We highlight the best result of each
feature extractor in bold.

opposite can (and indeed does) occur, in that those high
frequencies can hinder results since they are not penalized
during training (as the functional map losses are computed
after projecting the features onto a low-frequency basis).

D. Comparison with other methods

In this section, we compare our method to other recent
shape-matching methods and evaluate the effect of our pro-
posed modifications on additional baseline approaches. We
compare our method in supervised and unsupervised near-
isometric shape-matching experiments in Sec. 5.2.1 and
Sec. 5.2.2 of the main text, respectively.

Note that since our proposed modifications are general
and can be applied to any deep functional map pipeline in
principle, we also tested their effects on additional meth-
ods. In addition to the comparisons shown in the main
manuscript, below we also test our modifications on two
very recent approaches: SRFeat [10] for the supervised case,
and DUO-FMap [1] for the unsupervised case. Because both
SRFeat and DUO-FMap use DiffusionNet as a backbone, we
only enforce the properness using the feature-based method,
following Sec. 4.1 of the main text.

We use the same protocol as in the main text. Namely, the
geodesic error is normalized by the square root of the total
surface area, values are multiplied by ×100 for clarity, and
the notation “X on Y” means that we train on X and test on
Y. We denote the methods using our proposed modifications
by “Method - Ours”.

Concerning the supervised near-isometric shape-
matching experiment, we compare to FMNet [11],
3DCODED [6], HSN [20], TransMatch [18], Ge-
omFMaps [2], and SRFeat [10]. Results are summarized
in Tab. 6. It can be seen that our method achieves state-
of-the-art results among supervised methods, especially in



Model / Dataset FR on FR SR on SR FR on SR SR on FR FR on SH SR on SH

3D-CODED 2.5 31.0 31.0 33.0 – –
FMNet 11.0 30.0 30.0 33.0 – –
HSN 3.3 3.5 25.4 16.7 – –
GeomFmaps 3.1 4.4 11.0 6.0 9.9 12.2
TransMatch 2.7 18.3 33.6 18.6 21.0 38.8
GeomFmaps + DiffusionNet 2.6 2.9 3.4 2.9 9.6 6.9
SRFeat 1.1 2.2 3.9 2.5 9.9 6.2

GeomFmaps + DiffusionNet - Ours 2.0 2.4 3.2 2.3 5.7 5.6
SRFeat - Ours 1.3 1.8 2.9 1.8 5.8 5.4

Table 6. Accuracy of various supervised shape matching methods
for near-isometric shape matching. Our modifications achieve state-
of-the-art results. The best result in each column is highlighted in
bold, and the second best is highlighted using underline.

Model / Dataset FA on FA SA on SA FA on SA SA on FA FA on SHA SA on SHA

SURFMNet 15.0 12.0 30.0 30.0 – –
UnsupFMNet 10 16.0 29.0 22.0 – –
WSupFMNet 3.3 7.3 11.7 6.2 – –
DeepShells 1.7 2.5 5.4 2.7 26.3 22.8
NeuroMorph 8.5 29.9 28.5 18.2 26.3 27.6
WSupFMNet + DiffusionNet 3.9 4.5 5.4 3.7 6.1 6.0
DUO-FMap 2.5 2.6 4.2 2.7 6.4 8.4

WSupFMNet + DiffusionNet - Ours 2.6 3.4 4.0 2.7 5.7 5.3
DUO-FMap - Ours 2.3 2.4 3.0 2.4 5.5 5.3

Table 7. Accuracy of various unsupervised shape matching methods
for near-isometric shape matching. Our modifications achieve state-
of-the-art results. The best result in each column is highlighted in
bold, and the second best is highlighted using underline.

challenging cases such as testing on the SHREC Remeshed
dataset.

For the unsupervised setting, we test our method against
SURFMNet [13], UnsupFMNet [7], WSupFMNet [14],
Deep Shells [4], Neuromorph [3], and DUO-FMap [1]. Re-
sults are summarized in Tab. 7. As can be seen, our method
achieves state-of-the-art results in this scenario also, espe-
cially in challenging cases involving generalization, where
all competing methods fail. It can also be seen that the mod-
ifications we propose are complementary to the different
versions of the deep functional map pipeline. Remarkably,
our method brings consistent and significant improvements
throughout all cases and baseline approaches that we tested.

We would like to emphasize that our main contribution
is both an analysis and a set of improvements for the deep
functional map pipeline in general. As such, rather than
a particularly new approach for correspondence, our key
contribution is a set of modifications, which can be adapted
within different deep functional map pipelines. We empha-
size this because our approach is flexible and, as illustrated
in the results, can be beneficial for different methods pro-
posed in the literature for both supervised and unsupervised
cases.

E. Generalization Power of Pre-Trained Fea-
tures

In Sec. 5.3 of the main text, we showed the generaliza-
tion power of our pretrained features on the task of human
segmentation. Here we show more results consolidating the

Method Accuracy

SplineCNN [5] 53.6 %
SPHNet [12] 80.2 %
SurfaceNetworks [9] 88.5%

DiffusionNet - XYZ 90.5%
DiffusionNet - HKS 90.6%
DiffusionNet - Pretrained features 90.8%

Table 8. Accuracy of various methods for RNA segmentation.

fact that learned features do have a geometric signification.
For this, we tested the utility of the pre-trained features

for the task of molecular surface RNA segmentation. We
used the RNA dataset introduced in [12], composed of 640
RNA triangle meshes, where each vertex is labeled into one
of 259 atomic categories. We used the same 80/20% split
for training and test sets as in previous works.

We follow the same setup as in Sec. 5.3 of the main
text. Specifically, we train a DiffusionNet network for shape
matching in an unsupervised manner on the RNA data. We
then extract features for each shape using the trained network.
Finally, these features are used to train another DiffusionNet
for the semantic segmentation task in a supervised manner.

The results are summarized in Tab. 8. We can see that our
pre-trained features outperform XYZ and HKS [17] (note
that due to the relatively large size of the training set, the
improvement starts to saturate). We take this as further evi-
dence that the features extracted using our approach encode
geometric information that can be useful in various shape
analysis tasks.

F. Qualitative Results

In this section, we present some qualitative results with
our method.

In Fig. 7, we show the quality of the produced maps,
before and after our modifications. It can be seen that our
modifications produce visually plausible correspondences.

In Fig. 8, we show how repeatable the features are, before
and after our modifications, the intensity is color coded.
We can see that before the modifications, the features are
mostly flat and non-distinctive, making them not useful for
matching using the nearest neighbor method, or for use in
a downstream task, whereas, after our modifications, we
can see that the features are activated over the same region,
over multiple shapes, and they are not flat since they vary
according to the geometry.
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