
HyperReel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling
Supplementary Materials

Benjamin Attal
Carnegie Mellon University

Jia-Bin Huang
Meta & UMD

Christian Richardt
Reality Labs Research

Michael Zollhöfer
Reality Labs Research

Johannes Kopf
Meta

Matthew O’Toole
Carnegie Mellon University

Changil Kim
Meta

1. Appendix Overview
Within the appendix, we provide:

1. Additional details regarding training and evaluation for
static and dynamic datasets in Section 3;

2. Additional details regarding sample network design,
implementation, and training in Section 4;

3. Additional details regarding keyframe-based volume
design in Section 5;

4. Additional quantitative comparisons against static view
synthesis approaches on the LLFF [7] and Deep-
View [3] datasets in Section 6;

5. Additional qualitative comparisons to Neural 3D Video
Synthesis [6] on the Technicolor dataset [11] in Sec-
tion 7;

6. Additional qualitative results for, (a) full 360 degree
FoV captures and (b) highly refractive scenes in Sec-
tion 8;

Further, we provide a full per-scene breakdown of image
metrics for the Technicolor dataset in Table 3, the Neural 3D
Video dataset in Table 4, and the Google Immersive Light
Field Video dataset in Table 5.

2. Website Overview
Finally, in addition to our appendix, our supplemental web-
site https://hyperreel.github.io contains:

1. A link to our codebase;

2. Videos of a demo running in real-time at high-resolution
without any custom CUDA code;

3. Dynamic dataset results from our method on each of
Technicolor ([11]), Neural 3D Video ([6]), and Google
Immersive Video ([2]);

4. Qualitative results and comparisons on view-dependent
static scenes from the Shiny Dataset ([18]) and the
Stanford Light Field Dataset ([15]);

5. Qualitative comparison to [2].

3. Additional Training & Evaluation Details

3.1. Training Ray-Subsampling

We provide pseudo-code for our ray-subsampling scheme in
Algorithm 1, which is used to enable more memory efficient
training.

3.2. LPIPS Evaluation Details

For LPIPS computation, we use the AlexNet LPIPS variant
for all of our comparisons in the main paper (as do all of the
baseline methods).

3.3. SSIM Evaluation Details

For SSIM computation, we use the structural similarity
scikit-image library function, with our images normalized
to the range of [0, 1], and the data range parameter set to 1.
We note, however, that several methods either:

1. Use their own implementation of SSIM, which are
not consistent with this standard implementation (e.g.
R2L [14]);

2. Fail to set the data range parameter appropriately, so
that it defaults to the value of 2.0 (e.g. Neural 3D Video
[6]).

In both of these cases, the SSIM function returns higher-
than-intended values. While we believe that this inconsis-
tency makes SSIM scores somewhat less reliable, we still
report our aggregated SSIM metrics in the quantitative result
tables in the main paper.

1

https://hyperreel.github.io
https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.html


ALGORITHM 1: Training Ray-Subsampling Scheme
Input: Number of videos {N}, Number of frames {M}
Output: Training Rays raysGT , Ground Truth Colors CGT

// Initialize rays and colors
raysGT = {}
CGT = {}
// Iterate over all N videos
for n ∈ {1, · · · ,N} do

// Iterate over all M frames in video n
for m ∈ {1, · · · ,M} do

// Get frame m from video n
Cn,m = GetFrame(n,m)
// Get corresponding rays for this frame
raysn,m = GetRays(n,m)

if m is not divisible by 8 then
// Downsample rays and colors by a factor of 4
Cn,m ← NearestNeighborDownsample(Cn,m, 4)
raysn,m ← NearestNeighborDownsample(raysn,m, 4)

if m is not divisible by 4 then
// Downsample rays and colors by an additional factor of 2
Cn,m ← NearestNeighborDownsample(Cn,m, 2)
raysn,m ← NearestNeighborDownsample(raysn,m, 2)

end
end
// Add current rays and colors to output
CGT ← CGT + Cn,m

raysGT ← raysGT + raysn,m

end
end

4. Sample Prediction Network Details

4.1. Additional Training Details

For both static and dynamic datasets, we use a batch size of
16,384 rays for training, an initial learning rate of 0.02 for
the parameters of the keyframe-based volume, and an initial
learning rate of 0.0075 for our sample prediction network.
For Technicolor, Google Immersive, and all static scenes, we
set the wTV weight Equation 14 to 0.05 for both appearance
and density, which is decayed by a factor of 0.1 every 30,000
iterations. On the other hand, wL1 starts at 8·10−5 and decays
to 4·10−5 over 30,000 iterations and is only applied to the
density components.

4.2. Additional Network Details

In order to make it so that the sample network outputs
(primitives G1, . . . , Gn, point offsets d1, . . . ,dn, velocities
v1, . . . ,vn) vary smoothly, we use 1 positional encoding
frequency for the ray r (in both static and dynamic settings)
and 2 positional encoding frequencies for the time step τ (in
dynamic settings).

4.3. Forward Facing Scenes

For forward facing scenes, we first convert all rays to normal-
ized device coordinates (NDC) [7], so that the view frustum
of a “reference” camera lives within [−1, 1]3. After mapping
a ray with origin o and direction ω⃗ to its two-plane parame-
terization [5] (with planes at z = −1 and z = 0), we predict
the parameters of a set of planes normal to the z-axis with
our sample network. In particular, we predict (z1, . . . , zn),
and intersect the ray with the axis-aligned planes at these
distances to produce our sample points (x1, . . . ,xn). Addi-
tionally, we initialize the values (z1, . . . , zn) in a stratified
manner, so that they uniformly span the range of [−1, 1].

4.4. Outward Facing Scenes

For all other (outward facing) scenes, we map a ray to its
Plücker parameterization via

r = Plücker(o, ω⃗) = (ω⃗, ω⃗ × o) . (1)

and predict the radii of a set of spheres centered at the origin
(r1, . . . , rn). We then intersect the ray with each sphere to
produce our sample points. We initialize (r1, . . . , rn) so that

2



they range from the minimum distance to the maximum
distance in the scene.

4.5. Differentiable Intersection

In both of the above cases, we make use of the implicit form
of each primitive (for planes normal to the z-axis, z = zk,
and for the spheres centered at the origin x2+y2+ z2 = r2k)
and the parameteric equation for a ray o+ tkω⃗, to solve for
the intersection distances tk (as is done in typical ray-tracers).
The intersection distance is differentiable with respect to the
primitive parameters, so that gradients can propagate from
the color loss to the sample network.

4.6. Implicit Color Correction

In order to better handle multi-view datasets with inconsis-
tent color correction / white balancing, we also output a color
scale cscale

k and shift cshift
k from the sample prediction network

for each sample point xk. These are used to modulate the
color Le(xk, ω⃗, τi) extracted from the dynamic volume via:

Le(xk, ω⃗, τi)← Le(xk, ω⃗, τi) · cscale
k + cshift

k . (2)

Note that these outputs vary with low-frequency with respect
to the input ray (since we use few positional encoding fre-
quencies for the sample prediction network). Additionally,
the density from the volume remains unchanged.

5. Keyframe-Based Volume Details

We initialize our keyframe-based dynamic volume within a
1283 grid, so that each of the spatial tensor components have
resolution 128×128. Our final grid size is 6403. We upsam-
ple the volume at iterations 4,000, 6,000, 8,000, 10,000, and
12,000, interpolating the resolution linearly in log space.

6. Quantitative Comparisons

6.1. LLFF Dataset

The LLFF dataset [7] contains eight real-world sequences
with 1008×756 pixel images. In Table 1, we compare our
method to the same approaches as above on this dataset.
Our approach outperforms DoNeRF, AdaNeRF, TermiNeRF,
and InstantNGP but achieves slightly worse quality than
NeRF. This dataset is challenging for explicit volume repre-
sentations (which have more parameters and thus can more
easily overfit to the training images) due to a combination
of erroneous camera calibration and input-view sparsity. For
completeness, we also include a comparison to R2L on the
downsampled 504×378 LLFF dataset, where we perform
slightly worse in terms of quality.

Table 1. Quantitative comparisons on LLFF. We compare our
approach to others on the real-world LLFF dataset [7]. FPS is
normalized per megapixel; memory in MB.

Dataset Method PSNR↑ FPS↑ Memory ↓

LLFF 504×378
Single sample

R2L [13] 27.7 — 23.7

Ours (per-frame) 27.5 4.0 58.8

LLFF 1008×756

Uniform sampling
NeRF [7] 26.5 0.3 3.8
Instant NGP [8] 25.6 5.3 64.0

Adaptive sampling
DoNeRF [9] 22.9 2.1 4.1
AdaNeRF [4] 25.7 5.6 4.1
TermiNeRF [10] 23.6 2.1 4.1

Ours (per-frame) 26.2 4.0 58.8

Table 2. Quantitative comparisons to DeepView. In addition to the
comparison to NeRFPlayer, we report a comparison with DeepView
[3], a variant of which is used per-frame in immersive LF video
[2]. We thus compare to DeepView as a proxy for quantitative
comparison. FPS normalized per megapixel.

Dataset Method PSNR↑ SSIM↑ LPIPS↓ FPS↑

Spaces [3] DeepView [3] 31.60 0.965 0.085 >100
Ours 35.47 0.968 0.080 4.0

6.2. DeepView Dataset

Unfortunately, Google’s Immersive Light Field Video [2]
does not provide quantitative benchmarks for the perfor-
mance of their approach in terms of image quality. As
a proxy, we compare our approach to DeepView [3], the
method upon which their representation is built, on the static
Spaces dataset in Table 2.

Our method achieves superior quality, outperforming
DeepView by a large margin. Further, HyperReel consumes
less memory per frame than the Immersive Light Field
Video’s baked layered mesh representation: 1.2 MB per
frame vs. 8.87 MB per frame (calculated from the reported
bitrate numbers [2]). Their layered mesh can render at more
than 100 FPS on commodity hardware, while our approach
renders at a little over 4 FPS. However, our approach is en-
tirely implemented in vanilla PyTorch and can be further
optimized using custom CUDA kernels or baked into a real-
time renderable representation for better performance.

7. Qualitative Comparisons to Neural 3D [6]

We provide additional qualitative still-frame comparisons to
Neural 3D Video Synthesis [6] in Figure 1.

3



8. Additional Results
8.1. Panoramic 6-DoF Video

In general, our method can support an unlimited FoV. We
show a panoramic rendering of a synthetic 360 degree scene
from our model, using spherical primitives in Figure 2.

8.2. Point Offsets for Modeling Refractions

Point offsets allow the sample network to capture appear-
ance that violates epipolar constraints, noticeably improving
quality for refractive scenes. We show a visual comparison
between our approach with and without point offsets in Fig-
ure 3. More results are available on the website.

4



Ground truth (Technicolor [11]) Ours Neural 3D Video [6]

Figure 1. Additional qualitative comparisons to Neural 3D Video Synthesis. We show two additional qualitative comparisons against
Neural 3D Video Synthesis [6] on the Technicolor dataset [11], demonstrating that our approach recovers more accurate/detailed appearance.

Figure 2. Example panoramic rendering from our approach applied to a synthetic scene with captures spanning a full 360 degree FoV. In this
case, our sample network predicts spherical geometric primitives. The scene is one of the shots from the Blender Foundations Agent 327
open movie [1].

Tarot

GT w/ offset w/o offset

Tarot

GT w/ offset w/o offset

Figure 3. Comparison of our method with and without point offset on the Tarot sequence from the Stanford Light Field dataset [16] and Lab
sequence from the Shiny dataset [17].

5



Table 3. Per-scene results from the Technicolor dataset [11]. See Section Section 3.3 for a discussion of the reliability of SSIM metrics.

Scene
PSNR↑ SSIM↑ LPIPS↓

Neural 3D Video [6] Ours Small Tiny Neural 3D Video [6] Ours Small Tiny Neural 3D Video [6] Ours Small Tiny

Birthday 29.20 29.99 29.32 27.80 0.952 0.922 0.907 0.876 0.0668 0.0531 0.0622 0.0898
Fabien 32.76 34.70 33.67 32.25 0.965 0.895 0.882 0.860 0.2417 0.1864 0.1942 0.2233
Painter 35.95 35.91 36.09 34.61 0.972 0.923 0.920 0.905 0.1464 0.1173 0.1182 0.1311
Theater 29.53 33.32 32.19 30.74 0.939 0.895 0.880 0.845 0.1881 0.1154 0.1306 0.1739
Trains 31.58 29.74 27.51 25.02 0.962 0.895 0.835 0.773 0.0670 0.0723 0.1196 0.1660

Table 4. Per-scene results from the Neural 3D Video dataset [6], available only for our method and NeRFPlayer [12].

Scene
PSNR↑ SSIM↑ LPIPS↓

NeRFPlayer [12] Ours NeRFPlayer [12] Ours NeRFPlayer [12] Ours

Coffee Martini 31.534 28.369 0.951 0.892 0.085 0.127
Cook Spinach 30.577 32.295 0.929 0.941 0.113 0.089
Cut Roasted Beef 29.353 32.922 0.908 0.945 0.144 0.084
Flame Salmon 31.646 28.260 0.940 0.882 0.098 0.136
Flame Steak 31.932 32.203 0.950 0.949 0.088 0.078
Sear Steak 29.129 32.572 0.908 0.952 0.138 0.077

Table 5. Per-scene results from the Google Immersive Light Field Video dataaset [2], available only for our method and NeRFPlayer [12].

Scene
PSNR↑ SSIM↑ LPIPS↓

NeRFPlayer [12] Ours NeRFPlayer [12] Ours NeRFPlayer [12] Ours

01 Welder 25.568 25.554 0.818 0.790 0.289 0.281
02 Flames 26.554 30.631 0.842 0.905 0.154 0.159
04 Truck 27.021 27.175 0.877 0.848 0.164 0.223
09 Exhibit 24.549 31.259 0.869 0.903 0.151 0.140
10 Face Paint 1 27.772 29.305 0.916 0.913 0.147 0.139
11 Face Paint 2 27.352 27.336 0.902 0.879 0.152 0.195
12 Cave 21.825 30.063 0.715 0.881 0.314 0.214

6



References
[1] 5
[2] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-

son, Peter Hedman, Matthew DuVall, Jason Dourgarian, Jay
Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans.
Graph., 39(4):86:1–15, 2020. 1, 3, 6

[3] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall,
Graham Fyffe, Ryan Overbeck, Noah Snavely, and Richard
Tucker. DeepView: View synthesis with learned gradient
descent. In CVPR, 2019. 1, 3

[4] Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael
Zollhöfer, and Markus Steinberger. AdaNeRF: Adaptive sam-
pling for real-time rendering of neural radiance fields. In
ECCV, 2022. 3

[5] Marc Levoy and Pat Hanrahan. Light field rendering. In
SIGGRAPH, 1996. 2

[6] Tianye Li, Mira Slavcheva, Michael Zollhöfer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, Steven
Lovegrove, Michael Goesele, Richard Newcombe, and
Zhaoyang Lv. Neural 3D video synthesis from multi-view
video. In CVPR, 2022. 1, 3, 5, 6

[7] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 1, 2, 3

[8] Thomas Müller, Alex Evans, Christoph Schied, and Alexander
Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. ACM Trans. Graph., 41(4):102:1–15,
2022. 3

[9] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Chakravarty R. Alla Chaitanya, Anton Kaplanyan, and
Markus Steinberger. DONeRF: Towards real-time rendering
of neural radiance fields using depth oracle networks. Comput.
Graph. Forum, 2021. 3

[10] Martin Piala and Ronald Clark. TermiNeRF: Ray termination
prediction for efficient neural rendering. In 3DV, 2021. 3

[11] Neus Sabater, Guillaume Boisson, Benoit Vandame, Paul Ker-
biriou, Frederic Babon, Matthieu Hog, Remy Gendrot, Tristan
Langlois, Olivier Bureller, Arno Schubert, et al. Dataset and
pipeline for multi-view light-field video. In CVPR Workshops,
2017. 1, 5, 6

[12] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele
Chen, Junsong Yuan, Yi Xu, and Andreas Geiger. NeRF-
Player: A streamable dynamic scene representation with de-
composed neural radiance fields. TVCG, 2023. 6

[13] Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Menglei
Chai, Yun Fu, and Sergey Tulyakov. R2L: Distilling neural
radiance field to neural light field for efficient novel view
synthesis. In ECCV, 2022. 3

[14] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-
shun Zhang, Yingliang Zhang, Minye Wu, Lan Xu, and Jingyi
Yu. Fourier PlenOctrees for dynamic radiance field rendering
in real-time. In CVPR, 2022. 1

[15] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Tal-
vala, Emilio R. Antúnez, Adam Barth, Andrew Adams, Mark
Horowitz, and Marc Levoy. High performance imaging using

large camera arrays. ACM Trans. Graph., 24(3):765–776,
2005. 1

[16] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Tal-
vala, Emilio Antunez, Adam Barth, Andrew Adams, Mark
Horowitz, and Marc Levoy. High performance imaging using
large camera arrays. ACM Trans. Graph., 24(3):765–776,
2005. 5

[17] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. NeX: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
5

[18] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. NeX: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
1

7


