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A. Additional Examples
In Figures 1, 2, 3, 4 and 5 we provide additional results

from our model. In Figures 6 and 7 we provide additional
examples for the mask insensitivity of our method. In Fig-
ures 8 and 9 we show the fine-grained control that is achiev-
able via the multi-scale version of our method. In Figure 10
we provide additional limitations of our method.

B. Implementation Details
In the following section, we describe the implementa-

tion details that were omitted from the main paper. In Ap-
pendix B.1 we start by describing the diffusion models im-
plementation details. Then, in Appendix B.2 we describe
the implementation details of our spatio-textual representa-
tion. Later, in Appendix B.3 we describe the implementa-
tion details of the baselines and how we adapt them to our
problem setting. Afterwards, in Appendix B.4 we describe
the implementation details of the automatic input creation
process that we used to compute our automatic metrics. Fi-
nally, in Appendix B.5 we describe the details of the user
study.

B.1. Diffusion Models Implementation Details

We based our approach on two state-of-the-art diffusion-
based text-to-image models: DALL·E 2 [34] and Stable
Diffusion [37]. We trained these models on a custom-
made dataset of 35M image-text pairs, following Make-A-
Scene [9].

B.1.1 DALL·E 2 Implementation Details

Since the implementation of DALL·E 2 is not available to
the public, we re-implemented it following the details in-

cluded in their paper [34]. This model consists of the fol-
lowing submodules, given an (x, y) image-text pair:

• A decoder model D: that is trained to translate
CLIPimg(x) into a 64× 64 resolution image x.

• A super-resolution model SR: that is trained to up-
sample the 64× 64 resolution image x into 256× 256.

• A prior model P: that is trained to translate the tuples
(CLIPtxt(y),BytePairEncoding(y)) into CLIPimg(x).

Concatenating the above three models yields a text-to-
image model SR ◦D ◦ P .

In order to adapt the model to the task of text-to-image
generation with sparse scene control, we chose to fine-tune
the decoder D. For the fine-tuning we used the standard
simple loss variant of Ho et al. [13]:

Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt,CLIPimg(x0), ST, t)||2

]
(1)

where ϵθ is a UNet [23] model that predicts the added noise
at each time step t, xt is the noisy image at time step t and
ST is our spatio-textual representation. To this loss, we
added the same variational lower bound (VLB) loss as in
[26] to get the total loss of:

Lhybrid = Lsimple + λLV LB (2)

we set λ = 0.001 in our experiments. We used Adam op-
timizer [17] with β1 = 0.9 and β2 = 0.999 with learning
rate 6× 10−5 for 64,000 iterations.

During inference, we utilize composition of the CLIP
text encoder CLIPtxt and the prior model P to infer the CLIP
image embedding for both the spatio-textural representation
ST and for the global text prompt P ◦ CLIPtxt(tglobal). We
used the DDIM [38] inference method with a different num-
ber of inference steps for each component: 50 steps for the
prior model, 250 for the decoder, and 100 for the super res-
olution model.

1



“an oil painting” “in the snow”

“a black horse”
“a white horse”

“a white horse”
“a brown horse”

“a photo taken during
the golden hour” “a sunny day at the beach”

“a snowy mountain”
“a black cat”

“a colorful beach umbrella”
“a ginger cat”

“near some ruins” “at the desert”

“a colorful parrot”
“a straw hat”

“a green parrot”
“a red hat”

Figure 1. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual representation
describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated image (right).
As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual representation
content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

B.1.2 Stable Diffusion Implementation Details

For Stable Diffusion [37] we used the official implementa-
tion [5] and the official pre-trained v1.3 weights from Hug-
ging Face [7].

We followed the same training procedure as the original
implementation, and adapted the latent denosing model to
get as an additional input the spatio-textual representation

ST with the following training loss:

LLDM = Et,y,z0,ϵ

[
||ϵ− ϵθ(zt,CLIPtxt(y), ST, t)||2

]
(3)

where zt is the noisy latent code at time step t and y is
the corresponding text prompt. We fine-tuned only the de-
noising model while keeping the autoencoder and CLIPtxt
frozen. We used Adam optimizer [17] with β1 = 0.9 and
β2 = 0.999 with learning rate 1 × 10−4 for 100,000 itera-
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“sitting on a wooden floor” “in the street”

“a gray teddy bear”
“a brown teddy bear”

“a brown teddy bear”
“a gray teddy bear”

“a night with the city “in a sunny day near
in the background” near the forest”

“a white car”
“a big full moon”

“a blue car”
“a red balloon”

“in an empty room” “day outdoors”

“a canvas with a painting
of a Corgi dog”

“a metallic yellow robot”

“a canvas with
math equations”

“a wooden robot”

Figure 2. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual representation
describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated image (right).
As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual representation
content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

tions.
During inference, we used the DDIM [38] inference

method with 50 sampling steps.

B.2. Spatio-Textual Representation Details

In order to create the spatio-textual CLIP-based repre-
sentation, we used the following models:

• A pre-trained ViT-L/14 [6] variant of CLIP [33] model

released by OpenAI [27].

• A pre-trained panoptic segmentation model R101-FPN
from Detectron2 [44].

During the training phase, we extracted candidate seg-
ments using R101-FPN model from the Detectron2 [44]
codebase model and filtered the small segments that ac-
counted for less than 5% of the image area because their
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“on a wooden table outdoors” “on a concrete floor”

“a brown hat” “an elephant”

“next to a wooden house” “indoors”

“a chimpanzee”
“a red wooden stick”

“a glass tea pot”
“a golden straw”

“a black and white photo
“on the grass” in the desert”

“an Amanita mushroom” “a nuclear explosion”

Figure 3. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual representation
describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated image (right).
As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual representation
content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

CLIP image embeddings are less meaningful for low-res
images. Then, we randomly used 1 ≤ K ≤ 3 segments
for the formation of the spatio-textual representation.

In addition, in order to enable multi-conditional
classifier-free guidance, as explained in Section 3.3 in the
main paper, we dropped each of the input conditions (the
global text and the spatio-textual representation) during
training 10% of the time (i.e., the model was trained totally
unconditionally about 1% of the time).

B.3. Baselines Implementation Details

For the No Token Left Behind (NTLB) baseline [29]
we used the official PyTorch [31] implementation [1]. The
original model did not support global text and was mainly
demonstrated on rectangular masks. In order to adapt it to
our problem setting, we added a degenerate mask of all ones
for the global text. Then, we used the rest of the segmenta-
tion maps as-is, along with their corresponding text prompt.
For Make-A-Scene (MAS) [9], we followed the exact im-
plementation details from the paper.
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“a portrait photo” “a portrait photo”

“a rabbit” “a duck”

“under the sun” “inside a lake”

“a blue butterfly” “an elephant”

“on a snowy day” “a sunny day at the street”

“a mouse”
“boxing gloves”

“a black punching bag”

“a lemur”
“oranges”

“a soda can”

Figure 4. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual representation
describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated image (right).
As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual representation
content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

In addition, we used the official DALL·E 2 and Stable
Diffusion online demos [28, 39] to generate the assets for
some of the figures in this paper: Figure 2 in the main paper,
and Figure 12 below.

B.4. Evaluation Dataset Details

As explained in Section 4.1 in the main paper, we pro-
posed to evaluate our method automatically by generating
a large number of coherent inputs based on natural im-

ages. To this end, we used the COCO [20] validation set
that contains global text captions as well as a dense seg-
mentation map for each image. We convert the segmen-
tation map labels by simply providing the text “a {label}”
for each segment. Then, we randomly choose a subset of
size 1 ≤ K ≤ 3 segments to form the sparse input. This
way, we generated 30, 000 input samples for comparison.
Figure 11 (top row) shows a random number of generated
input samples.
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“a sunny day near
the Eiffel tower” “room with sunlight”

“a white Labrador”
“a blue ball”

“a wooden table”
“a red bowl”

“a picture on the wall”

Figure 5. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual representation
describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated image (right).
As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual representation
content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

In addition, we provide in Figure 11 an additional qual-
itative comparison of our method against the baselines. As
we can see, the latent-based variant of our method outper-
forms the baselines in terms of compliance with both the
global and local texts, and in terms of overall image quality.

B.5. User Study

As explained in Section 4.2 in the main paper, we con-
ducted a user study using the Amazon Mechanical Turk
(AMT) platform. In each question the evaluators were
asked to choose between two images in terms of (1) overall
image quality, (2) text-matching to the global prompt tglobal
and (3) text-matching to the local prompts of the raw spatio-
textual representation RST . For each one of those metrics,
we created 512 coherent inputs automatically from COCO
validation set [20] as described in Section 4.1 in the main
paper and presented a pair of generated results to five raters,
yielding a total of 2,560 ratings per task. For each question,
the raters were asked to choose the better result of the two
(according to the given criterion). We reported the majority
vote percentage per question. In addition, the raters were
also given the option to indicate that both models are equal,
in a case which the majority vote indicated equal, or in a tie
case, we divided the points equally between the evaluated
models.

The questions we asked per comparison are:

• For the overall quality test — “Which image has a bet-
ter visual quality?”

• For the global text correspondence test — “Which im-
age best matches the text: {GLOBAL TEXT}”, where
{GLOBAL TEXT} is tglobal.

• For the local text correspondence test — we provided

in addition one mask from the raw spatio-textual repre-
sentation RST and asked “Which image best matches
the text and the shape of the mask?”

B.6. Inference Time and Parameters Comparison

In Table 1 we compare the number of parameters and the
inference time of the baselines and the different variants of
our method. For each method, we describe its submodules
and their corresponding number of parameters and infer-
ence times for a single image. As we can see, our latent-
based variant is significantly faster than the rest of the base-
lines. In addition, it has fewer parameters than Make-A-
Scene [9] and the pixel-based variant of our method.

C. Additional Experiments
In this section, we provide additional experiments that

we have conducted. In Appendix C.1 we describe manual
baselines that may be used to generate images with free-
form textual scene control. Then, in Appendix C.2 we
present a general variant for Make-A-Scene and compare
it against our method. Finally, in Appendix C.3 we describe
and demonstrate the local prompts concatenation trick.

C.1. Manual Baselines

In order to generate an image with free-form textual
scene control, one may try to operate existing methods in
various manual ways. For example, as demonstrated in Sec-
tion 1 in the main paper, trying to achieve this task using an
elaborated text prompt is overly optimistic. We provided
additional examples in Figure 12.

Another possible option to achieve this goal it to com-
bine a text-to-image models with a local text-driven edit-
ing method [2, 3, 34] in a multi-stage approach: at the first
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“a sunny day outdoors”

“a white cat” “a Shiba Inu dog” “a goat”

“a pig” “a black rabbit” “a gray donkey” “a panda bear”

“a gorilla” “a toad” “a cow” “The Statue of Liberty”

“a golden calf” “a shark” “a cactus” “a tortoise”

Figure 6. Mask insensitivity: We found that the model is relatively insensitive to inaccuracies in the input mask. Given a general animal
shape mask (top left), the model is able to generate a diverse set of results driven by the different local prompts. It changes the body type
according to the local prompt, while leaving the overall posture of the character intact.
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“a painting”

“a bat” “a colorful butterfly” “a moth”

“two birds facing away “a dragon” “mythical creatures” “two dogs”
from each other”

“a crab” “an evil pig” “a flying angel” “an owl”

“a bee” “an avocado” “two flamingos” “two clowns”

Figure 7. Mask insensitivity: We found that the model is relatively insensitive to inaccuracies in the input mask. Given a general
Rorschach [18] mask (top left), the model is able to generate a diverse set of results driven by the different local prompts. It changes
fine-details according to the local prompt, while leaving the overall general shape intact.

8



“at the desert” (1) (2) (3) (4) (5)

“a white cat” sglobal = 0; slocal = 3 sglobal = 1.5; slocal = 3 sglobal = 3; slocal = 3 sglobal = 3; slocal = 1.5 sglobal = 3; slocal = 0

Figure 8. Multi-scale control: Using the multi-scale inference allows fine-grained control over the input conditions. Given the same inputs
(left), we can use different scales for each condition. In this example, if we put all the weight on the local scene (1), the generated image
contains a cat with the correct color and posture, but not at the desert. Conversely, if we place all the weight on the global text (5), we get
an image of a desert with no cat in it. The in-between results correspond to a mix of conditions — in (4) we get a gray cat with slightly
different posture, in (2) the cat sits on dirt, but not in the desert, and in (3) we get a white cat at the desert.

“at the park” (1) (2) (3) (4) (5)

“a black Labrador dog” sglobal = 0; slocal = 3 sglobal = 1.5; slocal = 3 sglobal = 3; slocal = 3 sglobal = 3; slocal = 1.5 sglobal = 3; slocal = 0
“a purple ball”

Figure 9. Multi-scale control: Using the multi-scale inference allows fine-grained control over the input conditions. Given the same inputs
(left), we can use different scales for each condition. In this example, if we put all the weight on the local scene (1), the generated image
contains a Labrador dog and a purple ball with the correct color and posture, but not at the park. Conversely, if we place all the weight on
the global text (5), we get an image of a park with no dog or ball in it. The in-between results correspond to a mix of conditions — in (4)
we get a gray brick instead of a purple ball, in (2) the dog is outside but not in the park, and in (3) we get a black Labrador dog and a purple
ball in the park.

stage, the user can utilize a text-to-image model to gen-
erate the background of the scene, e.g. Stable Diffusion
or DALL·E 2. Then, the user can sequentially mask the
desired areas and provide the local prompts using a local
text-driven editing method, e.g. Blended Latent Diffusion
or DALL·E 2. Figures 13 and 14 demonstrate that even
though these approaches may place the object in the desired
location, the composition of the entire scene looks less nat-
ural, because the model does not take into account the en-
tire scene at the first stage, so the generated image of the
background may not be easily edited for the desired com-
position. In addition, the objects correspond less to the lo-
cal masks, especially in the DALL·E 2 case. Furthermore,
the multi-stage approach is more cumbersome from the user
point of view, because of its iterative nature.

Lastly, another approach is to utilize a sketch-to-image
generation, as demonstrated in SDEdit [24]: the user can
provide a dense color sketch of the scene, then noise it to
a certain noise level, and denoise it iteratively using a text-
to-image diffusion model. However, this user interface is
different from our interface in the following aspects: (1) the
user need to provide a color for each pixel, whereas in our
method the user may provide a local prompt that describe

other aspects that are not color-related only. In addition, (2)
in this approach, the user needs to construct a dense seg-
mentation map of the entire scene in advance, whereas in
our method the user can provide only some of the areas and
let the machine infer the rest. It is not clear how this can be
done in the sketch-based approach.

C.2. Random Label Make-A-Scene Variant

In Section 4.1 in the main paper, we presented a way
to adapt Make-A-Scene (MAS) [9] to our problem setting.
The original Make-A-Scene work proposed a method that
conditions a text-to-image model on a global text tglobal and
a dense segmentation map with fixed labels. Hence, we con-
verted it to our problem setting of sparse segmentation map
with open-vocabulary local prompts by concatenating the
local texts of the raw spatio-textual representation RST into
the global text prompt tglobal.

However, the above version requires the user to provide
an additional label for each segment, which is more than
needed by our method and NTLB [29] baseline. Hence,
we experimented with a more general version of Make-A-
Scene we termed MAS (rand-label) that assigns a random
label for each segment, instead of asking the user to pro-
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“on an asphalt road” “on a blue table”

(1
)

(2
)

“a red ball”
“a green ball”
“a blue ball”

“a red mug”
“a white plate”

“a chocolate cake”

“in the forest” “above the desert”

(3
)

(4
)

“a red panda”
“a big rock”
“a sunrise”

“hot air balloons”

Figure 10. Limitations: In some cases there is a “characteristics leakage” between segments, as in example (1) where instead of a blue
ball we get another red ball, or a leakage between the global text and some segments, as in example (2) where the mug is generated in a
blue color originated in the global text. In other cases, the model ignores some of the objects, as the sun in example (3) and the smallest
hot air balloon in example (4).

Method Consisting submodules # Parameters (B) Inference time (sec)

No Token Left Behind [29] CLIP (ViT-B/32) + model 0.15B + 0.08B = 0.23B 326 sec
Make-A-Scene [9] VAE + model 0.002B + 4B = 4.002B 76 sec

SpaText (pixel) w/o prior CLIP + model + upsample 0.43B + 3.5B + 1B = 4.93B 50 sec
SpaText (pixel) w prior CLIP + prior + model + upsample 0.43B + 1.3B + 3.5B + 1B = 6.23B 52 sec
SpaText (latent) w/o prior CLIP + model 0.43B + 0.87B = 1.3B 5 sec
SpaText (latent) w prior CLIP + prior + model 0.43B + 1.3B + 0.87B = 2.6B 7 sec

Table 1. Inference time and parameters: we compare the number of parameters and the inference time across the baselines and the
different variants (including ablations) of our method. As we can see, SpaText (latent) is significantly faster than the rest of the baselines.
In addition, it has fewer parameters than Make-A-Scene [9] and the SpaText (pixel) variant of our method. The inference times reported
were computed for a single image on a single V100 NVIDIA GPU.

vide an additional label. In Figure 15 we can see that this
method is able to match the local prompts even with random
labels. We also evaluated this method numerically using the
same automatic metrics and user study protocol described
in Section 4 in the main paper. As can be seen in Table 2,
this method achieves inferior results compared to the ver-
sion that uses the ground-truth labels in both the automatic

evaluation and the user study.

C.3. Local Prompts Concatenation Trick

As described in Section 3.3 in the main paper, we no-
ticed that the texts in the image-text pairs dataset contain
elaborate descriptions of the entire scene, whereas we aim
to ease the use for the end-user and remove the need to pro-
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Automatic Metrics User Study

Method Global ↓ Local ↓ Local ↑ FID ↓ Visual Global Local
distance distance IOU quality match match

MAS [9] 0.7591 0.7835 0.2984 21.367 81.25% 70.61% 57.81%
MAS (rand-label) [9] 0.7796 0.7861 0.1544 29.593 82.81% 81.44% 76.85%

SpaText (latent) 0.7436 0.7795 0.2842 6.7721 - - -

Table 2. Metrics comparison: We evaluated our method against the baselines using automatic metrics (left) and human ratings (right).
The results for the human ratings (right) are reported as the percentage of the majority vote raters that preferred our latent-based variant of
our method over the baseline. As we can see, MAS (rand-label) achieves inferior results compared to the standard version of MAS, in both
the automatic metrics and the user study.

vide an elaborate global prompt in addition to the local ones,
i.e., to not require the user to repeat the same information
twice. Hence, in order to reduce the domain gap between
the training data and the input at inference time, we per-
form the following simple trick: we concatenate the local
prompts to the global prompt at inference time separated
by commas. Figure 16 demonstrates that this concatenation
yields images that correspond to the local prompts better.

D. Additional Related Work

Image-to-image translation: Pix2Pix [16,43] utilized a
conditional GAN [10, 25] to generate images from a paired
image-segmentation dataset, which was later extended to
the unpaired cased in CycleGAN [46]. UNIT [21] pro-
posed to translate between domains using a shared latent
space, which was extended to the multimodal [15] and few-
shot [22] cases. SPADE [30] introduced spatially-adaptive
normalization to achieve better results in segmentation-to-
image task. However, all of these works, do not enable edit-
ing with a free-form text description.

Layout-to-image generation: The seminal paper of
Reed et al. [36] generated images conditioned on location
and attributes and managed to show controllability over
single-instance images, but generating complex scenes was
not demonstrated. Later works extended it to an entire lay-
out [40–42, 45]. However, these methods do not support
fine-grained control using free-form text prompts. Other
methods [11, 12, 14, 19] proposed to condition the layout
also on a global text, but they do not propose a fine-grained
free-form control for each instance in the scene. In [32] an
additional segmentation mask was introduced to control the
shape of the instances in the scene, but they do not enable
fine-grained free-form control for each instance separately.
Recently [8] proposed to condition a GAN model on free-
form captions and location bounding boxes, and showed
promising results on synthetic datasets’ generation, in con-
trast, we focus on fine-grained segmentation masks to con-
trol the shape (instead of coarse bounding boxes), and on

generating natural images instead of synthetic ones.
Concurrently to our work, eDiff-I [4] presented a new

text-to-image model that consists of an ensemble of expert
denoising networks, each specializing in a specific noise in-
terval. More related to our work, they proposed a training-
free method, named paint-with-words, that enables users to
specify the spatial locations of objects, by manipulating the
cross-attention maps that correspond to the input tokens that
they want to generate. Their method supports only rough
segmentation maps, whereas our method focuses on the fine
segmentation maps input case.
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“a toilet”
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Figure 11. Qualitative comparison on automatically generated inputs: in order to create realistic inputs comparison, we utilized a
segmentation dataset [20] to create inputs (second row) that are based on real images (top row). Given those inputs, we generate images
using the baselines and the two variants of our method. As we can see, our latent-based variant of our method outperforms the baselines in
terms of compliance with both the global and local texts, and in overall image quality.
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“at the desert” SpaText Stable Diffusion DALL·E 2

“a squirrel” “A squirrel stands on the left side of the frame, holding
“a sign with an apple a sign with an apple painting on the right side of the frame”

painting”

“near the river” SpaText Stable Diffusion DALL·E 2

“a grizzly bear” “A grizzly bear stands near a river on the right side of the
“a huge avocado” frame, looking at the huge avocado in left side of the frame”

“a painting” SpaText Stable Diffusion DALL·E 2

“a snowy mountain” “A painting of a snowy mountain in the
“a red car” background and a red car in the front”

Figure 12. Lack of fine-grained spatial control: A user with a specific mental image (left) can easily generate it with a SpaText represen-
tation but will struggle to do so with traditional text-to-image models (right) [35, 37].
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“at the beach”

Sp
aT

ex
t

“a white Labrador”
“a blue ball”

“at the beach” “a white Labrador” “a blue ball”

SD
[3

7]
+

B
L

D
[2

]
D

A
L

L
·E

2
[3

4]

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 13. Interactive editing baseline: An alternative way to achieve image generation with free-form textual scene control as in our
method (first row) is by iterative editing: at the first stage, the user can utilize a text-to-image model to generate the background of the
scene, e.g. Stable Diffusion (second row) or DALL·E 2 (third row). Then, the user can sequentially mask the desired areas and provide the
local prompts using a local text-driven editing method, e.g. Blended Latent Diffusion (second row) or DALL·E 2 (third row).
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“near a river”

Sp
aT

ex
t

“a grizzly bear”
“a huge avocado”

“near a river” “a grizzly bear” “a huge avocado”

SD
[3

7]
+

B
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D
[2

]
D

A
L

L
·E

2
[3

4]

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 14. Interactive editing baseline: An alternative way to achieve image generation with free-form textual scene control as in our
method (first row) is by iterative editing: at the first stage, the user can utilize a text-to-image model to generate the background of the
scene, e.g. Stable Diffusion (second row) or DALL·E 2 (third row). Then, the user can sequentially mask the desired areas and provide the
local prompts using a local text-driven editing method, e.g. Blended Latent Diffusion (second row) or DALL·E 2 (third row).
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Figure 15. Qualitative comparison of Make-A-Scene variants: Given the inputs (top row), we generate images using the two variants
of Make-A-Scene (adapted to our task as described in Appendix C.2) and our latent-based method. As we can see, SpaText (latent)
outperforms these baselines in terms of compliance with both the global and local texts, and in overall image quality.
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Figure 16. Local prompts concatenation: concatenating the local text prompts to the global prompt during inference mitigates the train-
inference gap and enables better alignment between the generated images and the local prompts.
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