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1. Calibration
To use a smartphone as a tool to capture high-quality

textures of human faces, we apply a calibration step related
to the flashlight and camera sensor. Specifically, we com-
pute a light attenuation map to take into account vignetting
effects and the fact that the flashlight is not an ideal point
light source, and we color-calibrate the cross-polarized and
parallel-polarized images.

Light attenuation map. In the general case, a smart-
phone’s flashlight does not behave like an ideal point light.
We observed a significant decrease of light intensity to-
wards grazing angles. To account for this effect, we com-
pute a per-pixel attenuation map that we multiply with our
rendered images to match the observations. To this end,
we put calibration markers on a white wall and recorded a
cross-polarized sequence (see Figure 1). The markers allow
us to estimate camera poses for the sequence and provide
us a sparse point cloud to which we fit a plane. Finally, we
pose an optimization problem:

argmin
M,kd

∣∣∣(Î − I
)∣∣∣ , (1)

with Î = M·Lo, where M is the light attenuation map, and
kd the diffuse texture. Once optimized, we keep M fixed
for all subsequent face texture optimizations.

Color correction. We color-calibrate both the cross-
polarized images and the parallel-polarized images using
pre-recorded images of a Macbeth colorchecker board. We
compute an affine color transformation matrix to match
these calibration images to a reference color chart. This
calibration step is done once for the smartphone and then
used for all recorded sequences. The effect of this calibra-
tion step is shown in Figure 2.

Camera settings. We record our data using a Samsung
Galaxy S21 FE 5G. For the video sequences, we use an ISO
of 800 and exposure time of 1/60s. The photographs were
shot with an ISO of 200 and exposure time of 1/90s. The
smartphone’s white balance was set to 4900K.

Figure 1. To calibrate the light of the smartphone, we record a
cross-polarized sequence of a white planar surface with markers
for tracking. We fit a UV-parameterized plane to the data and opti-
mize for a light attenuation map which we use for all experiments.

2. Geometry Estimation

To estimate the geometry of a subject, we use the
Structure-from-Motion method from MetaShape [1] on the
captured data (see Figure 3 for a camera pose visualization).
The resulting geometry is noisy and might contain holes,
so we fit a 3DMM-based face model to the reconstruction.
Specifically, we use PIPNet [4] to detect landmarks on a
front-facing image of the face. These are then projected to
3D using the known camera extrinsic and intrinsic matrices.
Using Procrustes’s algorithm, we get a coarse alignment be-
tween the FLAME face model [6] and the 3D landmarks.
We further improve the alignment by optimizing for both a
rigid transform between FLAME and nearby scan vertices,
as well as the FLAME shape vector to non-rigidly fit the
scan. The resulting mesh is subdivided in the face region
by a factor of 16, and the eyes are removed from the mesh.
Finally, we employ an As-Rigid-As-Possible (ARAP) [11]
non-rigid deformation strategy to refine the face mesh, to
better align with the reconstruction of MetaShape.



Figure 2. We found that the polarization filters introduce a color
shift depending on the polarization direction. To this end, we per-
form a color calibration with a Macbeth colorchecker board which
we capture in both scenarios (cross-, and parallel-polarized). We
use an affine color correction to match both captures, and apply
this transformation to recordings of all subjects.

Figure 3. Distribution of cross-polarized (red) and parallel-
polarized (blue) views.

3. Comparison to Prior Work
In this section, we explain in more detail the differences

between our proposed method and results, and some of the
existing solutions for light stage data to which we could not
compare directly. Furthermore, we discuss potential bene-
fits of capture setups with independent view and light direc-
tions.

MoRF [12] is a generative model trained on a high-
quality image database with polarization-based separation
of diffuse and specular reflectance. It can generate a vol-
umetric representation of a face based on latent ID codes,
which can be optimized to fit new subjects. The database
itself is created using the capture setup from [9]. Images
of a subject can be rendered by first feeding the subject-
specific ID code into a deformation and a canonical MLP.
The canonical MLP is composed of a density, diffuse and
specular branch, and the output of these branches is used in

a volumetric rendering formulation, similar to [8], to render
the final image. This is in contrast to our approach, which
uses a triangle mesh to represent geometry, and which de-
fines the SVBRDF on the surface of the mesh. The major
advantage of MoRF is the fewer number of images it re-
quires at test time and better facial hair and eye handling.
This is, however, offset by its limited performance in accu-
rately fitting to faces of new subjects. Furthermore, the ma-
terial is not separated from lighting and the results are over-
smoothed due to the low-order spherical harmonics lighting
approximation.

Deep Relightable Appearance Models for Animatable
Faces [2] proposes a conditional variational auto-encoder
(CVAE) architecture to predict mesh vertices, a correspond-
ing texture warp field and light-dependent textures. A late-
conditioned model is first trained on light stage OLAT (one
light at a time) data to predict a lit texture map of a sub-
ject’s face from its average texture (nearest fully-lit frame
averaged across all cameras) and an initial estimate of the
mesh vertices (provided by an off-the-shelf face tracker).
This model has good generalization ability, but is not suit-
able for real-time rendering. Making use of the good gen-
eralization ability of the trained model, a large dataset of
synthetic images is generated and used to train an early-
conditioned model which can render faces under complex
lighting in real-time. The biggest advantage compared to
our approach is the capture and rendering of dynamic se-
quences. Some of the drawbacks include the necessity of a
light stage capture setup and the long training time. Futher-
more, the model does not separate lighting from material, so
its output can not be used in a standard rendering pipeline,
or for the creation of virtual assets.

Near-Instant Capture of High-Resolution Facial Geome-
try and Reflectance [3] performs multi-view color-space
analysis to separate diffuse from specular reflectance. Pho-
tometric estimation of specular normals further refines ge-
ometry compared to the reconstructed base mesh. Similar to
our method, and in contrast to the previously described deep
learning-based methods, the output is a set of textures that
can used in a standard rendering pipeline to render photo-
realistic images of a person’s face. The carefully calibrated
high-cost capture setup, consisting of 24 DSLR cameras,
enables reconstruction of fine-scale detail and cannot be
matched by current smartphone camera technology. Nev-
ertheless, we see potential benefit of our method’s flexibil-
ity to capture specular highlights from arbitrary viewpoints,
compared to a predetermined set of fixed viewpoints. An-
other drawback is the necessity of a manual cleanup of the
reconstructed multi-view stereo mesh, which is avoided by
our method’s automated FLAME fitting.



Several prior works [5, 7, 10] on face reconstruction and
relighting use a capture setup, in which the light direction
is independent from the view direction. While we see po-
tential benefit for convergence speed from the additional
constraints provided by such capture setups, given multiple
views, our co-located data also provides enough constraints
for successful convergence. The shadowing-masking term
G is the only term that is directly linked to both the view
and light vector. However, by reciprocity of the BRDF, the
dependence on view and light direction is the same. Instead
of having independent view and light vectors, we found it
more important to have a good distribution of the angles
between surface normal and view (or light) vector to re-
cover a complete specular and normal map. This is in con-
trast to [5] and [10] where both camera and light are mostly
front-facing.
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