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As part of the supplementary material, we describe pre-
processing steps as well as some qualitative examples from
the datasets in Appendix A. In Appendix B, we present ad-
ditional ablations on what makes temporal adaptation hard.
This expands on the last paragraph of Sec. 5 of the main pa-
per. Finally, in Appendix C, we conduct a qualitative anal-
ysis to verify if the model has indeed learnt to connect the
time order.

A. Datasets and Pre-processing

We sketch out the procedure we use for stitching two
clips within a video.

Clip stitching. Consider a video containing two events
(clips) vi , vj with associated captions ζi, ζj as shown in
Fig. 1. We assume these are non-overlapping (in time).
We stitch the text descriptions to construct a new caption
tij := [ζi; τ ; ζj ]. Since τ can be either before or after, we
end up with two newly constructed sentences. Correspond-
ing to each of these new sentences, we also stitch the video
events to construct a stitched video. Note that the order of
stitching video events depends on the value of τ . For exam-
ple, if τ is before, then uij := [vi; vj ] as shown in first of
the two stitched clips. If τ is after, then uij := [vj ; vi] as
shown in the second of the two stitched clips.

From each stitched clip in Fig. 1, we construct negatives
for the contrastive loss by reversing the time order in ei-
ther video or text. This step happens on-the-fly during loss
computation, and hence, we do not show it here. For a
given dataset, we can either use all possible tuples of non-
overlapping events to create such stitched clips or sample
from all possible tuples. Since the TEMPO dataset already
comes with stitched event descriptions (based on DiDeMo),
we directly use its subset which has before/after relations
in the text. For all the other datasets, we apply the stitching
process as described. Recall, ∆time is the time distance be-
tween the two events, and plays a key role in deciding the
difficulty of temporal adaptation, as observed empirically.

Next, we describe dataset properties and show some
qualitative examples after the clip stitching step.
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Figure 1. Illustration of clip stitching. We consider two non-
overlapping events in a video and stitch them with temporal re-
lations - before and after. ∆time denotes the time difference be-
tween midpoints of the two events.

Adaptation datasets. To gain a sense of the diversity in
the datasets we consider for adaptation, we present exam-
ples of stitched clips from these datasets in Fig. 3. Since
TEMPO has short adjacent clips, the context remains al-
most the same, we think this is important to instill a sense
of time in models. In contrast, for ActivityNet, since the
stitched events are far apart, the context changes make it
easy to infer which event description goes with which part
of the video, or the time order of events. In this regard,
Charades and Charades-Ego are similar to TEMPO. Quan-
titatively, this change in context is captured by ∆time which
is lowest for TEMPO (mean 6.8s), followed by Charades-
Ego (13.3s), Charades (14.5s) and ActivityNet (58.8s).

Distribution of number of clips in a video. A single video
with 10 non-overlapping individual event clips can make
upto 10C2=45 stitched clips. We plot the number of clips
per video against the number of videos in a given dataset
in Fig. 2. A single video with >30 stitched clips is rare
in TEMPO and ActivityNet while much more frequent in
Charades and Charades-Ego. Overall, the number of clips
per video is lower in TEMPO and ActivityNet as compared
to Charades and Charades-Ego.

Downstream datasets. In Fig. 4, we also show some ex-
amples from some downstream datasets (tasks) that need
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Figure 2. Number of clips in a video. The number of clips per
video is lower in TEMPO and ActivityNet as compared to Cha-
rades and Charades-Ego.

higher time awareness since they typically involve multiple
temporally linked events (e.g., walk and eat in Fig. 4(b)).
On these datasets, we perform zero-shot evaluation of tem-
porally adapted models in Sec. 6 of the main paper.

B. Experiments

Analyzing more pretrained models. We present prelim-
inary experimental results for other pretrained models on
the Charades dataset in Tab. 1. The other models perform
(slightly) better than random, but are not as promising as
VideoCLIP. We observe similar trends in performance on
the TEMPO dataset. We hypothesize that VideoCLIP’s
larger temporal receptive field and contrastive pre-training
objective similar to TACT helps it achieve superior perfor-
mance. This merits further investigation into how various
factors (as tabulated in Tab. 1) influence temporal adapta-
tion.

Spatial vs. temporal understanding. An interesting facet

Model Temporal
receptive field

Pre-training
strategy Visual backbone Encoder Atime

Frozen [1] 4 Contrastive TimeSformer Multimodal 53.0
VindLU [2] 8 Autoencoding ViT+Temp. attn. Multimodal 54.1
CLIP4Clip [3] 12 Contrastive ViT+Temp. attn. Two-tower 57.5
VideoCLIP [4] 32 Contrastive BERT on S3D Two-tower 77.0

Table 1. Adaptation results for more pre-trained models on Cha-
rades. Models with smaller temporal receptive field perform worse
in comparison to VideoCLIP. The temporal receptive field is re-
ported in terms of the number of input frames. Systematically
understanding the influence of various factors on making models
time-aware by post-pretraining makes for interesting future work.

A rabbit lays down on its stomach before bunny lying on it’s side

Little girl eats from cup after the child walks downhill

(a) TEMPO
A woman is standing in a room holding a hula hoop before she begins to use the hula hoop

The team shakes hands with the opposing team after a team groups together holding a trophy

(b) ActivityNet
Putting on shoe/shoes before holding a mirror

(c) Charades
Taking a broom from somewhere before holding a dish

(d) Charades-Ego

Figure 3. Examples from datasets used for temporal adaptation.
The first two frames are linearly spaced from the first event while
the last two from the second event. Notice how there is a signif-
icant change in visual context between the two events in Activi-
tyNet in contrast to other datasets. Best viewed on a screen.

of TACT is αsame which controls how well a model adapts
to temporal tasks. We highlight this on the TEMPO dataset
in Tab. 2, where, αsame=0 results in Atime ∼50% while
αsame=1 improves performance. Further investigation on
downstream tasks shows that adaptation with αsame=1 does
not perform well on MSR-VTT (a non-temporal bench-
mark) but shows consistent improvements on AGQA (a
temporal benchmark).and the trade-off between spatial- and
temporal-understanding. This hints at αsame controlling the
trade-off between spatial and temporal understanding.

What makes temporal adaptation difficult? To recall,
we define ∆time as the time-distance (in seconds) between
the midpoints of the two clips in a stitched pair. We hy-



Question: How did the boy react when he entered the room at the start?

Answer: Smile.

Question: Why does the baby turn around near the end of the video?

Answer: Sits down to play.

(a) Next-QA: Video question answering

Question: Did they reach for and grab a picture before or after putting a bag 
somewhere?

Answer: Before

Question: Did they walk through a doorway before or after they
eating the last thing they touched?

Answer: After
(b) AGQA: Video question answering

Template: Spinning [something] that quickly stops 
spinning

(c) Something-Something: Template-based video retrieval

Figure 4. Examples from datasets used for downstream evaluation.
These tasks demand time awareness since it is often not possible
to infer the action from a single frame.

Hyperparameters Adaptation Downstream

αsame αcross β TEMPO MSR-VTT AGQA
Atime ↑ R@1 ↑ MedR ↓ Accuracy↑

0 0 0 49.4 15.0 20.0 50.5
0 0 1 49.5 14.2 20.0 49.9
0 1 0 49.3 14.4 19.0 50.2
0 1 1 49.5 15.1 19.0 50.2

1 0 0 60.6 11.7 27.0 56.6
1 0 1 62.9 9.4 36.0 58.3
1 1 0 59.7 9.1 37.0 56.9
1 1 1 62.5 12.8 27.0 57.1

Table 2. Impact of αsame on spatial- vs. temporal understand-
ing. Gray denotes better performance for αsame=0 or 1. While
αsame=1 drives temporal understanding, it comes at a cost of re-
trieval performance on MSR-VTT [5]. This hints at αsame control-
ling the trade-off between spatial- and temporal-understanding.

pothesize that ∆time is inversely related to the difficulty of
temporal adaptation, i.e., the larger ∆time, the easier it is
to distinguish between two stitched clips that have opposite
time order. For example, consider ActivityNet examples
in Fig. 3(b) where the visual context changes significantly
making inference of the time order of events relatively eas-
ier.

We further test our hypothesis by sampling individual
clips from the Charades-Ego dataset to match the ∆time dis-
tribution of TEMPO. Concretely, assuming ∆time for both
these datasets follows a multinomial distribution, we con-
struct a new distribution using a convex combination of
the individual distributions where the mixing parameter
λ ∈ [0, 1] controls the extent to which we modify the dis-
tribution from TEMPO (λ=0) to Charades-Ego (λ=1). The
resulting distributions are presented in Fig. 5 (left). With
λ=1, we sample from the original Charages-Ego distribu-
tion and gradually move towards TEMPO as λ → 0.

We then sample stitched clips according to this new dis-
tribution and post-pretrain temporal adaptation for varying
values of λ. Note that for this experiment, we keep fixed
NC=10, 000 for each λ. From Fig. 5 (right), we indeed find
that as we move towards a more TEMPO-like distribution
(shorter ∆time), temporal accuracy deteriorates. The best fit
also confirms that the distribution of ∆time is strongly corre-
lated (ρ = −0.92) with the difficulty of inferring time-order
consistency.

C. Qualitative Analysis

To get an intuitive sense of whether a TACT model un-
derstands time order of events, we perform a qualitative
analysis on the model trained on TEMPO. Our demo inter-
face looks like the one shown in Fig. 6. First, a user uploads
a video and adds text descriptions for two events within the
video. These descriptions are then connected via a temporal
relation such as before or after. We also experiment with
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Figure 5. Impact of changing distribution of ∆time, the time gap between two stitched clips. Left: We vary the distribution of ∆time for
Charades-Ego and make it similar to that of TEMPO as λ → 0. Thus, crudely, as λ decreases, so does ∆time. Right: Atime on Charades-Ego
where the time difference between sampled clips is according to the distributions on the left. We observe that the accuracy deteriorates
as the time-distance between a pair of clips decreases indicating a strong correlation between the distribution of ∆time and difficulty of
temporal adaptation.

a new temporal connector First, ..., then, .... to
check if our model generalizes beyond before/after.

First, we consider samples from the TEMPO validation
set and show their results in Fig. 7. Notably, for some exam-
ples, it connects time order for before relations but not the
other two. We suspect this is because a majority (∼ 60%)
of the TEMPO dataset has descriptions involving before.
Note that TEMPO already comes with temporal captions of
which we pick subset of before/after relations. Second, we
also consider samples from other datasets which the model
has never seen. To our surprise, albeit qualitatively, the
model does generalize well to such examples as shown in
Fig. 8.

These results reinforce the promise of our method and
also raise the possibility of extending this work to consider
more general temporal relations. Having said that, we re-
iterate that these are qualitative examples and should be
treated as such.
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Figure 6. Interface of our demo for qualitative analysis. The user uploads a video and is asked to describe two events in the video. These
event descriptions are then connected via one of the three temporal relations shown at the bottom left. We construct one sentence that is
consistent with the time order of events in the video and another that is not. The output on the right shows the ranking of the constructed
sentences in terms of cosine similarity with the video representation. Higher score for correct matching indicated by a longer orange bar.
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Figure 7. Qualitative examples from TEMPO validation set. We
evaluate similarity of a given video with sentences with different
temporal order with the usual temporal connectors (before/after).
Green bordered boxes indicate correct predictions (consistent
time order between video and language) while red denote mis-
predictions. For some examples, e.g., in the bottom example, the
model gets predictions incorrect particularly for relations other
than before. Furthermore, we also try a new temporal connector
First, ..., then, ... and observe that the model qualitatively
generalizes to that as well.
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(a) Example from Charades-Ego

Before

After

First, …
then, ….

(b) Example from Next-QA

Figure 8. Qualitative results on samples not from TEMPO. We
see that despite not having seen these examples, the model still
connects the time order across video and language correctly.
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