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In this supplementary material, we first provide more
analysis of the proposed data creation pipeline (Sec. 1).
Then, we show more analysis of the proposed 3D face re-
construction algorithm, including quantitative evaluations,
visual comparisons with state-of-the-art methods, and ren-
derings under realistic conditions (Sec. 2). Finally, we show
more examples of the proposed FFHQ-UV dataset rendered
under different realistic lighting conditions (Sec. 3).

1. More analysis of the data creation
As stated in Sec. 3.2 of the manuscript, we have analyzed

the effectiveness of the three major steps (i.e., StyleGAN-
based image editing, UV-texture extraction, and UV-texture
correction & completion) of our dataset creation pipeline.
In this supplemental material, we further provide more de-
tailed analysis.

1.1. Analysis on facial image editing

To obtain normalized faces, we first apply StyleFlow [1]
to normalize the lighting, eyeglasses, hair, and head pose
attributes of the input faces. Then, we edit the facial expres-
sion attribute by walking the latent code along the found di-
rection of editing facial expression. One may wonder why
not directly use StyleFlow to normalize the facial expres-
sion attribute. To answer this question, we compare the
method which uses StyleFlow to edit facial expression in
Fig. 1. The results show that using StyleFlow cannot nor-
malize the expression attribute well, resulting in texture UV-
maps containing unwanted expression information. In con-
trast, our method is able to generate neutral faces and pro-
duce high-quality texture UV maps.

Furthermore, in Fig. 3, we show some intermediate re-
sults of the proposed StyleGAN-based facial image editing.

1.2. Analysis on UV-texture completion

After detecting the artifact masks, we first use Poisson
editing [9] to correct the artifact regions and then use Lapla-
cian pyramid blending [2] to handle the remaining non-
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Figure 1. Comparisons on the results of editing expression at-
tribute using StyleFlow [1] and our method. Note that using Style-
Flow cannot normalize the expression attribute well (a), resulting
in texture UV-maps containing unwanted expression information
(b). In contrast, our method is able to generate neutral faces (c)
and produce high-quality texture UV maps (d).

face regions (e.g., ear, neck, hair, etc.). One may wonder
why not directly use Poisson editing or Laplacian pyramid
blending to process all regions. To answer this question, in
Fig. 2, we show the comparisons on the results produced by
only using Laplacian pyramid blending, only using Poisson
editing, and using the proposed method. The results show
that Laplacian pyramid blending cannot handle the facial
regions (e.g., eyes, nostrils) well, because color matching
operation usually fails in these regions. Although Poisson
editing can generate decent results, the huge time consump-
tion is not suitable for creating large-scale datasets. In con-
trast, the proposed method can achieve similar results to
Poisson editing in a short time.

1.3. More visual comparisons

In Sec. 3.2.1 of the manuscript, we have shown an exam-
ple of the UV-maps obtained by different baseline methods.
In this supplemental material, we further provide more vi-
sual comparison in Fig. 4, which demonstrate the effective-
ness of the three major steps of our dataset creation pipeline.

1.4. Analysis on data diversity

In Table 3 of the manuscript, we have shown the identity
similarity computed between each image in FFHQ-Norm
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Figure 2. Comparisons on the results produced by only using
Laplacian pyramid blending, only using Poisson editing, and using
our method. Note that Laplacian pyramid blending cannot handle
the facial regions (e.g., eyes, nostrils) well, and Poisson editing
takes a huge amount of time to solve. In contrast, our method can
achieve similar results to Poisson editing in a short time.

and the rendered image using the corresponding UV-map in
FFHQ-UV with a random pose. In this supplemental mate-
rial, we further compute the average identity similarity with
images in the original FFHQ dataset in Tab. 1 (“w/ orig.
FFHQ”), showing that our dataset creation pipeline pre-
serves identity well. In addition, one may wonder whether
using random pose renderings to compute identity features
affects the computation of similarity scores. Thereby, we
further provide the average identity similarity with frontal
renderings in Tab. 1 (“w/ frontal pose”), where ours is still
the best.

Table 1. Average ID similarity score.

Methods
negative
samples

w/o
multi-view

naive
blending

Ours

w/ orig. FFHQ 0.0710 0.3723 0.4092 0.4262

w/ frontal pose 0.0594 0.8366 0.8481 0.8520

2. More analysis of 3D face reconstruction

2.1. Evaluation on Facescape dataset

As stated in Sec. 4.3 of the manuscript, we have evalu-
ated the shape reconstruction accuracy on REALY bench-
mark [3]. In this supplemental material, we further evaluate
the proposed 3D face reconstruction algorithm on the re-
cent public Facescape dataset [10] with corresponding 3D
scans and ground-truth texture UV-maps that can be used to
compute quantitative metrics. We apply the first 100 sub-
jects from Facescape, and randomly select one picture from
multi-view faces as input to evaluate the shape and texture
of the monocular reconstruction. For shape accuracy, we
compute the average point-to-mesh distance between the re-
constructed shapes and the ground-truth 3D scans. For tex-
ture evaluation, we use the interactive nonrigid registration
tool to align the ground-truth texture UV-map in Facescape
to our topology, and use the mean L1 error as the metric.

Tab. 2 shows the quantitative comparisons on different
results directly predicted by Deep3D in stage 1 (denoted as

Table 2. Quantitative comparison of reconstructed shapes and tex-
tures on the FaceScape dataset [10].

Methods
shape (mm) ↓

(point-to-mesh dist.)
texture ↓
(L1 error)

Nenc 1.537 0.1719
PCA tex. basis 1.524 0.1706

w/o multi-view 1.502 0.1433
Ours 1.495 0.1425

“Nenc”), generated using linear PCA texture basis instead
of the GAN-based texture decoder in Stage 2 & 3 (“PCA
tex. basis”), generated using a texture decoder trained on
the UV-map dataset created without generating multi-view
images (“w/o multi-view”), and generated using the texture
decoder trained on our final FFHQ-UV dataset (“Ours”).

The results indicate that the proposed 3D face recon-
struction algorithm, based on the GAN-based texture de-
coder trained with the proposed FFHQ-UV dataset, is able
to improve the reconstruction accuracy in terms of both
shape and texture.

2.2. Evaluation on illumination and facial ID

In Sec. 3.2 of the manuscript, we have evaluated the
illumination and facial identity preservation of the data cre-
ation. In this supplemental material, we further evaluate
these on the proposed 3D face reconstruction algorithm. We
test them on REALY benchmark [3] in Tab. 3. We first show
the illumination evaluation of the reconstructed UV-maps
(see Tab. 3 “BS Error”), then compute the identity similar-
ity between the input faces and the rendered faces to verify
whether the reconstructed face can preserve the identity (see
Tab. 3 “Similarity”). Our method outperforms the baseline
variants.

Table 3. More evaluations on 3D face reconstruction.

Methods Nenc
PCA

tex basis
w/o

editing
w/o

multi-view
Ours

BS Error - - 8.850 4.683 4.322

Similarity 0.7832 0.7946 0.7153 0.7980 0.8102

Exp. Acc. 73% 74% 69% 78% 82%

2.3. Evaluation on facial expression

In this section, we further evaluate facial expression
preservation using the expression classifier. As the expres-
sions of faces in REALY [3] are all neutral, we further col-
lect 100 faces with different expressions from the websites.
We calculate the consistency of the two predictions (i.e. the
original input images and the rendered images using the
reconstructed shape/texture) from the expression classifier.
Results in Tab. 3 (“Exp. Acc.”) show that our reconstruction
method can better preserve the expressions.
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Figure 3. Intermediate results of StyleGAN-based facial image editing, where the lighting, eyeglasses, head pose, hair, and expression
attributes of the input faces are normalized sequentially.

w/o editing w/o multi-view naive blending Ours

Figure 4. Extracted UV-maps by different baseline methods of our data creation pipeline, where our method is able to produce higher
quality textures.

2.4. More visual results

In this section, we show more visual comparisons of the
reconstructed faces produced by different methods, includ-



ing GANFIT [5], AvatarMe [6], Normalized Avatar [6],
HQ3D-ACN [7], StyleFaceUV [4], and our method. As
shown in Fig. 5-6, meshes and texture UV-maps recon-
structed by our method are superior to other results in
terms of both fidelity and quality. Compared to Normal-
ized Avatar [6], as shown in Fig. 7, our results better resem-
ble the input faces, and our method is able to express more
skin tones, thanks to the more powerful expressive texture
decoder trained on our much larger dataset. In Fig. 8, we
show the visual comparisons of the reconstruction results to
recent approaches HQ3D-ACN [7] and StyleFaceUV [4],
where our results better resemble the input faces.

In Fig. 9-11, we further show more examples of our re-
constructed texture UV-maps, shapes, and renderings under
different lighting conditions.

3. More examples of FFHQ-UV dataset
In this section, we provide more examples of the pro-

posed FFHQ-UV dataset in Fig. 12-13. The produced tex-
ture UV-maps are with even illuminations, neutral expres-
sions, and cleaned facial regions (e.g., no eyeglasses and
hair). Thus, they are ready for rendering under different
lighting conditions. In our visualizations, there realistic en-
vironment lighting conditions are demonstrated including a
studio scene*, a garden scene†, and a chapel scene‡).
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Figure 5. Visual comparisons of the reconstruction results to state-of-the-art approaches GANFIT [5] and AvatarMe [6], where our recon-
structed shape is more faithful to the input face. Note that there are undesired shadows and uneven shadings in the UV-maps obtained by
GANFIT and AvatarMe, while our UV-map is more evenly illuminated and of higher quality.
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Figure 6. Visual comparisons of the reconstruction results to state-of-the-art approaches GANFIT [5] and AvatarMe [6], where our re-
constructed shape is more faithful to the input face (e.g., nose region). Note that there are undesired shadows and uneven shadings in the
UV-maps obtained by GANFIT and AvatarMe, while our UV-map is more evenly illuminated and of higher quality.
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Figure 7. Visual comparisons of the reconstructions between Normalized Avatar [8] and ours, where our results better resemble the input
faces. Note that our method is able to express more skin tones, thanks to the more powerful expressive texture decoder trained on our much
larger dataset.
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Figure 8. Visual comparisons of the reconstruction results to recent approaches HQ3D-ACN [7] and StyleFaceUV [4], where our results
better resemble the input faces.



Figure 9. Examples of our reconstructed texture UV-maps, shapes, and renderings, where the produced textures are of high quality and
without shadows which can be rendered with different lighting conditions.



Figure 10. Examples of our reconstructed texture UV-maps, shapes, and renderings, where the produced textures are of high quality and
without shadows which can be rendered with different lighting conditions.



Figure 11. Examples of our reconstructed texture UV-maps, shapes, and renderings, where the produced textures are of high quality and
without shadows which can be rendered with different lighting conditions.



Texture UV-maps Rendering under different lighting

Figure 12. Examples of the proposed FFHQ-UV dataset, which are with even illuminations, neutral expressions, and cleaned facial regions
(e.g., no eyeglasses and hair), and are ready for realistic renderings.



Texture UV-maps Rendering under different lighting

Figure 13. Examples of the proposed FFHQ-UV dataset, which are with even illuminations, neutral expressions, and cleaned facial regions
(e.g., no eyeglasses and hair), and are ready for realistic renderings.
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