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Overview

This supplementary material is organized as follows.
Sec. A introduces the detailed discriminator network struc-
ture of GLeaD. Sec. B provides comparisons on the compu-
tational between our method and the baseline [1].

A. Discriminator Network Structure

Recall that, our D concludes a backbone D.,,., a head
predicting realness scores, and a decoder h for predicting
representative features f and w. Taking images whose
resolution are 256 x 256 as an instance, the backbone D.,,.
is first employed to extract features from the input image.
The very last feature map of 4 x 4 is sent to the scoring head
to extract the realness score while the multi-level feature
maps are sent to the decoder h to predict the representative
features adequate for G to reconstruct the original images.
As described in the submission, the representative features
consist of latent codes w and the spatial representations f,
which concludes a low-level representation and a high-level
representation. Recall that, these spatial representations
will be sent to the fixed generator to serve as the basis of
the reconstruction and will be modulated by latent codes to
predict the final results. We illustrate the architectures of the
three aforementioned components of D in Tab. S1, Tab. S2,
and Tab. S3, respectively.

B. Computational Costs

We first compute the discriminator parameter amounts
of the baseline and our method. As in Tab. S4, our method
merely brings 7.4% additional parameters over baseline,
which is brought by the proposed lightweight design of h
composed of 1 x 1 convolutions. Then we compare the
inference time of the discriminators with a single A6000
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GPU. At last, we make comparisons on the training time.
We separately train the baseline model [1] and our model
with 8 A100 GPUs on LSUN Church and record how much
time the training costs. From the numbers in Tab. S4, we

Table S1. Network structure of the backbone Dey.. The output
size is with order {C' x H x W'}, where C, H, and W respectively
denotes the channel dimension, height and weight of the output.

Stage Block Output Size

3 % 256 x 256

input -

1x1 Conv, 128
2x3x3 Conv, 128
1x1 Conv, 128
Downsample
LeakyReLU, 0.2

block; 128 x 128 x 128

[ 2x3x%3 Conv, 256
1x1 Conv, 256
Downsample

LeakyReLU, 0.2

blocks 256 X 64 x 64

[ 2x3x%3 Conv, 512
1x1 Conv, 512
Downsample

LeakyReLU, 0.2

blocks 512 x 32 x 32

[ 2%x3x%x3 Conv, 512 T
1x1 Conv, 512
Downsample

LeakyReLU, 0.2

blocky 512 x 16 x 16

[ 2x3x%3 Conv, 512

1x1 Conv, 512
Downsample

LeakyReLU, 0.2

blocks 512 x 8 x 8

[ 2x3%x3 Conv, 512 ]
1x1 Conv, 512
Downsample

LeakyReLU, 0.2

blockg 512 x 4 x 4




Table S2. Network structure of the decoder h predicting the low-
level spatial representation, the high-level spatial representation
and the 512-channel latent codes. Note that h receives multi-level
features as inputs due to its feature pyramid architecture [2]. The
output size is with order {C' x H x W}.

Stage Block Output Size
512 x 32 x 32
input B 512 x 16 x 16
npu 512 x 8 x 8
512 x 4 x 4
block; Ix1 Conv, 512 512 x 8 x 8
| Upsample
blocks Ix1 Conv, 512 512 % 16 x 16
| Upsample
blocks Ix1 Conv, 512 512 x 32 x 32
Upsample |
1x1 Conv, 3 3x32x32
blocky 2x1x1 Conv, 512 512 x 32 x 32
Downsample 512

Table S3. Network structure of the head predicting realness scores
which are scalars. The output size is with order {C' x H x W}.

Stage Block Output Size
input — 512 x4 x4

Mbstd, 1
3%x3 Conv, 512
LeakyReLU, 0.2
block; Downsample 1
FC, 512
LeakyReLU, 0.2
FC, 1

Table S4. Computational cost comparisons.

Method  # params inference time(s) training time(h)

Baseline  24.00M 0.0184 43.83
GLeaD 25.7TM 0.0219 55.78

can conclude that our method improves the synthesis quality
without much additional computational burden.
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