
Supplementary Material for Sliced Optimal Partial Transport

1 Relation Between Optimal Partial Transport and Unbalanced
Optimal Transport

If we replace the penalty term of (3) with a constraint, i.e. we impose the condition γ(Ω2) ≥M , and use the
fact that |π1#γ| = |π2#γ| = γ(Ω2), then (3) is closely related to the Lagrangian formulation of the following
“primal problem”:

Primal-OPT(µ, ν;M) = inf
γ∈M+(Ω2)

∫
c(x, y) dγ(x, y) s.t. γ(Ω2) ≥M. (7)

This, in turn, is closely related to the optimal partial transport problem proposed by [4, 11, 10] (the difference
being the mass constraint of γ is imposed as an equality γ(Ω2) =M rather than a lower bound γ(Ω2) ≥M).

Another equivalent form of the OPT problem defined in (3) is the “generalized Wasserstein distance”
in [16, 17] (We refer to [5, Proposition 1.1] and [16, Proposition 4] for their equivalence.) Recently, more
systematic studies of so-called “unbalanced optimal transport” or “optimal entropy transportation” problems
have been conducted, for instance, in [7] and [15]. OPT, (3), can be seen as a special case of these models, see
for instance [7, Theorem 5.2]. It is also well known that in addition to the static Kantorovich formulations
presented here, one can also give equivalent dynamic formulations in the spirit of the Benamou–Brenier
formula, e.g. [7]. Finally, a related class of models with close relations to the POT problem is discussed in
[14] under the name “Generalized Unnormalized Optimal Transport”(GUOT).

2 Relation Between Optimal Partial Transport and Optimal Trans-
port

Inspired by Caffarelli et al.s’ technique [4], suppose Ω = Rd, we introduce an isolated point ∞̂ into Ω
by letting Ω̂ = Ω ∪ {∞̂}. Suppose µ̂ = µ + (K − µ(Ω))δ∞̂, where δx̂ is the Dirac mass at x̂ ∈ Ω̂ and
ν̂ = ν+(K−ν(Ω))δ∞̂, where the constant K satisfies K ≥ µ(Ω)+ν(Ω), and ĉ(x, y) : Ω̂× Ω̂→ R+ is defined
as

ĉ(x, y) :=

{
c(x, y)− 2λ if x, y ̸= ∞̂
0 otherwise.

We introduce the following optimal transport problem:

inf
γ̂∈Γ(µ̂,ν̂)

∫
ĉ(x, y) dγ̂(x, y) (8)

We claim there exists an equivalence between this OT problem and OPTλ(µ, ν).

Proposition 2.1. The mapping: T : Γ≤(µ, ν)→ Γ(µ̂, ν̂) defined by

γ 7→ γ̂ = γ + (µ− (π1)#γ)⊗ δ∞̂ + δ∞̂ ⊗ (ν − (π2)#γ) + (γ(Ω2) + α)δ∞̂,∞̂, (9)

is a bijection, where α = K − (µ(Ω) + ν(Ω)) and γ is optimal in OPTλ(µ, ν) if and only if γ̂ is optimal
in (8).
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Proof. First we will show that γ̂ = T (γ) ∈ Γ(µ̂, ν̂) for γ ∈ Γ≤(µ, ν). Pick a Borel set A ⊂ Ω̂, and suppose

∞̂ ∈ A. By definition, γ̂ is a measure defined on Ω̂2, then we have

γ̂(A× Ω̂) = γ̂(A \ {∞̂} × Ω) + γ̂(A \ {∞̂} × {∞̂}) + γ̂({∞̂} × Ω) + γ̂({∞̂, ∞̂})
= γ(A \ {∞̂} × Ω) + (µ− (π1)#γ)(A \ {∞̂}) + (ν − (π2)#γ)(Ω) + γ(Ω2) + α

= (π1)#γ(A \ {∞̂}) + (µ− (π1)#γ)(A \ {∞̂}) + ν(Ω)− (π2)#γ(Ω) + γ(Ω2) + α

= µ(A \ {∞̂}) + ν(Ω) + α

= µ̂(A)

Similarly, if ∞̂ /∈ A, we have γ̂(A × Ω̂) = µ(A) = µ̂(A). Thus (π1)#γ̂ = µ̂ and similarly (π2)#γ̂ = ν̂.
Therefore γ̂ ∈ Γ(µ̂, ν̂).

It is obvious that the mapping T is injective since if γ1 ̸= γ2 where γ1, γ2 ∈ Γ≤(µ, ν), then there exists
one set B ⊂ Ω2 such that γ1(B) ̸= γ2(B). Then γ̂1(B) = γ1(B) ̸= γ2(B) = γ̂2(B). Therefore, γ̂1 ̸= γ̂2.

Next, we will show the surjectivity of T . Pick any γ̂ ∈ Γ(µ̂, ν̂), define γ such that for any B ⊂ Ω2,
γ(B) = γ̂(B). We have γ ∈ Γ≤(µ, ν). Indeed, pick Borel set A ⊂ Ω, we have

γ(A× Ω) = γ̂(A× Ω) ≤ γ̂(A× Ω̂) = µ̂(A) = µ(A).

Thus (π1)#γ ≤ µ, similarly we have (π2)#γ ≤ ν. Let γ̂1 = T (γ). We claim γ̂ = γ̂1.Note, since Ω2,Ω ×
{∞̂}, {∞̂}×Ω, {∞̂, ∞̂} is a disjoint decomposition of Ω̂2 (and all of them are measurable), it is sufficient to
prove γ̂(B) = γ̂1(B) for any Borel set B which is a subset of one of these four sets.

Case 1: If B ⊂ Ω2, we have γ̂1(B) = γ(B) = γ̂(B).
Case 2: If B = A× {∞̂} where A ⊂ Ω is Borel set, then

γ̂(B) = γ̂(A× Ω̂)− γ̂(A× Ω)

= µ̂(A)− γ(A× Ω)

= µ(A)− (π1)#γ(A)

= γ̂1(A× {∞̂}) = γ̂1(B)

Similarly, if B = {∞̂} ×A for some A ⊂ Ω, we have γ̂(B) = γ̂1(B).
Case 3: If B = {(∞̂, ∞̂)}. Note, since γ̂1 ∈ Γ(µ̂, ν̃) as we discussed above, then γ̂(Ω̂2) = γ̂1(Ω̂

2).
Additionally, by Cases 1 and 2 we have γ̂(Ω×Ω) = γ̂1(Ω×Ω), γ̂(Ω×{∞̂}) = γ̂1(Ω×{∞̂}) and γ̂({∞̂}×Ω) =
γ̂1({∞̂} × Ω). Thus

γ̂(B) = γ̂(Ω̂2)− γ̂(Ω2)− γ̂(Ω× {∞̂})− γ̂({∞̂} × Ω)

= γ̂1(Ω̂
2)− γ̂1(Ω2)− γ̂1(Ω× {∞̂})− γ̂1({∞̂} × Ω)

= γ̂1(B) (10)

Hence, γ̂ = γ̂1 and thus that the mapping is surjective.
We will show γ is optimal in OPTλ(µ, ν) if and only if γ̂ is optimal in OT(µ̂, ν̂) (defined in (8)). We let

C(γ), Ĉ(γ̂) denote the corresponding transportation cost of γ, γ̂ with respect to the OPT, OT problems, i.e.

Ĉ(γ̂) =

∫
ĉ(x, y) dγ(x, y), C(γ) =

∫
c(x, y) dγ(x, y) + λ (µ(Ω)− π1#γ(Ω) + ν(Ω)− π2#γ(Ω)) . (11)

We have C(γ) = C(γ̂) + λ(µ(Ω) + ν(Ω)). Combined with the fact the mapping is a bijection, we have γ is
optimal iff γ̂ is optimal.

3 Proofs in Section 3

Proof of Proposition 3.1. Let γ̂ be optimal for the extended balanced problem of the previous section, (8),
and let γ be the restriction of this measure to Ω × Ω. Since restriction preserves optimality [21, Theorem
4.6], γ must be an optimal plan between π1#γ and π2#γ with respect to the (non-extended) cost c on Ω×Ω.
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Therefore, it must be supported on a c-cyclically monotone set [21, Theorem 5.10]. In one dimension, for
costs of the form c(x, y) = f(x− y) for convex f , c-cyclical monotonicity reduces to standard monotonicity,
see for instance [19, Theorem 2.9].

Proof of Lemma 3.2. Pick γ and define γ′ as follows: for any Borel A ⊂ Ω2, γ′(A) = γ(A \ S). Let

C(γ) :=

∫
c(x, y) dγ + λ [(µ(Ω)− π1#γ(Ω)) + (ν(Ω)− π2#γ(Ω))]

=

∫
(c(x, y)− 2λ) dγ + λ(µ(Ω) + ν(Ω)),

which is the objective function for the OPT problem defined in (3), and the second line follows from the fact
γ(Ω2) = (π1)#γ(Ω) = (π2)#γ(Ω). Then we have

C(γ)− C(γ′) =
∫
S

(c(x, y)− 2λ) dγ(x, y) ≥ 0

That is, for any γ, we can find a better transportation plan γ′ such that γ′(S) = 0.

4 Proofs in Section 4

Proof of Theorem 4.1. We start by adapting the extension (8) to the concrete discrete setting between em-
pirical measures. Let Ω̂ = [1 : m+ n], and let ĉ : Ω̂× Ω̂ be given by

ĉ(i, j) =

{
c(xi, yj)− 2λ if i ≤ n, j ≤ m,
0 otherwise.

Let µ̂ = ν̂ =
∑m+n

i=1 δi. Then solving the (balanced) optimal transport problem on Ω̂ between µ̂ and ν̂ with
respect to cost ĉ is (as above) clearly equivalent to the OPT problem, and an optimal OPT plan can be
obtained by restricting an optimal γ̂ to the set [1 : n]× [1 : m]. Note that here we have simply split the mass
on the isolated point ∞̂ onto multiple points, where each only carries unit mass. At the same time, the set
Γ(µ̂, ν̂) are the doubly stochastic matrices and by the Birkhoff-von-Neumann theorem its extremal points
are permutation matrices. Thus there always exists an optimal γ̂ that is a permutation matrix, and thus its
restriction to [1 : n]× [1 : m] will only contain entries 0 or 1, with at most one 1 per row and column.

Proof of Proposition 4.3. For λ1 = λ2 we can write (2) as

OPTλ(µ, ν) = ET(µ, ν;F ,F) = inf
γ≥0

∫
Ω2

cdγ + F(π1#γ ∥ µ) + F(π2#γ ∥ ν)

where

F(µ̂ ∥ µ) =

{
λ · (µ(Ω)− µ̂(Ω)) if 0 ≤ µ̂ ≤ µ,
+∞ otherwise.

In particular, F is the f -divergence associated with integrand

F (s) =

{
λ(1− s) if s ∈ [0, 1]
+∞ else.

By [15, Theorem 4.11] the dual of ET is

sup
Φ∈L1(µ),Ψ∈L1(ν)

Φ⊕Ψ≤c
Φ,Ψ lsc and bounded

−
∫
Ω

F ∗(−Φ) dµ−
∫
Ω

F ∗(−Ψ)dν

where
F ∗(r) = sup

s
(rs− F (s)) = max{−λ, r}.

3



By [15, Theorem 4.6] the optimality conditions are

Φ⊕Ψ = c γ-a.e.

−Φ ∈ ∂F
(
dγ1
dµ

)
, γ1 = π1#γ µ-a.e. (12)

−Ψ ∈ ∂F
(
dγ2
dν

)
, γ2 = π2#γ ν-a.e.

We have

∂F (s) =

 {−λ} if s ∈ (0, 1)
(−∞,−λ] if s = 0
[− λ,+∞) if s = 1.

So (12) can be written

Φ(x) = λ if
dγ1
dµ

(x) ∈ (0, 1)

Φ(x) ∈ [λ,+∞) if
dγ1
dµ

(x) = 0

Φ(x) ∈ (−∞, λ] if
dγ1
dµ

(x) = 1.

Similarly for Ψ. In the discrete case the dual problem and optimality conditions reduce to the form stated
in the proposition.

5 Correctness and complexity of Algorithms 1 and 2

5.1 Correctness

In this section, we prove the correctness of Algorithms 1 and 2 as stated above, and we discuss how to deal
with duplicate points. Extended versions of the Algorithms with more sophisticated data structures and
proper handling of boundaries and duplicates are then given in Section 5.2 together with a bound on their
worst-case complexity.

Preliminaries, induction strategy, cases 1 and 2. Throughout this proof, we are simply going to
write ci,j for c(xi, yj). We assume that the point lists {xi}ni=1 and {yj}mj=1 are sorted, but we now allow for
duplicate points and their handling will be addressed throughout this proof. Since c(x, y) = h(x − y) for h
strictly convex, it is easy to verify that

ci,j + ck,l ≤ ci,l + ck,j (13)

if i ≤ k and j ≤ l, with a strict inequality if xi < xk and yj < yl. This is known as Monge property [3]. The
proof works via induction in the iterations of the main loop of Algorithm 1. We will show that prior to the
iteration for xk / after completing the iteration for xk−1, the following holds:

I. Ψj ≤ λ for all j ∈ [1 : m].

II. For all j ∈ [1 : m], if Ψj < λ, then yj is assigned.

III. Φi ≤ λ for all i ∈ [1 : n].

IV. For all i ∈ [1 : k − 1], if Φi < λ, then xi is currently assigned.

V. All dual constraints Φi +Ψj ≤ ci,j for all i ∈ [1 : n], j ∈ [1 : m] hold.

VI. For all i ∈ [1 : n], j ∈ [1 : m], whenever xi is assigned to yj , one has Φi +Ψj = ci,j .
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VII. The assignment L will be monotonous. I.e. if L[i] ̸= −1, L[i′] ̸= −1 for i < i′, then L[i] < L[i′].

We initialize with Ψj = λ for all j, Φi = −∞ for all i, and empty assignment Li = −1 for all i. Therefore,
prior to the first iteration, when k = 0, all conditions are satisfied. Next, note that items (I) and (II) will be
satisfied throughout the algorithm since entries of Ψ are only ever decreased during the algorithm; entries
are only decreased when the corresponding yj are assigned; and once a point yj is assigned, it may become
re-assigned, but it never becomes un-assigned again. The claim that yj is never un-assigned is clear in all
cases apart from Case 3.1. In Case 3.1 it follows from property (VIII) below, which implies that when xi∆
is un-assigned from, say, yj∆ , then yj∆ is re-assigned to i∆ + 1 (since the assignment between xi′ and yj′

satisfies L[i′] = jmin + i′ − imin, i.e. the assignment is consecutive).
Throughout the algorithm, let jlast be the largest index among any assigned points yj . We initially set

jlast = −1 when no yj is assigned. Since assigned yj does not get un-assigned (merely re-assigned), jlast is
non-decreasing.

Lemma 5.1. If jlast ̸= −1, then during the iteration of the main loop of Algorithm 1, for any minimizer j∗

in line 3, one has yj∗ ≥ yjlast . In particular, j∗ can always be chosen such that j∗ ≥ jlast.

Proof. If jlast = −1, there is nothing to prove, since j∗ ≥ 1. If jlast ̸= −1, then there must be some
i ∈ [1 : k − 1] such that L[i] = jlast and therefore Φi + Ψjlast = ci,jlast . After adjusting Φk in line 4 one has
Φk +Ψj∗ = ck,j∗ . By dual feasibility, we have in addition

Φk +Ψjlast ≤ ck,jlast , Φi +Ψj∗ ≤ ci,j∗ .

Combining these four (in-)equalities we get

ck,j∗ + ci,jlast ≤ ck,jlast + ci,j∗ .

If xk > xi, then by (13) we have yj∗ ≥ yjlast . So j∗ < jlast can only happen if yj∗ = yjlast and thus we may
also choose jlast as minimizing index. Therefore, we may impose the constraint j∗ ≥ jlast in line 3. In the
case xk = xi, assume jlast would not be a minimal index in line 3, i.e.

ck,j∗ −Ψj∗ < ck,jlast −Ψjlast = Φi,

where in the last equality, we used xk = xi. Since L[i] = jlast, one must have that the dual constraint for
(i, jlast) must be active. This would imply that the dual constraint for (i, j∗) is violated, which contradicts
the induction hypothesis.

Now during iteration k, the change of Φk in line 4, by construction, preserves (III) and (V). Assume we
enter Case 1. The assignment function L is not changed, hence (VI) and (VII) remain preserved, and since
Φk = λ, (IV) is extended to i = k. Assume we enter Case 2. Then we have Lk = j∗, Φk +Ψj∗ = ck,j∗ and
Φk < λ. Hence, (VI) remains true, and (IV) is extended to i = k. If we choose j∗ > jlast (which is possible
by Lemma 5.1), we preserve (VII).

Case 3. We now turn to Case 3.

Lemma 5.2. In each iteration of the main loop of Algorithm 1, when we enter Case 3, i.e. Φk < λ and
j∗ = jlast, let i be the index such that xi is currently assigned to yjlast . Then xi = xi′ for all i′ ∈ [i : k − 1].
If i < k − 1, then one must have Φi = λ.

Proof. Clearly, i < k (since it was assigned during a previous iteration). In the following, let f(x) =
c(x, yjlast)−Ψjlast , which is convex in x ∈ R. By (VI) we have Φi = c(xi, yjlast)−Ψjlast = f(xi) ≤ λ, by the
current iteration of the main loop we have Φk +Ψjlast = c(xk, yjlast) = f(xk) < λ. Let now i′ ∈ [i+1, k− 1].
By monotonicity of L, (VII), if L[i′] ̸= −1, then we would need L[i′] > jlast, which contradicts the definition
of jlast. Therefore L[i′] = −1 and therefore by (IV) we must have Φi′ = λ. By (V) we must also have
Φi′ ≤ f(xi′), and by convexity of f , f(xi′), since f(xi) ≤ λ, f(xk) < λ, this can only happen if xi′ = xi, and
Φi = f(xi) = λ.

This means that if all points are distinct, then we must have i = k − 1, and find ourselves in the main
loop of Algorithm 2, see below.
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Remark 5.3. If points are not necessarily distinct (at least up to numerical rounding errors), and we find
i < k− 1, then the situation can be remedied by setting L[i] = −1, L[k] = j∗, which preserves (VI), (IV) and
(VII). We will add this to the algorithms in Section 5.2.

We now study Algorithm 2 to resolve the conflict. In addition to the items above, at the beginning of
each iteration of the main loop of Algorithm 2 the following is preserved:

VIII. There are indices jmin ≤ j∗, imin ≤ k−1 with j∗− jmin = (k−1)− imin such that L[imin+ r] = jmin+ r
for r ∈ [0 : (k − 1)− imin], Φi+r +Ψjmin+d−1 = ci+r,jmin+d−1 for r ∈ [1 : (k − 1)− imin].

This is clearly true before the first iteration, when imin = k− 1 and jmin = j∗. In each iteration of the main
loop we then seek the largest possible value ∆ ≥ 0 such that by setting Φi ← Φi + ∆ for i ∈ [imin, k] and
Ψj ← Ψj − ∆ for j ∈ [jmin, j

∗] we preserve all items (I) to (VII). Clearly the delicate ones are (III) and
(V). To preserve the former, we ensure that ∆ ≤ λ∆. To preserve the latter, we do not need to worry about
the Ψj , j ∈ [jmin : j∗], since they are decreased, but we need to consider all constraints Φi + Ψj ≤ ci,j for
i ∈ [imin : k], j ∈ [1 : jmin − 1] ∪ [j∗ + 1 : m]. By the following lemma, we see that this can be reduced to
checking the two constraints for (imin, jmin − 1) and (k, j∗ + 1), which is the role of the variables α and β in
Algorithm 2.

Lemma 5.4. In the above situation, one has that

min
i∈[imin:k],
j∈[j∗+1:m]

ci,j − Φi −Ψj = ck,j∗+1 − Φk −Ψj∗+1,

min
i∈[imin:k],

j∈[1:jmin−1]

ci,j − Φi −Ψj = cimin,jmin−1 − Φimin −Ψjmin−1,

if j∗ < m and jmin > 1 respectively.

Proof. We start with the first equation and begin by showing that

ci,j − Φi −Ψj ≥ ck,j − Φk −Ψj (14)

for i ∈ [imin : k], j ∈ [j∗ + 1 : m]. We get this by combining Φi ≤ ci,j∗ − Ψj∗ , Ψj∗ = ck,j∗ − Φk and the
Monge property of cost matrix, (13), ck,j ≤ ci,j + ck,j∗ − ci,j∗ . Next, observe that Ψj = λ for j ∈ [j∗+1 : m],
since these values have not yet been changed since the initialization, and Ψj∗ ≤ λ. Also we know that
Φk = ck,j∗ −ψj∗ ≤ ck,j −ψj for all j ∈ [1 : m]. Combining this, we get ck,j∗ ≤ ck,j for j ∈ [j∗ +1 : m]. Since
f : y 7→ c(xk, y) is convex, and f(yj∗) ≤ f(yj) for j ≥ j∗, we must have that f is non-decreasing after yj∗ ,
and therefore among all indices j ≥ j∗, the smallest one attains the minimum.

Now we turn to the second equation. In complete analogy to (14) we show that ci,j − Φi − Ψj ≥
cimin,j −Φimin −Ψj for i ∈ [imin : k], j ∈ [1 : jmin − 1]. Arguing as in Lemma 5.1, we can show a minimizing

index j can be chosen such that it is not smaller than ĵ, where ĵ is the largest index among the assigned yj ,

that is less than jmin (if such an assigned point exists, otherwise just let ĵ = 0 in the following). Consequently,
all yj points in [ĵ+1 : jmin−1] must be unassigned and therefore have Ψj = λ. Arguing then via the convexity
of c as in the previous paragraph, we can show that a minimizing j must be given by jmin − 1.

The selection of Cases 3.1, 3.2 or 3.3 depends now on which of the three bounds λ∆, α, or β is small-
est. Consequently, each of the implied updates of the dual variables in the three cases preserves the dual
constraints and it is easy to see that by property (VIII) each of the conflict resolutions in Cases 3.1, 3.2
and 3.3a preserve all other conditions (I) to (VII). For instance, when λ∆ is minimal, element xi∆ becomes
unassigned, however we then have Φi∆ = λ as required by (IV).

We are left with discussing Case 3.3b, i.e. when β is minimal among the three bounds and yjmin−1 is
already assigned. In complete analogy to Lemma 5.2 we can prove the following.

Lemma 5.5. In each iteration of the main loop of Algorithm 2, when we enter Case 3.3b, i.e. Φimin
< λ

and yjmin−1 is already assigned, let i be the index such that xi is currently assigned to yjmin−1. Then xi = xi′

for all i′ ∈ [i : imin − 1]. If i < imin − 1, then one must have Φi = λ.
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As above, this means that if all points are distinct, then i = imin − 1, we can set imin ← imin − 1,
jmin ← jmin − 1, note that we satisfy Φimin + Ψjmin = cimin,jmin and thus preserve (VIII) before the next
iteration in Algorithm 2.

Remark 5.6. If points are not all distinct and if i < imin − 1, then we must have Φi = λ, thus we can
unassign xi and yjmin−1, and then proceed as if yjmin−1 were unassigned and resolve the conflict as in Case
3.3a.

5.2 Full algorithm versions and complexity

We now give more complete pseudo code versions of the Algorithms 1 and 2, see Algorithms 1 and 2.
The main purpose is to reach a quadratic worst case time complexity. Our algorithm can be seen as a
specialization of the Hungarian method, exploiting the particular one-dimensional structure of the cost
and dealing consistently with the option to discard mass for a cost λ. The changes are explained below,
subsequently some additional changes (for duplicate and boundary handling) are described in plain text,
and finally we show how to determine the time complexity bound.

Algorithm 1: opt-1d

Input: {xi}ni=1, {yj}mj=1, λ
Output: L, Ψ, Φ

1 Initialize Φi ← −∞ for i ∈ [1 : n], Ψj ← λ for j ∈ [1 : m] and Li ← −1 for i ∈ [1 : n],
2 jlast ← 1
3 for k = 1, 2, . . . n do
4 j∗ ← argminj∈[jlast:m] c(xk, yj)−Ψj

5 Φk ← min{c(xk, yj∗)−Ψj∗ , λ}
6 if Φk = λ then
7 [Case 1] No update on L

8 else if jmin − 1 unassigned then
9 [Case 2] Lk ← j∗, jlast ← j∗

10 else
11 [Case 3] Run Algorithm 2.

Implemented modifications compared to Algorithms 1 and 2. Compared to Algorithm 1, in Al-
gorithm 1 we have added the variable jlast for improved handling of duplicate points (or limited numerical
precision), see Remark 5.3. Note that initializing jlast ← 1, even when no points are yet assigned, yields the
desired behaviour. Additional adaptations related to this are discussed in the paragraph below.

Compared to Algorithm 2, there are several adaptations to Algorithm 2.
The dual variables Φ and Ψ are not updated during every loop of the algorithm but only once, when the

conflict is resolved. This is handled via the auxiliary variable v and the auxiliary array d. The former stores
the total increment that will need to be applied to Φk at the end, in addition di stores the value of v at the
time when i was added to the ‘chain’, therefore v− di will be the necessary increment of Φi at the end. This
trick (which is also known for the Hungarian method) removes the necessity to loop over the whole chain to
update the dual variables during each iteration of the main loop in Algorithm 2 and thus reduces the worst
case time complexity from cubic to quadratic.

Similarly, the index of the dual variable Φi that is currently closest to λ is not determined from scratch
during each iteration. Instead, when case 3.3b is entered, the old best value is first reduced by β, then
compared with the new competitor imin (after updating imin), and updated if necessary.

Additional recommended modifications to algorithm. In lines 5 and 6 of Algorithm 2 boundary
checks should be added. E.g. α can only be set as described if j∗ < m, otherwise it should be set to +∞.
Likewise, β can only be set as described if jmin > 1 and should otherwise be set to +∞. To keep track of
which yj are assigned one can use a boolean array of size m, initialized with false, and entries corresponding
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Algorithm 2: sub-opt-full

Input: ({xi}ni=1, {yj}mj=1, k, j
∗, jlast, L, Φ, Ψ)

Output: (Updated L, Φ, Ψ, optimal for OPT({xi}ki=1, {yj}mj=1), and jlast)
1 Initialize imin ← k − 1, jmin ← j∗.
2 Initialize v ← 0, dj ← 0 for j ∈ [1 : m], dk ← 0, dk−1 ← 0.
3 i∆ ← argmini∈[k−1:k](λ− Φi), λ∆ ← λ− Φi∆

4 while true do
5 α← c(xk, yj∗+1)− Φk − v −Ψj∗+1

6 β ← c(ximin , yjmin−1)− Φimin −Ψjmin−1

7 if λ∆ ≤ min{α, β} then
8 [Case 3.1]
9 v ← v + λ∆

10 for i ∈ [imin, k − 1] do
11 Φi ← Φi + v − di, ΨLi ← ΨLi − v + di

12 Φk ← Φk + v
13 Li∆ ← −1, Lk ← j∗

14 for i ∈ [i∆ + 1 : k − 1] do
15 Li ← Li − 1

16 return

17 else if α ≤ min{λdiff , β} then
18 [Case 3.2]
19 v ← v + α
20 for i ∈ [imin, k − 1] do
21 Φi ← Φi + v − di, ΨLi ← ΨLi − v + di

22 Φk ← Φk + v
23 Lk ← j∗ + 1, jlast ← j∗ + 1
24 return

25 else
26 v ← v + β
27 if jmin − 1 unassigned then
28 [Case 3.3a]
29 for i ∈ [imin, k − 1] do
30 Φi ← Φi + v − di, ΨLi ← ΨLi − v + di

31 Φk ← Φk + v
32 Limin ← jmin − 1, Lk ← j∗

33 for i ∈ [imin + 1 : k − 1] do
34 Li ← Li − 1

35 return

36 else
37 [Case 3.3b]
38 dimin−1 ← v, λ∆ ← λ∆ − β,
39 imin ← imin − 1, jmin ← jmin − 1
40 if λ− Φimin < λ∆ then
41 λ∆ ← λ− Φimin , i∆ ← imin
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to assigned points are set to true. This can be used to distinguish between cases 3.3a and 3.3b. Alternatively,
an ‘inverse’ version of L can be maintained, where L−1[j] will store the index i of point xi to which point yj
is assigned (and −1 otherwise). This has to be updated consistently with L. The latter will be useful when
dealing with duplicate points according to Remarks 5.3 and 5.6 at the beginnings of case 3 and case 3.3b
respectively.

Worst case time complexity. In Algorithm 1, initialization of the arrays Φ, Ψ and L requires Θ(n+m)
steps. The main loop runs exactly n times. Determining j∗ requires O(m) steps (using the particular
structure of c and Ψj = λ for j > j∗ one could reduce this further, see Lemma 5.4, but we leave such
optimizations for future work). Cases 1 and 2 take Θ(1) steps. Let us now consider case 3 and Algorithm
2. Initialization takes Θ(m) for setting up d (although we note that this initialization could be skipped).
Cases 3.1, 3.2 and 3.3a are each entered only once, right before termination of the sub-routine, and they
have a complexity of O(n) (iterating over the chain for a fixed number of times to adjust L and the duals).
Case 3.3b, as well as maintaining the variables α, β and λ∆ have a complexity of Θ(1) per iteration and
there are O(n) iterations. Hence, Algorithm 2 in its current form has a complexity of O(max{m,n}), and
therefore finally Algorithm 1 has a complexity of O(n ·max{m,n}). During the proof we have pointed out
some potential for optimizing the algorithm for the regime when n≪ m.

6 OPT defines a metric

When the cost function c(x, y) is the p-th power of a metric, similar to OT, OPT can also define a metric in
M+(Ω). For finite discrete µ, ν, a similar result has been proposed by [13, Theorem 2.2]. Here we propose
a more general version:

Theorem 6.1 (OPT defines a metric). If c(x, y) : Ω2 → R+ is defines as c(x, y) = Dp(x, y) for some metric
D defined on Ω and λ > 0, then (OPTλ(·, ·))1/p defines a metric inM+(Ω).

Proof. It is straightforward to show (OPTλ(·, ·))1/p is symmetric and (OPTλ(µ, ν))
1/p = 0 if and only if

µ = ν. For the triangle inequality, let Ω̃, ∞̃, µ̃, ν̃,K denote the corresponding concepts as defined in section
2. By Lemma 3.2, we can replace the cost function Dp(x, y) by Dp(x, y) ∧ 2λ in the OPT problem, and its
optimal value is unchanged. That is

OPTλ(µ, ν) = inf
π∈Π≤(µ,ν)

(Dp(x, y) ∧ 2λ)dγ + λ((µ(Ω)− (π1)#γ(Ω)) + (ν(Ω)− (π2)#γ(Ω))).

In addition, by proposition 2.1, we have

γ 7→ γ̂ = γ + (µ− γ0)⊗ δ∞̂ + δ∞̂ ⊗ (ν − γ1) + (|γ|+ α)δ∞̂,∞̂

is a bijection between Π≤(µ, ν) and Π(µ̂, ν̂), where α = K− (|µ|+ |ν|). Let C(γ;µ, ν, λ) denote the objective
function of OPTλ(µ, ν). Follows the section 3.1 in [13], we define D′(x, y) : Ω ∪ {∞̂} → R such that

(D′)p(x, y) =


Dp(x, y) ∧ 2λ if (x, y) ∈ Ω

λ if x ∈ Ω, y = ∞̂ or vise verse

0 if x = y = ∞̂

and D′ defines a metric. Furthermore, we define the following OT problem

OT(µ̂, ν̂) = inf
γ∈Γ(µ̂,ν̂)

∫
(D′)p(x, y)dγ(x, y)

and let C(γ̂; µ̂, ν̂) to be the corresponding objective function, i.e.

C(γ̂; µ̂, ν̂) :=

∫
Ω̂

(D′)2(x, y)dγ̂(x, y).

For each γ ∈ Π≤(µ, ν), we have
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C(γ;µ, ν, λ)

=

∫
Ω2

(Dp(x, y) ∧ 2λ)dγ + λ((µ− π1#γ)(Ω) + (ν − π2#γ)(Ω))

=

∫
Ω2

(D′)p(x, y)dγ +

∫
Ω×{∞̂}

λd((µ− π1#γ)⊗ δ∞̂) +

∫
{∞̂}×Ω

λd(δ∞̂ ⊗ (ν − π2#γ)) +
∫
{(∞̂,∞̂)}

0dδ(∞̂,∞̂)

=

∫
Ω2

(D′)p(x, y)dγ̃ +

∫
Ω×{∞̂}

(D′)p(x, y)dγ̃ +

∫
{∞̂}×Ω

(D′)p(x, y)dγ̃ +

∫
{(∞̂,∞̂)}

(D′)p(x, y)dγ̃

=

∫
Ω̃2

(D′)2(x, y)dγ̃

= C(γ̂; µ̃, ν̃).

Combining with the fact γ 7→ γ̂ is bijection, we have OPTλ(µ, ν) = OT(µ̂, ν̂).
Choose µ1, µ2, µ3 ∈M+(Ω) and let K = µ1(Ω) + µ2(Ω) + µ3(Ω). Define µ̃1, µ̃2, µ̃3 introduced in section

2 of supplementary material. Since OT (·, ·)1/p defines a metric, we have

(OT (µ̃1, µ̃3))
1/p ≤ (OT (µ̃1, µ̃2))

1/p + (OT (µ̃2, µ̃3))
1/p.

Therefore:
(OPTλ(µ1, µ3))

1/p ≤ (OPTλ(µ1, µ2))
1/p + (OPTλ(µ2, µ3))

1/p.

7 Proof of Theorem 5.2

First we claim SOPTλ(·, ·) : (M+(Ω))
2 → R+ is a well defined function. It is clear SOPTλ(·, ·) is a function

with domainM+(Ω)
2 and co-domain R ∪ {±∞}. Pick µ, ν, we will show SOPTλ ∈ [0,∞). We have

SOPTλ(µ, ν) =

∫
Sd−1

OPTλ(θ)(⟨θ, ·⟩#µ, (⟨θ, ·⟩#ν) dσ(θ) ≥ 0 (15)

where the inequality follows from the fact OPTλ(θ)(⟨θ, ·⟩#µ, (⟨θ, ⟩#ν) ≥ 0,∀θ. It remains to show SOPTλ(µ, ν) <
∞. We have

SOPTλ(µ, ν) ≤
∫
Sd−1

λ(θ)(∥⟨θ, ·⟩#µ∥TV + ∥⟨θ, ·⟩#ν∥TV) dσ(θ)

= (µ(Ω) + ν(Ω))

∫
Sd−1

λ(θ) dσ(θ)

<∞

where the first inequality follows by plugging zero measure into the cost function in (3); the second inequality
holds since λ is an L1 function.

Next, we will show µ = ν iff SOPTλ(µ, ν) = 0. If µ = ν, we have for every θ, ⟨θ, ⟩#µ = ⟨θ, ⟩#ν and
thus OPTλ(θ)(⟨θ, ·⟩#µ, ⟨θ, ·⟩#ν) = 0. Therefore SOPTλ(µ, ν) = 0. For the reverse direction, we suppose

SOPTλ(µ, ν) = 0. Since supp(σ) = Sd−1, we have for almost every θ, OPTλ(θ)(⟨θ, ·⟩#µ, ⟨θ, ·⟩#ν) = 0.
For every θ, since λ(θ) > 0, and OPTλ(θ)(·, ·) is a metric when p = 1 (see [7, Proposition 2.10] or [16,
Proposition 5]) or the p-th power of a metric (see theorem 6.1, or [13, Theorem 2.2])when p ≥ 1, we have
⟨θ, ·⟩#µ = ⟨θ, ·⟩#ν. By the injectivity of Radon transform on measures (see [2, Proposition 7]), we have
µ = ν.

For symmetry, we have

SOPTλ(µ, ν) =

∫
Sd−1

OPTλ(θ)(⟨θ, ·⟩#µ, ⟨θ, ⟩#ν) dσ(θ)

=

∫
Sd−1

OPTλ(θ)(⟨θ, ·⟩#ν, ⟨θ, ·⟩#µ) dσ(θ)

= SOPTλ(ν, µ) (16)
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where the second equality follows from the fact OPTλ(θ)(·, ·) is a metric for each θ.
For the triangle inequality, we choose µ1, µ2, µ3 and have:

SOPTλ(µ1, µ3)
1/p

=

(∫
Sd−1

OPTλ(θ)(⟨θ, ·⟩#µ1, ⟨θ, ·⟩#µ3) dσ(θ)

)1/p

≤
{∫

Sd−1

[
(OPTλ(θ)(⟨θ, ·⟩#µ1, ⟨θ, ·⟩#µ2)

1/p + (OPTλ(θ)(⟨θ, ·⟩#µ2, ⟨θ, ·⟩#µ3))
1/p

]p
dσ(θ)

}1/p

≤
(∫

Sd−1

OPTλ(θ)(⟨θ, ·⟩#µ1, ⟨θ, ·⟩#µ2) dσ(θ)

)1/p

+

(∫
Sd−1

OPTλ(θ)(⟨θ, ·⟩#µ1, ⟨θ, ·⟩#µ2) dσ(θ)

)1/p

= SOPTλ(µ1, µ2)
1/p + SOPTλ(µ2, µ3)

1/p

where the first inequality follows from the fact OPTλ(θ)(·, ·) is the p-th power of a metric for each θ; the

second inequality follows from Minkowski inequality in Lp(Sd−1).

8 Application in Color Adaptation

Transferring colors between images is a classical task in computer vision and image science. Given two
images, the goal is to impose on one of the images (source image) the histogram of the other image (target
image). Optimal transport-based approaches have been developed and achieved great success in this task [6,
2, 18, 9]. However, in the balanced OT setting, the OT-based approach requires normalizing the histograms
of (sampled) colors, which may lead to undesired performance. For example, suppose the majority of a target
image is red, (e.g. an image of evening sunset) and the majority of a source image is green (e.g. image of
trees). Then balanced-OT-based approaches will produce a red tree in the result. To address this issue, [1]
applied the SPOT-based approach which will match all the pixels in the source image to partial pixels in
the target image.
Our method. Inspired by [9, 1], our method contains the following three steps: First, we sample pixels
from the source and target image by k-mean clustering (or another sampling method). Second, we transport
the sampled source pixels into the target domain. If OT or entropic OT is applied, it can be done by the
optimal transportation plan; if sliced-OT is applied, the source pixels would be updated iteratively for each
slice based on the gradient of 1-D OT with respect to the source pixels (see equation (46) in [2], or line 5 in
our algorithm 3). In our method, we apply the transportation plan from OPT. Third, we reconstruct the
source image based on the transported source pixels (e.g. see Equation 4.1 in [9]).
Experiment. We first normalize all the pixels in the source and target images to be in range [0, 1], then
we use k-means clustering to sample 5000 pixels from the source image and 10000 pixels from the target
image. We compare the performance of the OT-based and Entropic-OT based domain adaptation functions
in PythonOT [12] (ot.da.EMDTransport and ot.da.SinkhornTransport) whose OT’s solver is written in C++
1, SPOT [1] and our method based on sliced optimal partial transport. For our method, we test it in two
schemes, λ = 10.0 and λ < 2.0. In the first case, λ achieves the maximum of distance of two (normalized)
pixels, that is, we will transport all the source pixels into target domain. In second case, we choose λ and
theoretically, only partial source pixels will be transported into the target domain.
Performance. In these examples, the OT-based approach which matches all (sampled) pixels of the source
image to all pixels of a target image can lead to undesired results. For example, in the second row of Figure
1, the third image has dark blue on the sky and red color on the ground. This issue is alleviated in SPOT
and our method. In our method, when λ = 5.0, we will transfer all the (sampled) pixels from source to
target and the result is similar to the result of SPOT 2. When λ < 2.0, the result image is closer to the
source image. OT-based method requires 40-50 seconds (we set the maximum iteration number of linear
programming to be 1000,000); Partial OT method requires 80-90 seconds (the # of projections is set to be
400) and our method requires 60-80 seconds (the # of projections is set to be 400). The data type is 32-bit
float number and the experiment is conducted on a Linux computer with AMD EPYC 7702P CPU with 64
cores and 256GB DDR4 RAM.

1We modify their code to increase the speed.
2We conjecture the two results are not exactly the same due to the randomness of projections.
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Source                                 target                                OT                                       SPOT   ours(𝜆 = 10) ours 𝜆 ≤ 2

Figure 1: We transfer colors from source image to the target image by the methods based on optimal
transport [9], SPOT [1] and our SOPT. For our method, we set λ = 10 and a small value less than 2. Image
via Flickr: Facade by Phil Whitehouse, palace by Neil Williamson, clouds by Tim Wang, air balloon by Kirt
Edblom, roses by Felix Schaumburg.
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[5] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. An interpolating distance
between optimal transport and Fisher–Rao metrics. Foundations of Computational Mathematics, 18(1):1–44,
2018. 1
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Point cloud             ICP (Du)                      SPOT                   Ours   

Figure 2: We visualize the results of ICP (Du) [8], ICP (Umeyama) [20], SPOT [1] and our method. The
datasets contains Stanford Bunny, Stanford dragon, Mubble sitting and Witch Castle.
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