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1. The KL divergence against the prior

Recall that the total loss in Eq. (2) of the main text [10] contains two terms, the KL divergence against the prior p(θ) and
the expected negative log likelihood loss. Here we look at the former term and simplify it.

General case: Mixture of Gaussian distributions. Let us first consider a mixture of Gaussian distributions and then
apply the obtained result to deep ensembles and stochastic ensembles. The Gaussian mixture case has been recently addressed
in Refs. [1, 4]. Here we perform a similar derivation, however, differently to Ref. [4] we do not drop any contributions to the
loss and differently to Ref. [1] we derive a simpler upper bound to the repulsive-force correction.

Take a mixture of Gaussian distributions,

q(θ) =

L∑
i=1

ci N (θ;µi, σ
2
i Idim(θ)), (1)

where µi ∈ Rdim(θ) is the mean and σi ∈ R+ is the standard deviation corresponding to the multivariate normal distribution
N (θ;µi, σ

2
i Idim(θ)), and ci are some positive constants that sum to 1. Here i = 1, ..., L, where L is the number of Gaussians

in the mixture.
We are interested in computing the following KL divergence:

KL( q(θ) || p(θ) ) =
∫

dθ q(θ) log q(θ)−
∫

dθ q(θ) log p(θ)

= −H(q(θ))−
∫

dθ q(θ) log p(θ),

(2)

where H(q(θ)) is the entropy of q(θ).

General case: The entropy contribution. Let us consider the entropy term

H(q(θ)) = −
L∑

i=1

ci

∫
dθN (θ;µi, σ

2
i Idim(θ)) log q(θ)

= −
L∑

i=1

ci

∫
dθN (θ; 0, Idim(θ)) log q(µi + σiθ)

= −
L∑

i=1

ci

∫
dθN (θ; 0, Idim(θ)) log

L∑
j=1

cj

(σj

√
2π)dim(θ)

exp
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−||µj − µi − σiθ||2

2σ2
j

]

= −
L∑

i=1

ci

∫
dθN (θ; 0, Idim(θ)) log

L∑
j=1

cj
(σj)dim(θ)

exp

[
−σ2

i

σ2
j

||(µj − µi)/σi − θ||2

2

]
+

L∑
i=1

ci
2

dim(θ) log 2π.

(3)

Now, the leading contribution is at j = i and without making any assumptions yet we separate it from the remaining
sub-leading term, dubbed RF:

H(q(θ)) =

L∑
i=1

ci
2

[∫
dθN (θ; 0, Idim(θ))||θ||2 + dim(θ)(log σ2

i + log 2π)

]
−

L∑
i=1

ci log ci − RF

=

L∑
i=1

ci
2

dim(θ)(1 + log 2π + log σ2
i )−

L∑
i=1

ci log ci − RF,

(4)



where

RF =
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2
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2
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(5)

Let us assume that σi = σ for all indices i. In this case the RF term reads as

RF =
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(6)

Thus, the term RF is indeed exponentially small in the limit of small σ and assuming µi ̸= µj for all pairs of indices
i ̸= j. Also, note that RF ≤

∑L
i=1

∑
i ̸=j

√
cicj ≤ (L− 1). We can derive a better upper bound than (L− 1) by applying the

Cauchy–Schwarz inequality for integrals to Eq. (5) with σi = σ:
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(7)

Thus, the correction RF can be approximated via Eq. (6) that takes form of a repulsive force in the parameter space and it
is exponentially small in the limit of small σ.



General case: The prior contribution. Let us consider the normally distributed prior p(θ) = N (θ; 0, λ−1Idim(θ)). Then,
the second term in Eq. (2) will simplify to∫

dθ q(θ) log p(θ) =

L∑
i=1

ci

∫
dθN (θ;µi, σ

2
i Idim(θ)) log N (θ; 0, λ−1Idim(θ))

= −
L∑

i=1

ci
2

[∫
dθN (θ;µi, σ

2
i Idim(θ))λ||θ||2 + dim(θ) log 2π − dim(θ) log λ

]
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L∑

i=1

ci
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λσ2

i + log 2π − log λ
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.

(8)

Deep ensembles. Take a deep ensemble with the corresponding variational inference ansatz

q(θ) =
1

K

K∑
k=1

N (θ;ωk, σ
2Idim[θ]). (9)

The KL divergence against the normal prior is then given by

KL( q(θ) || p(θ) ) = 1

2

[
dim[θ](λσ2 − log σ2 − 1− log λ) +

1

K

K∑
k=1

λ||ωk||2
]
− log K + RF, (10)

with

RF ≤ min

 1

K

K∑
k=1

∑
k′ ̸=k

exp

(
−||ωk − ωk′ ||2

8σ2

)
,
√
K − 1

 . (11)

The repulsive-force contribution RF bounded by Eq. (11) is exponentially small in the limit of small σ. It therefore
can be omitted when considering regular deep ensembles with δ-function like members. Note that the repulsive-force
upper bound

√
K − 1 is larger than the KL loss reduction due to ensembling logK. This is consistent with our expec-

tation that one should not get a reduction in the KL loss by simply rewriting one network as an ensemble of identical members.

Stochastic ensembles. Consider a stochastic ensemble described by the following distribution, see Sec. 5 of the main
text [10]:

q(θ) =
1

K

K∑
k=1

N∏
n=1

q̂ωl,n,k
(θl,n), (12)

with

q̂ωl,n,k
(θl,n) = p

(1)
l+1, n N ( θl,n;ω

(1)
l,n,k , σ

2 Idim[θl,n] ) + p
(2)
l+1, n N ( θl,n;ω

(2)
l,n,k , σ

2 Idim[θl,n] ). (13)

First, we reduce Eq. (12) to the following expression

q(θ) =

K∑
k=1

∑
{i1,...,iN}

p
{i1,...,iN}
l+1 N (θ;ω

{i1,...,iN}
l,k , σ2Idim[θ]), (14)

where

p
{i1,...,iN}
l+1 =

1

K

N∏
n=1

p
(in)
l+1,n

ω
{i1,...,iN}
l,k = [(ω

(i1)
l,1,k)

T , (ω
(i2)
l,2,k)

T , ..., (ω
(iN )
l,N,k)

T ]T .
(15)



Here we simply collected distinct terms corresponding to different realizations of the parameters and {i1, ..., iN} labels the
indices corresponding to these realizations. in = 1, 2.

Now, the KL divergence against the normal prior is given by

KL( q(θ) || p(θ) ) = 1

2
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with

RF2 ≤
K∑
k

∑
k′ ̸=k

∑
{i1,...,iN}

∑
{j1,...,jN}
̸={i1,...,iN}

√
p
{i1,...,iN}
l+1 p

{j1,...,jN}
l+1 exp

(
−
||ω{i1,...,iN}

l,k − ω
{j1,...,jN}
l,k′ ||2

8σ2

)
. (17)

The repulsive-force contribution RF2 is bounded by Eq. (17) that consists of exponentially decaying terms over all possible
parameter realizations weighted by the probabilities of obtaining these parameter realizations. This term is exponentially
small in the limit of small σ and large N . The conventional dropout (SE1), DropConnect (SE2) and non-parametric dropout
(SE3) stochastic ensembles are realized by assuming the infinitesimal (machine-precision) limit of σ [10] and therefore the
RF2 contribution can be dropped in these cases.

2. Metrics
Predictive Entropy. The predictive entropy is defined by

H(y∗|x∗, D) = −
∑
c

p(y∗ = c |x∗,D) log p(y∗ = c |x∗,D), (18)

where x∗ is input, D is the training data, c is the output class index, and p(c|x∗,D) is the posterior output prediction. The
output probabilities p(c|x∗,D) are computed by sampling the network parameters θ from the Bayesian posterior p(θ|D) and
then taking the average of softmax outputs.

Mutual Information. The (average) mutual Shannon information contained between network parameters θ and data
sample x∗ conditioned on the training dataset D can be conveniently calculated using the following expression [5] in terms
of the predictive distribution

MI(θ, y∗|x∗, D) = H(y∗|x∗, D)− Ep(θ|D) [H(y∗|x∗, θ)] . (19)

Thus, MI(θ, y∗|x∗, D) is the difference between the posterior entropy given the dataset D and expected entropy for likelihood
p(y∗|x∗, θ).

Agreement. We use the following formula [9] for computing agreement between two posteriors p1 and p2

Agr (p1, p2) =
1

n

n∑
i=1

I
[
argmax

c
p1(y = c |xi) = argmax

c
p2(y = c |xi)

]
, (20)

where I[·] is the indicator function, the sum is over all test data samples xi, and n is the test dataset size.



Variance. The variance between two posteriors p1 and p2 is defined as follows [9]

Var (p1, p2) =
1

2n

n∑
i=1

∑
c

|p1(y = c |xi)− p2(y = c |xi)| . (21)

3. Toy classification problem
Data. The two dimensional training data is produced using the following parametrization: The data contains 2D points

(r cos(θ)/20, r sin(θ)/20), where r = 2θ+π for class 1 and r = 2θ−π for class 2. Here we have θ = 2π
√
ϵ with uniformly

distributed ϵ ∈ [0, 1]. We also add Gaussian noise of different amplitudes to the three datasets in Fig. 1 of the main text [10].
The chosen noise amplitudes are 0.05, 0.1 and 0.125. For each dataset we produce 2000 data points, 1000 per class. In this
way we obtain three training datasets and train each ensemble method on the same data.

The test datasets sample from two domains, in-domain Din ∈ [−1, 1]2 and out-of-domain Dout ∈ [−10, 10]2. Each dataset
consists of vertices of 100× 100 equally spaced grid, in total 10000 points per test dataset.

Model. The model is a feed forward neural network with two hidden layers of 10 neurons, ReLU activations, and softmax
output.

HMC. We implement 3 seperate HMC (NUTS) runs corresponding to each of the three toy datasets. Each computation
consists of 4 independent HMC chains. We produced 2000 parameter samples per chain after 2000 burn-in steps. The prior
variance is chosen to be 1.0.

To verify convergence of our HMC runs we computed the R̂ diagnostics [2]. We obtained that 100%, 99%, 90%, and 75%
of R̂ values corresponding to distinct parameters are smaller than 1.04, 1.02, 1.01, and 1.005 respectively. The R̂ values are
close to 1.0 indicating good convergence of HMC. We also looked at parallel coordinate and trace plots and did not observe
any unwanted patterns. As a last consistency check we looked at the agreement and variance between 1-chain and 4-chain
HMC posteriors. We obtained 99.6 , 99.9, 99.9 agreement and 0.006, 0.001, 0.001 variance for the in-domain datasets and
98.5, 99.7, 99.6 agreement and 0.009, 0.005, 0.004 variance for the out-of-domain datasets.

Ensembles. To stay consistent we always followed the same standard training procedure for each ensemble method: We
trained for 5000 epochs using Nesterov SGD optimization method with momentum 0.9, the batch size is 100, the starting
learning rate is 0.01 that was dropped by a factor of 10 after 2500 and 3750 epochs. We produced 1024 trained networks
per ensemble. For the dropout (SE1) and DropConnect (SE2) ensembles we fixed the dropout rate at 0.1 everywhere except
the output layer. We also tried to use larger dropout rates but they resulted in worse performance. This is expected for small
models.

MultiSWA. In the main text [10] we present results for the MultiSWA variety of MultiSWAG [11]. MultiSWA requires
only one inference per network at test time: We load trained networks from the regular ensemble and post train them for
additional 2000 epochs with high constant learning rate. We then compute the Stochastic Weight Averaging (SWA) of the
parameters to produce the SWA networks. We considered the following constant SWA learning rates: 0.01, 0.005, 0.001,
0.0005 and found the smallest to perform the best. Further reduction of the learning rate is not relevant as it would then be
similar to the learning rate of the original models, defeating the purpose of MultiSWA.

4. ResNet-20-FRN evaluated on CIFAR
Data. The training datasets consist of 4096 images randomly selected from CIFAR training datasets. Each network from

the same ensemble is trained on the same set of images without any data augmentation but the image selection may differ
between the ensembles. We evaluate on the test CIFAR-10 and CIFAR-100 datasets consisting of 10000 images. Robustness
to distribution shifts is tested on CIFAR-10-C and CIFAR-100-C. We evaluate on the images from the following 16 corruption
categories: fog, zoom blur, speckle noise, glass blur, spatter, shot noise, defocus blur, elastic transform, gaussian blur, frost,
saturate, brightness, gaussian noise, contrast, impulse noise, pixelate. For each corruption all 5 intensity levels are considered.

Model. The model is ResNet-20-FRN that is a residual network of depth 20 with batch normalization layers replaced with
filter response normalization (FRN). We note that we had to explicitly adjust the paddings of the convolutional layers with



Entropy
1e-3

MI
1e-3

Agr
1e-2

Var
1e-2

Entropy
1e-3

MI
1e-3

Agr
1e-2

Var
1e-2

Entropy
1e-3

MI
1e-3

Agr
1e-2

Var
1e-2

Toy-a (in-domain / out-of-domain) Toy-b (in-domain / out-of-domain) Toy-c (in-domain / out-of-domain)
NP Dropout

(SE3)
0.46
1.14

0.38
1.13

98.4
95.6

2.59
7.00

0.25
0.73

0.15
0.71

98.9
95.8

1.41
4.51

0.22
0.76

0.11
0.73

99.0
96.7

1.20
3.86

Table 1. Quantitative comparison of predictions obtained from HMC and non-parametric dropout ensemble SE3 with 8 test-time inferences
per model. The tests are done using data from Din = [−1, 1]2 (in-domain, top rows) and Dout = [−10, 10]2 (out-of-domain, bottom rows).
We considered all three different toy datasets. The considered metrics are agreement, variance, mean absolute difference of entropy and
mutual information estimates computed in respect to the full HMC runs. All variances are orders of magnitude smaller than quoted results
given the large ensemble sizes.

stride 2 in our PyTorch implementation to create an exact replica of ResNet-20-FRN architecture implemented in Ref. [9]
using Jax. This is because the padding for these layers contains a certain implementation mismatch in PyTorch and Jax.

Hamiltonian Monte Carlo. The HMC chains were loaded from the publicly available resource [8, 9]. For CIFAR-10 we
loaded 3 HMC chains of 291 checkpoints each. The first 50 of 291 checkpoints are used as burn-in as explained in Ref. [9]
so in total we used 723 parameter sets. Similarly, for CIFAR-100 we loaded 3 HMC chains of 200 checkpoints each (v2) and
neglected first 50 burn-in checkpoints. In total we evaluated using 450 parameter realizations in this case. For both datasets
the Gaussian prior has variance 0.2. For more details on the HMC computations see Ref. [9].

Ensembles. The training was done in the same way for each method. We followed a training procedure similar to
Refs. [3,6,7]: Each ensemble member was trained for 600 epochs with learning rate 0.1 that was dropped by a factor 10 after
200 and 400 epochs. We used Nesterov SGD optimizer with momentum 0.9. The batch size is 128. No early stopping was
used. L2 regularization was adjusted to match the Gaussian prior used in the HMC runs.

For the Monte Carlo dropout (SE1) and DropConnect (SE2) stochastic ensembles we applied a non-zero drop rate only
to the convolutional layers. The output and FRN layers were left unmodified because the considered parametric stochastic
methods SE1 and SE2 cannot be straightforwardly applied to these layers. The dropout operation was implemented by
randomly dropping individual neurons rather than neuron layers. We implemented SE1 and SE2 ensembles with drop
rates ranging from 0.1 to 0.5 and selected the drop rates producing the most accurate posteriors. For the ensembles trained
on CIFAR-10 the drop rate was tuned to 0.3 for SE1 and 0.2 for SE2. The network was altered in an analogous way for
CIFAR-100 but with drop rates 0.2 for both SE1 and SE2 ensembles. The non-parametric dropout ensemble SE3 was
implemented by applying the non-parametric dropout operation to every layer in the network, i.e. to each convolutional,
linear and FRN layer.

MultiSWA. For CIFAR classification we also implement the MultiSWA protocol and use its results as one of the
baselines. MultiSWA is implemented by post training the networks from the regular ensemble with some high learning rate.
In our tests we considered 0.05, 0.01, 0.005 constant learning rate schedulers and post trained for 300 epochs while saving
the average. For both CIFAR-10 and CIFAR-100 the learning rate 0.005 was found to perform the best.

Out-Of-Distribution Detection. To test the out-of-distribution detection (ODD) we train the ensembles on CIFAR-10 or
CIFAR-100 but test on a combined test dataset of CIFAR-10 and CIFAR-100. The ensembles are then asked to detect the
out-of-training data: The test images are sorted by the highest output probability, expecting the in-domain data to end up at
the top of the sorted list. The performance is quantified by calculating AUC-ROC as in Ref. [9].

5. Multiple test-time inferences per ensemble member
Toy model. In the main text [10] we always use one test-time inference per ensemble member. Here we complement these

results by implementing more test-time inferences. We choose to do 8 test-time inferences per member. The corresponding
data is provided in Table 1. We obtained exactly the same metric values (up to the assumed precision), indicating good
convergence of the posterior approximation for the chosen ensemble size 1024.



Acc Loss ECE Agr
1e-2

Var
1e-2

ODD Acc Loss ECE Agr
1e-2

Var
1e-2

ODD

CIFAR-10 CIFAR-100
Dropout

(SE1)
90.74
± 0.03

0.299
± 0.002

0.057
± 0.001

94.2
± 0.1

7.8
± 0.1

85.6
±0.1

68.78
± 0.32

1.156
± 0.001

0.128
± 0.004

77.6
± 0.2

21.5
± 0.1

73.7
±0.1

CIFAR-10-C (mean over corruptions) CIFAR-100-C (mean over corruptions)
Dropout

(SE1)
76.45
± 0.07

0.704
± 0.002

0.065
± 0.001

83.3
± 0.1

16.0
± 0.1

48.56
± 0.05

2.084
± 0.003

0.091
± 0.001

61.5
± 0.1

31.2
± 0.1

Table 2. Prediction accuracy (acc), test log-likelihood loss (loss), expected calibration error (ECE), agreement (agr), variance (var) and
out-of-domain detection (ODD) for stochastic ensembles based on Monte Carlo dropout (SE1) trained on the CIFAR datasets and evaluated
on the plain and corrupted CIFAR test datasets.

CIFAR. In the main text [10] only one inference at test time per ensemble member was considered. Here we present
the results obtained using 8 test-time inferences per member and list them in Table 2. The obtained values are closer to the
corresponding HMC data presented in Tables 2 and 3 of the main text [10] but the improvement is minor given that we use 8
times larger number of samples at test time.
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