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A. Evaluation Tasks

We compare all models by evaluating the encoder’s
frozen features on two downstream classification tasks: lin-
ear probe and fewshot. We chose to use simple classifiers
since they allow us to evaluate the features as-is and con-
duct a comprehensive hyperparameter sweep to ensure a
fair comparison. We explain the two evaluation setups in
more detail below. Our implementation can be found at
https://github.com/mbanani/lgssl.

Linear Probe Classification

We follow the linear probe evaluation proposed by Ko-
rnblith et al. [18] of training a logistic regression classi-
fier using the L-BFGS optimizer [22]. We follow prior
work [18,28] and perform a hyperparameter sweep over the
cost values in the logistic regression loss. We sweep over 96
values in log space from 10−6 to 106. During the hyperpa-
rameter sweep, we train on the train split and validate on the
valid split. We choose the cost value with the best valida-
tion performance and train a final classifier on the combined
train and validation instances. We use the PyTorch [27] im-
plementation of L-BFGS with all the default parameters ex-
cept for the maximum number of iterations, which is set to
1000 similar to CLIP [28]. Our evaluation metric depends
on the dataset, as shown in Tab. 1, to account for class im-
balance.

Few-Shot Classification

We also use fewshot classification as an evaluation for
frozen features. Prior work [34, 38] has shown that simple
classifiers on top of frozen features are strong baselines for
fewshot classification. More specifically, Wang et al. [38]
shows that when features are normalized (mean subtraction
and L2 normalization), a nearest neighbor classifier is a very
effective and strong baseline for fewshot classification. In-
spired by these results, we use a simple weighted nearest
neighbor classifier to evaluate pre-trained frozen features.

We set k to be the size of the support set and classify the
features as follows:

y′ = argmax
v

∑
(I,y)∈Dsupport

1[v=y]sim(f(I ′), f(I)) (1)

where 1[v=y] is an indicator variable that is 1 if y is the same
class as v and 0 other wise, sim(·, ·) is cosine similarity
between two vectors, f is the visual encoder, I ′ is the target
image, Dsupport is the support set.

We adopt 5-way, 5-shot classification as our fewshot
classification task. We sample five random classes for each
episode and then sample five images for each class in the
training set, resulting in 25 labeled training images. We also
sample 5 images for each class from the test set as our test
images. We use all available test images for classes with
less than five test images for that class. This is primarily
an issue for Caltech-101 [13]. We sample 5000 episodes
and compute the average test accuracy across all episodes.
We experimented with increasing the number of episodes
to 50000 to improve evaluation but noticed little change in
the mean performance. We also report the 95% confidence
interval for each dataset.

B. Evaluation Datasets

We list all the evaluation datasets used in Tab. 1. We
use TensorFlow datasets for evaluation to ensure easy repli-
cation [33]. For all datasets, we preprocess the images by
resizing the image so that its smaller dimension is 224 using
bilinear interpolation followed by a center crop to 224×224.
We use bilinear interpolation since improves performance
on low-resolution datasets such as CIFAR-10 and CIFAR-
100. We normalize the images using ImageNet’s mean and
standard deviation for pixel values for all models except for
pre-trained CLIP. For CLIP, we use their provided mean
and standard deviation values as they greatly impact per-
formance: an average gain of approximately 4% for linear
probe evaluation. We exclude Patch Camelyon from the
fewshot evaluation since it is a binary classification dataset.
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Table 1. Evaluation Datasets. Orange rows indicate datasets that
do not have an official validation split; we constructed one by ran-
domly holding out 20% of the official train split. Blue rows indi-
cate datasets that do not officially define splits; we randomly sam-
ple instances to construct non-overlapping splits. For ImageNet,
the validation set is used as the test set, and we construct a val-
idation set by randomly holding out 20% of the official training
split. ImageNet variants, highlighted in green, are all test sets for
models trained on ImageNet.

Dataset Classes Train Val Test Metric
Food-101 [1] 101 60600 15150 25250 accuracy
CIFAR-10 [20] 10 40000 10000 10000 accuracy
CIFAR-100 [20] 100 40000 10000 10000 accuracy
CUB-2011 [39] 200 5795 1199 5794 accuracy
SUN397 [41] 397 15880 3970 19849 accuracy
Stanford Cars [19] 196 6515 1629 8041 accuracy
FGVC Aircraft [23] 100 3334 3333 3333 mean-per-cls
DTD [8] 47 1880 1880 1880 accuracy
Oxford-IIIT Pets [26] 37 2944 736 3669 mean-per-cls
Caltech-101 [13] 102 2448 612 6084 mean-per-cls
Oxford Flowers [25] 102 1020 1020 6149 mean-per-cls
STL-10 [9] 10 4000 1000 8000 accuracy
EuroSAT [15] 10 5000 5000 5000 accuracy
RESISC45 [7] 45 3150 3150 25200 accuracy
Patch Camelyon [35] 2 262144 32768 32768 accuracy
ImageNet [10] 1000 1024934 256233 50000 accuracy
ImageNet A [17] 200 N/A N/A 7500 accuracy
ImageNet R [16] 200 N/A N/A 30000 accuracy
ImageNet v2 [29] 1000 N/A N/A 10000 accuracy
ImageNet Sketch [36] 1000 N/A N/A 50889 accuracy

We also include statistics for the ImageNet dataset evalua-
tions done in Appendix G.

C. Baselines

For fair evaluation, we retrained previous methods from
scratch with several methods reimplemented. We also pro-
vided several system-level comparisons using pre-trained
checkpoints provided by prior work. Below, we provide
additional details on our baselines.

Pre-trained model checkpoints

We use publicly available checkpoints of various pre-
trained models for sampling and experimental comparisons:
• SBERT [30]: We use two checkpoints from SBERT:
all-mpnet-base-v2 (MPNet backbone [31]), and
all-MiniLM-L12-v2 (MiniLM backbone [37]). Those
models were used for sampling, while MPNet was also
used as a frozen backbone in analysis experiments.

• CLIP [28]: We use checkpoints available in the official
Github repository1 for both system-level comparisons

1https://github.com/openai/CLIP

and sampling. We use the RN50 checkpoint in the system-
level comparisons to match the backbone for other mod-
els. We use the ViT-B/32 checkpoint for sampling to pro-
vide the strongest visual sampling performance in evalu-
ating different sampling modalities.

• ImageNet pre-trained model: We use the checkpoints
provided by torchvision package.2 For system-level
comparisons, we use the ResNet-50 IMAGENET1K V2
checkpoint [40] as it achieves better performance than
the original ResNet-50 checkpoint [14]. We also use
ViT-B/32 [11] checkpoint to compare with the sampling
strategy using a CLIP checkpoint.

• SimCLR [4]: We use the SimCLR v2 checkpoint pro-
vided by PyTorch Lightning Bolts.3 While SimCLR re-
leased some checkpoints for TensorFlow, we found that
converting them to PyTorch using the recommended tools
resulted in lower performance. We use the same check-
point for both sampling and system-level comparison.
Note that SimCLR only released models trained for 800
epochs.

• SimSiam [3]: We use the checkpoint trained with 512
batch size from the official Github repository4 as it more
closely matches our training setup.

• MoCo [6]: We use the official checkpoint for MoCo
v3.5 We use the checkpoint for the model trained for 100
epochs to match other checkpoints more closely.

• SwAV [2]: We use the official SwAV checkpoint.6 We
use the checkpoint trained for 100 epochs to match the
training duration of other methods. Unlike our imple-
mentation, the full SwAV model is trained using Multi-
Crop augmentation strategy.

Retrained models

We reimplement and retrain all baselines. When an official
implementation was available, we adapted it to fit within
our pipeline. For all models, we use a ResNet-50 backbone
from torchvision with random initialization and a feature
dimension of 2048 (the fc layer is removed). We use a lin-
ear layer or a multi-layer perceptron (MLP) for projection
layers. Every layer except for the last is followed by batch
normalization and a ReLU non-linearity. We describe an N-
layer MLP with N + 1 numbers depicting the input dimen-
sion for the first layer, followed by the output dimension for
all layers.

We use two forms of augmentation: SimCLR or global
crop. Global crop consists of a random resized square crop

2https://github.com/pytorch/vision
3https://lightning-bolts.readthedocs.io/
4https://github.com/facebookresearch/simsiam
5https://github.com/facebookresearch/moco-v3
6https://github.com/facebookresearch/swav



with a scale of (0.5, 1.0) to an image size of 224×224. Sim-
CLR augmentations consist of random resized square crop,
color jittering, random grayscale, random horizontal flip-
ping, and Gaussian blur. We use the same augmentation
parameters as prior work [4, 6]. All images are normalized
using ImageNet’s mean and standard deviation statistics.

We provide baseline-specific details below and refer the
reader to our implementation for more details:

• SimCLR: We use a 3-layer MLP as a projection layer
with feature dimensions (2048, 2048, 2048, 128) simi-
lar to the original paper [4]. We use the SimCLR loss
implementation from Mu et al. [24], which adapts the
original loss for the distributed settings for inference and
gradients. We use SimCLR augmentations for SimCLR
and global crop augmentations for LGSimCLR. We ex-
perimented with mixing SimCLR augmentation and lan-
guage sampled pairs and found that it results in slightly
inferior performance: adding augmentations reduces the
linear probe average accuracy from 78.3 to 77.9.

• CLIP: We use a linear projection layer to a feature di-
mension of 512 similar to the original paper. We use the
smallest CLIP language encoder, similar to SLIP [24],
with a feature dimension of 512 and a linear language
projection layer. We use the loss implementation from
SLIP [24] but adapt it to share the loss gradients similar
to the SimCLR loss. We use global crop augmentation
for CLIP since SLIP [24] reported that it performs better
than CLIP’s original center crop preprocessing.

• SLIP: We follow SLIP’s implementation and combine
the augmentations, projections, and losses from Sim-
CLR and CLIP. We use the same language transformer as
our CLIP implementation. We generate two augmented
views with SimCLR augmentation for the SimCLR loss
and one with global cropping for the CLIP loss. Those
views are passed through their respective projections (3-
layer MLP for SimCLR and linear projection for CLIP)
and losses. For LGSLIP, we only use the global crop
augmentation, resulting in only two augmented views
and forward passes through the encoder instead of 3 for
SLIP. We apply the SimCLR loss between the language-
sampled image pair and the CLIP loss between only one
of the images and its caption.

• SimSiam: We follow the original SimSiam implementa-
tion and use a 3-layer MLP as our projection head (2048,
2048, 2048, 2048) and a 2-layer MLP as our prediction
head (2048, 512, 2048). We use the loss formulation
from the original paper. For LGSimSiam, we use the
same formulation but use global crop instead of SimCLR
augmentations.

• SwAV. We follow the original SwaV implementation and

Table 2. Batch Size Scaling. The performance of both SimCLR
and LGSimCLR scales with larger batch sizes with the LGSim-
CLR outperforming SimCLR even for larger batch sizes.

SimCLR LGSimCLR

Batch Size Linear Fewshot Linear Fewshot
256 67.5 67.2 77.7 82.3
512 68.5 66.7 78.2 82.5
1024 69.3 68.4 78.6 82.6
2048 69.8 68.6 79.1 83.1

use a 2-layer MLP (2048, 2048, 128) as our projection
head and a linear layer as our prototype head with an
output dimension of 3000. The prototypes are initially
frozen to improve training dynamics as suggested by the
SwAV repository. We use the distributed Sinkhorn clus-
tering implementation from the official code release.

• NNCLR. We rely on the implementation of NNCLR
provided by Lightly [32] since NNCLR [12] did not
release an implementation. Specifically, we use the
memory bank implementation from Lightly and reimple-
ment NNCLR. While our NNCLR implementation out-
performs SimCLR on ImageNet, as reported in the paper,
it underperforms on RedCaps. We use a 3-layer MLP
(2048, 2048, 2048, 256) as our projection head and a
2-layer MLP (256, 4098, 256) as our prediction head.
We also use a queue of length 16384 (equivalent to 32
batches) for the memory bank. For Language NNCLR,
we also use the memory bank from Lightly, similar to De-
CLIP [21]. We augment the CLIP implementation with a
memory bank for the language encoder. We use a weight-
ing of 0.8 for the CLIP loss and 0.2 for the language NNS
loss, similar to DeCLIP [21].

D. Batch Size Scaling

We explore the scaling performance of our approach for
batch size. Prior work has shown that contrastive meth-
ods can benefit larger batch sizes [3, 4, 28]. While we
use a batch size of 512 to allow us to perform compre-
hensive experiments and evaluations given limited compute,
we conduct a few experiments to evaluate scaling for Sim-
CLR and LGSimCLR. Our results, shown in Tab. 2, indi-
cate that our approach scales with batch size and maintains
our performance gains over SimCLR for larger batch sizes.
Furthermore, we show in ?? that our model benefits from
larger datasets. Our experiments also show that data scaling
comes in two ways: training on more instances and sam-
pling nearest neighbors from a larger pool of images. We
explore this more in Appendix E.



E. Dataset Size Scaling

Scaling up the dataset size not only increases the train-
ing instances, but also broadens the scope to sample near-
est neighbors from. In this section, we study the impact of
data scaling on model performance. First, we compare our
RedCaps-trained LGSimCLR model with another model
trained using a subset of RedCaps instances belonging to
the year 2020. We also train multiple LGSimCLR models
using RedCaps, each having a restricted scope of nearest
neighbor sampling. RedCaps has a natural structure to make
this possible: instances (posts) are grouped in different sub-
reddits, across multiple years. We expect instances within
the same year to be weakly related, and instances within a
subreddit to share a consistent theme; e.g., r/food has im-
ages of food dishes with text describing main ingredients.
We consider three restricted sampling variants of RedCaps:
Year, Subreddit, and Subreddit-Year.

We hypothesize that Subreddit sampling will limit the
pool of nearest neighbor sampling to images within a sim-
ilar domain resulting in higher quality neighbors. In con-
trast, the Year variant will only limit the number of im-
ages to consider, reducing the probability of finding images
with similar captions as neighbors. While posts within the
same year might be related to major events (e.g. COVID-
19 pandemic increased the proportion of indoor images in
year 2020), the relationship is much weaker than domain-
specific subreddits. Additionally, Subreddit-Year, which
only samples the nearest neighbors from the same subreddit
posted in the same year, will combine both effects.

Our results, presented in Tab. 3, show that domain-
specific sampling improves performance. Meanwhile, more
random sampling minimally degrades performance. Fi-
nally, restricting the scope of the nearest neighbor sam-
pling is not the same as subsampling the data. This is
shown by the higher performance of RedCaps with Year
sampling compared to RedCaps-2020. Those results indi-
cate two opportunities: First, our approach can scale to very
large datasets by only performing nearest-neighbor searches
within subsets of the data. This is especially beneficial in
some domains, such as federated learning. Second, iden-
tifying other domain structures within the dataset can im-
prove performance by allowing the model to sample nearest
neighbor images within the same domain.

This result indicates that our approach could scale to
gigantic datasets without requiring the nearest neighbor
search over the full dataset. While identifying semantically-
related partitions in the datasets could improve perfor-
mance, the model could perform very well by splitting ran-
domly or using metadata information such as year or lo-
cation, which might provide some relevant, although very
weak, structure.

Table 3. Impact of Sampling Scope. LGSimCLR can still learn
good features if it is restricted to only sampling from a subset
of the dataset. Domain-specific partitioning (e.g., subreddits) im-
proves performance, while domain agnostic partitions (e.g., Year
or Subreddit-Year) minimally degrades performance.

Dataset Sampling Scope #Partitions Linear FewShot
RedCaps 2020 All 1 73.8 78.8

RedCaps

All 1 78.2 82.5
Year 4 77.2 80.2
Subreddit 350 79.0 80.5
Subreddit-Year 1391 77.6 78.2

F. Qualitative Analysis of Sampled Pairs

We present language-sampled nearest neighbors for dif-
ferent datasets in Fig. 1. We note that CC3M and CC12M
have many stock images with slightly robotic descriptions,
which is explained by how those datasets were collected.
For example, see Fig. 1 top row: the caption indicates ‘an-
imal’ instead of referring to the dog in the image. Mean-
while, RedCaps captions can be more descriptive, referring
to pet names or specific product brands or models. Empiri-
cally, we find that RedCaps results in better performance.

We also observe some repeated patterns in the types of
nearest neighbor captions we get. We identify four patterns,
shown in Fig. 2, and discuss them below:
Similar objects in different contexts: The first set of re-
sults shows examples where language-guided sampling re-
sults in diverse images depicting the same concept. For ex-
ample, while pairs sampled using visual models (regardless
of whether they are self-supervised or supervised) depict
shoes on their own, language samples three images of the
same shoe model in very different contexts. The third row
also depicts hummingbirds in very different poses. At the
same time, self-supervised models provide three birds on a
branch, and supervised models provide three hummingbirds
taken in similar poses as the source image.
Visual similarity misses the object: The second set shows
examples where visual similarity misses the salient object in
the image. The fourth row is a halibut dish with vegetables.
Visual sampling results in other dishes pictured from the
top, while language sampling gives us three other halibut
dishes with vegetables that look different from the source
image. Rows 5 and 6 show examples where visual sam-
pling focused on the overall appearance and missing the
herb scissors (row 5) and coyote (row 6). Self-supervised
models provide the nearest neighbors with animals in the
snow, but different animals like a lynx or a dog.
Captions capture subtle relationships: The third set
shows examples where the language captures subtle rela-
tionships. Can you guess what the captions were? In row
7, the source image was captioned “itap of a tunnel cre-



ated by the autumn leaves.” Visual similarity focuses on the
trees, while language similarity results in images depicting
autumn more clearly. In row 8, the source caption mentions
a cheetah which can be seen at the right corner of the source
image, but the overall sunset appearance results in different
sets of visual nearest neighbors. Finally, the caption for row
9 mentions a mating ritual between birds. This element is
captured by language guidance, while visual similarity re-
trieves images of animals in the grass. These results suggest
that conditioning the model similarity on the caption could
result in a better-posed learning problem.
Vague Captions: Those examples show cases where the
caption is very vague or unrelated to the image content, re-
sulting in odd nearest neighbors in the language space. Can
you guess the captions from the nearest neighbor images?
Answers are in the footnote.7 The caption of row 10 refers
to the appearance of the eyes of the penguin, but since the
“googly eyes” can also refer to a small toy, it retrieves im-
ages of that toy being used on a coffee machine and a wall.
In row 11, the caption asks what the object is, but this is in-
dependent of the object. This results in language retrievals
with miscellaneous objects, while visual retrievals return
other insects. Finally, row 12 shows a case where the re-
trieval uses the dog’s name in some context, resulting in the
retrieval of other pets playing in gardens. These cases rep-
resent limitations of language sampling that might result in
poor learning. However, since the core issue arises from
misalignment or vagueness in the caption, it is a limitation
shared by any model that uses captions and images.

G. Additional Results
Due to space limitations, we only report average perfor-

mance for several methods in the main paper. Here, we re-
port the complete performance breakdown for all methods
on linear probe in Tab. 4 and fewshot classification Tab. 5.
For fewshot classification, we also report the 95% confi-
dence interval as a subscript.

We also evaluate all approaches on several ImageNet
evaluation benchmarks. We use the same evaluation se-
tups described in Appendix A and report results in Tab. 6
Specifically, we train on the ImageNet train set and eval-
uate on the ImageNet validation set [10], and several al-
ternative ImageNet test splits that assess robustness. Ima-
geNet A(dverserial) [17], ImageNet R(enditions) [16], Im-
ageNet v2 [29], and ImageNet Sketch [36]. We observe
similar performance trends for the RedCaps-trained mod-
els, with LGSimCLR outperforming all baselines, LGSLIP
outperforming LGSimCLR, and training on larger datasets
or with larger batch sizes improving performance. We also

7Source Image Captions:
row 10: “Built-in googly eyes.”
row 11: “I found this today. Anyone knows what it is?”
row 12: “Cinda having fun in the garden!”

note that the difference in performance between our mod-
els and the ImageNet pre-trained checkpoints is larger due
to the smaller domain shift they experience from ImageNet
training.



RedCapsCC12MCC3M

Animal jumps into the 
water.

Animal jumps into the 
water.

Illustrations of a cute 
little pink owl stock 

illustration.

A sweet little pink owl 
stock illustration.

My mini panther, 
Pascal. My mini panther.

A statue of monarch 
with a pigeon on top of 

her head.

Bronze statue with 
pigeon on top of the 

head.

Lord Of The Rings - On 
Gwaihir statue.

Lord Of The Rings - On 
Gwaihir statue.

Spatchcock chicken on 
the Weber E-310. Happy 

sunday!

Spatchcocked chicken 
with asparagus on the 
Weber 22 Performer.

Catamaran, a fast ferry, 
leaving a city heading 
for English civil parish.

A ferry departing 
English civil parish for 

a city.

Studio portrait of a 
black and white cat 

stock images.

Portrait of a black and 
white cat, isolated 

stock photos.

I managed to snag 
these teapots today for 

a great price! The 
collection grows!

Finally got some nice 
teapots!

Figure 1. Language sampled image pairs for the different pretraining datasets. We show qualitative results for language guided
sampling for our pretraining datasets. While the captions for conceptual captions can be generic, RedCaps captions are more natural;
including longer and more natural descriptions as well as irrelevant details.
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Figure 2. Nearest Neighbors on RedCaps for multiple sampling options. We sample the three nearest neighbors using a self-supervised
visual model [4], an ImageNet supervised model [11], and a self-supervised language model [30]. The examples are representative of some
patterns we observe in the sampled pairs. Language guided sampling allows us to get pairs that depict similar objects in different poses
and contexts in ways that go beyond visual sampling. However, sometimes the relationships depicted in the language can be too subtle.
Furthermore, sometimes captions are noisy resulting in unrelated language-sampled pairs.



Table 4. Linear Probe Evaluations. We report the linear probe classification performance of all baselines and models. Models are grouped
by experiment.
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Avg.
Pre-trained Checkpoints
Supervised [40] ImageNet - 71.0 93.2 77.0 68.4 63.0 48.7 41.0 73.0 92.6 91.9 88.3 98.2 95.8 85.3 82.4 78.0
SimSiam [5] ImageNet - 70.6 92.2 74.9 47.1 0.3 52.4 52.6 74.4 83.3 89.3 91.8 95.9 96.7 86.4 85.2 72.9
MoCo v3 [6] ImageNet - 71.4 93.3 77.9 51.5 60.4 52.4 53.0 73.6 85.8 90.4 92.1 96.8 96.3 85.0 85.0 77.7
SwAV [2] ImageNet - 72.8 93.0 77.5 48.8 63.2 55.5 52.7 77.2 84.5 89.9 93.4 97.2 96.7 86.9 83.7 78.2
SimCLR [4] ImageNet - 71.4 91.3 73.9 44.3 60.3 44.6 46.7 74.9 83.9 87.4 90.2 96.2 95.9 84.4 85.1 75.4
CLIP [28] CLIP (400M) - 86.4 88.7 70.2 69.8 72.5 78.4 49.4 76.3 88.0 88.9 96.1 97.2 94.7 87.9 82.7 81.8
RedCaps-trained Baselines
SwAV RedCaps - 63.6 81.3 57.5 21.6 47.5 22.9 35.4 68.1 61.1 70.5 78.0 87.7 94.3 79.9 84.3 63.6
SimSiam RedCaps - 64.1 79.9 56.1 28.2 48.3 29.5 41.2 66.2 69.1 73.6 83.6 85.7 94.4 82.1 83.3 65.7
SimCLR RedCaps - 69.0 82.9 61.6 30.6 52.6 33.7 43.7 69.8 70.5 74.1 86.9 88.0 95.4 84.6 84.4 68.5
Visual NNCLR RedCaps - 65.4 82.8 60.2 26.6 50.0 26.6 40.9 68.0 65.2 75.4 83.5 88.5 95.3 82.2 83.8 66.3
CLIP RedCaps - 80.9 84.7 62.7 50.4 57.4 45.8 36.7 67.6 79.8 84.0 91.0 93.5 93.9 82.2 82.6 72.9
CLIP (SBERT Encoder) RedCaps - 80.5 81.3 59.4 50.6 56.9 45.9 35.7 69.1 76.7 81.7 90.2 93.6 92.9 81.1 81.3 71.8
Language NNCLR RedCaps - 81.2 83.1 61.9 48.6 56.5 45.1 37.2 68.8 78.1 82.0 90.2 93.4 92.5 81.1 80.7 72.0
SLIP RedCaps - 77.7 87.2 67.0 42.4 58.1 48.7 45.2 72.3 79.5 82.7 92.1 92.7 95.6 85.5 83.4 74.0
Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 83.2 88.0 69.3 60.4 59.7 64.0 54.0 72.7 82.6 88.5 95.7 94.1 96.4 88.1 82.2 78.6
LGSimCLR RedCaps CLIP (400M) 83.3 87.6 68.9 60.1 59.9 62.9 53.7 70.5 82.6 88.7 95.6 94.3 96.2 88.2 82.0 78.3
LGSimCLR RedCaps CLIP (RedCaps) 83.7 88.0 67.8 59.6 60.7 60.8 53.7 71.4 82.4 89.1 95.9 93.8 96.1 88.4 82.7 78.3
LGSimCLR RedCaps FastText BoW 80.8 85.5 66.7 54.2 58.7 56.6 51.1 69.9 78.3 88.0 94.4 92.5 96.2 87.7 81.5 76.1
Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 75.7 92.2 75.4 57.5 60.2 53.7 52.2 71.7 90.3 90.2 93.1 95.5 96.8 87.7 83.0 78.3
LGSimCLR RedCaps SimCLR 71.4 87.0 67.5 36.8 57.9 41.8 46.3 74.2 82.8 82.6 90.7 93.4 95.7 85.2 83.2 73.1
LGSimCLR RedCaps CLIP (400M) 83.6 90.7 72.1 58.3 62.5 59.2 51.3 75.5 88.7 90.3 95.2 95.4 96.2 88.6 82.9 79.4
Sampling Scope
LGSimCLR RedCaps SBERT - Year 82.6 85.8 66.1 58.1 59.0 57.1 52.8 71.9 80.7 88.1 95.6 93.1 96.1 88.0 82.8 77.2
LGSimCLR RedCaps SBERT - Sub-Year 82.4 86.8 66.9 56.4 59.5 54.5 51.4 72.1 89.0 89.8 94.9 95.2 95.8 88.1 81.9 77.6
LGSimCLR RedCaps SBERT - Sub 83.2 88.7 69.5 60.4 59.9 60.0 53.0 72.4 89.7 90.3 96.2 94.8 96.2 88.4 82.2 79.0
Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 64.4 84.6 65.4 44.4 59.1 41.9 46.8 66.0 70.7 83.9 91.2 91.6 95.6 86.1 80.5 71.5
LGSimCLR CC12M SBERT (MPNet) 73.4 88.6 70.1 50.4 66.0 58.7 52.4 72.6 79.0 88.3 92.6 94.5 95.6 87.5 81.6 76.8
LGSimCLR RedCaps 2020 SBERT (MPNet) 77.8 84.3 64.5 53.9 53.9 51.7 48.1 66.4 76.2 83.9 93.9 89.9 95.4 86.4 81.4 73.8
Batch Size Scaling
SimCLR (256) RedCaps - 67.1 83.1 60.5 28.5 51.0 32.5 42.4 70.0 68.3 73.9 85.8 86.5 96.2 84.2 83.1 67.5
SimCLR (1024) RedCaps - 70.0 84.4 62.8 31.9 52.4 35.8 44.2 70.9 72.7 74.7 87.9 88.3 95.6 84.8 83.3 69.3
SimCLR (2048) RedCaps - 70.4 83.9 62.6 32.5 53.3 36.7 44.9 70.9 73.1 75.5 88.1 88.8 96.5 85.1 84.2 69.8
LGSimCLR (256) RedCaps SBERT (MPNet) 82.9 87.3 68.0 58.7 60.2 58.2 52.6 73.2 81.1 88.2 95.2 94.0 96.1 87.7 81.8 77.7
LGSimCLR (1024) RedCaps SBERT (MPNet) 83.7 87.1 68.1 62.0 60.7 63.4 53.7 73.4 80.8 89.8 95.7 93.7 95.7 88.3 82.6 78.6
LGSimCLR (2048) RedCaps SBERT (MPNet) 84.2 88.2 69.1 63.2 60.9 65.2 55.5 71.4 81.7 89.7 96.0 94.4 96.3 88.5 82.1 79.1
Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 83.2 87.8 69.0 59.3 60.3 62.3 53.4 71.2 81.8 89.4 95.9 94.0 95.6 88.0 81.1 78.2
LGSimSiam RedCaps SBERT (MPNet) 73.8 83.4 62.6 40.6 54.6 41.1 47.3 68.6 66.5 85.2 90.3 90.8 95.7 85.6 81.3 71.2
LGSLIP RedCaps SBERT (MPNet) 84.5 87.4 69.2 60.7 62.3 62.2 52.5 73.1 83.1 90.2 96.3 94.8 95.3 88.4 82.7 78.8



Table 5. Few-Shot Evaluations. We report the 5-way, 5-shot classification performance of all baselines and models. Models are grouped
by experiment. The subscript reports the 95% confidence interval in prediction across 5000 episodes.
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Avg.
Pre-trained Checkpoints
Supervised [40] ImageNet - 81.6 0.3 84.1 0.2 87.8 0.2 91.9 0.2 95.0 0.1 75.7 0.3 53.1 0.4 80.4 0.3 97.6 0.1 97.4 0.1 91.4 0.2 95.2 0.1 83.6 0.2 85.2 0.3 85.7
SimSiam [5] ImageNet - 70.5 0.3 77.5 0.3 82.0 0.3 67.4 0.4 92.1 0.2 51.9 0.3 43.7 0.4 81.8 0.3 86.7 0.3 94.9 0.2 93.7 0.2 89.7 0.2 87.7 0.2 82.2 0.3 78.7
MoCo v3 [6] ImageNet - 72.7 0.3 82.3 0.2 84.9 0.3 74.7 0.3 92.5 0.2 52.0 0.4 42.4 0.4 80.7 0.3 89.1 0.2 95.8 0.1 93.6 0.2 91.5 0.2 86.3 0.2 83.0 0.3 80.1
SwAV [2] ImageNet - 68.3 0.3 78.1 0.3 82.1 0.3 65.4 0.4 93.7 0.2 52.7 0.4 40.3 0.4 83.8 0.2 83.8 0.3 94.5 0.2 93.4 0.2 91.2 0.2 88.0 0.2 83.8 0.3 78.5
SimCLR [4] ImageNet - 70.0 0.3 76.9 0.3 80.9 0.3 67.5 0.4 92.5 0.2 51.9 0.3 42.1 0.4 82.2 0.3 85.0 0.3 93.0 0.2 90.3 0.2 88.8 0.2 83.6 0.3 78.5 0.3 77.4
CLIP [28] CLIP (400M) - 92.1 0.2 76.3 0.3 79.2 0.3 92.9 0.2 96.9 0.1 93.3 0.2 73.2 0.4 81.8 0.3 86.1 0.3 95.9 0.1 97.9 0.1 95.6 0.1 77.5 0.3 90.5 0.2 87.8
RedCaps-trained Baselines
SwAV RedCaps - 64.5 0.4 54.0 0.3 61.8 0.3 45.8 0.4 84.9 0.3 36.5 0.3 34.1 0.3 74.8 0.3 66.5 0.4 78.1 0.3 75.5 0.3 72.6 0.3 80.4 0.3 72.9 0.4 64.5
SimSiam RedCaps - 63.9 0.3 49.9 0.3 57.2 0.3 49.5 0.4 84.5 0.3 39.3 0.3 37.9 0.3 75.7 0.3 67.8 0.4 79.7 0.3 81.5 0.3 69.6 0.3 80.6 0.3 79.4 0.3 65.5
SimCLR RedCaps - 66.9 0.3 45.7 0.3 51.0 0.3 51.5 0.4 87.1 0.2 44.0 0.3 38.4 0.3 77.6 0.3 70.1 0.3 80.0 0.3 86.9 0.2 69.6 0.3 83.5 0.3 81.3 0.3 66.7
Visual NNCLR RedCaps - 65.6 0.3 54.1 0.3 61.7 0.3 45.8 0.3 85.3 0.3 37.9 0.3 34.9 0.3 75.2 0.3 67.3 0.4 81.1 0.3 75.4 0.3 74.3 0.3 83.6 0.3 76.7 0.3 65.6
CLIP RedCaps - 88.9 0.2 64.6 0.3 73.1 0.3 78.3 0.3 90.9 0.2 69.7 0.3 40.7 0.3 75.7 0.3 77.5 0.3 91.6 0.2 94.7 0.2 89.8 0.2 75.3 0.3 74.8 0.3 77.5
CLIP (SBERT Encoder) RedCaps - 89.9 0.2 59.9 0.3 67.9 0.3 83.2 0.3 91.1 0.2 70.2 0.3 41.0 0.3 75.0 0.3 79.4 0.3 91.2 0.2 94.5 0.2 89.4 0.2 72.3 0.3 74.9 0.3 77.1
Language NNCLR RedCaps - 89.3 0.2 65.3 0.3 73.4 0.3 78.6 0.3 90.8 0.2 68.4 0.3 40.4 0.3 75.2 0.3 78.8 0.3 90.9 0.2 94.3 0.2 89.6 0.2 75.2 0.3 71.9 0.3 77.3
SLIP RedCaps - 81.5 0.3 63.5 0.3 70.8 0.3 63.1 0.4 91.3 0.2 62.9 0.3 42.1 0.4 79.6 0.3 76.4 0.3 88.4 0.2 92.2 0.2 83.4 0.2 82.7 0.3 80.8 0.3 75.6
Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 90.4 0.2 67.1 0.3 76.7 0.3 83.9 0.3 92.7 0.2 79.2 0.3 52.1 0.4 81.2 0.3 86.2 0.3 95.5 0.1 97.6 0.1 87.4 0.2 86.9 0.2 89.0 0.2 83.3
LGSimCLR RedCaps CLIP (400M) 90.7 0.2 65.8 0.3 75.6 0.3 83.8 0.3 92.8 0.2 80.9 0.3 52.0 0.4 81.4 0.3 85.6 0.3 95.5 0.1 97.5 0.1 87.3 0.2 84.8 0.2 89.3 0.2 83.1
LGSimCLR RedCaps CLIP (RedCaps) 90.4 0.2 64.8 0.3 75.3 0.3 82.2 0.3 92.8 0.2 76.6 0.3 50.4 0.4 81.3 0.3 84.6 0.3 95.2 0.2 97.7 0.1 86.9 0.2 86.5 0.2 89.1 0.2 82.4
LGSimCLR RedCaps FastText BoW 88.4 0.2 62.1 0.3 73.7 0.3 79.3 0.3 92.2 0.2 74.0 0.3 52.5 0.4 79.4 0.3 82.7 0.3 94.3 0.2 97.5 0.1 83.0 0.2 85.4 0.2 88.5 0.2 80.9
Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 79.6 0.3 75.6 0.3 83.0 0.3 76.6 0.3 92.5 0.2 64.6 0.4 46.1 0.4 80.7 0.3 94.3 0.2 96.3 0.1 94.8 0.2 87.4 0.2 86.4 0.2 87.3 0.2 81.8
LGSimCLR RedCaps SimCLR 72.0 0.3 62.9 0.3 71.9 0.3 58.9 0.4 90.8 0.2 51.3 0.3 38.7 0.3 81.8 0.3 86.4 0.3 91.3 0.2 90.7 0.2 83.8 0.2 85.5 0.2 78.6 0.3 74.6
LGSimCLR RedCaps CLIP (400M) 88.8 0.2 72.5 0.3 79.7 0.3 77.6 0.3 93.1 0.2 73.3 0.3 45.6 0.4 82.2 0.3 90.9 0.2 94.6 0.2 96.3 0.1 89.2 0.2 84.6 0.2 87.4 0.2 82.6
Sampling Scope
LGSimCLR RedCaps SBERT - Year 89.7 0.2 61.2 0.3 72.2 0.3 81.2 0.3 92.0 0.2 71.9 0.3 48.4 0.4 80.1 0.3 79.3 0.3 93.8 0.2 97.4 0.1 84.5 0.2 84.0 0.2 87.8 0.2 80.2
LGSimCLR RedCaps SBERT - Sub-Year 88.0 0.2 59.0 0.3 66.6 0.3 76.5 0.3 90.6 0.2 63.6 0.4 45.2 0.3 78.5 0.3 80.7 0.3 94.8 0.2 97.4 0.1 83.2 0.2 82.2 0.3 88.7 0.2 78.2
LGSimCLR RedCaps SBERT - Sub 88.7 0.2 70.4 0.3 78.4 0.3 75.3 0.3 90.7 0.2 67.3 0.3 47.6 0.4 78.3 0.3 76.6 0.3 95.4 0.1 97.8 0.1 86.5 0.2 85.3 0.2 89.1 0.2 80.5
Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 69.2 0.3 60.6 0.3 71.7 0.3 72.0 0.3 92.8 0.2 58.8 0.3 48.9 0.4 77.4 0.3 77.8 0.3 92.9 0.2 95.0 0.2 83.0 0.3 82.4 0.3 86.3 0.3 76.3
LGSimCLR CC12M SBERT (MPNet) 79.6 0.3 72.0 0.3 78.5 0.3 71.2 0.3 95.2 0.1 78.2 0.3 55.5 0.4 81.8 0.3 82.1 0.3 96.2 0.1 95.3 0.1 90.0 0.2 83.6 0.3 88.0 0.2 81.9
LGSimCLR RedCaps 2020 SBERT (MPNet) 86.0 0.2 60.3 0.3 70.5 0.3 79.9 0.3 90.1 0.2 69.8 0.3 48.6 0.4 77.0 0.3 81.0 0.3 92.3 0.2 96.8 0.1 78.8 0.3 84.7 0.2 87.0 0.2 78.8
Batch Size Scaling
SimCLR (256) RedCaps - 64.9 0.3 52.7 0.3 57.9 0.3 51.4 0.4 86.6 0.2 43.6 0.3 38.3 0.3 77.1 0.3 68.7 0.3 79.2 0.3 85.9 0.3 69.7 0.3 84.1 0.3 81.3 0.3 67.2
SimCLR (1024) RedCaps - 67.5 0.3 54.0 0.3 59.2 0.3 53.0 0.4 87.2 0.2 44.7 0.3 38.9 0.3 77.9 0.3 71.5 0.3 80.4 0.3 87.9 0.2 71.8 0.3 82.5 0.3 81.8 0.3 68.4
SimCLR (2048) RedCaps - 68.4 0.3 51.8 0.3 57.8 0.3 53.3 0.4 87.3 0.2 45.4 0.3 38.8 0.3 77.8 0.3 73.2 0.3 81.6 0.3 87.9 0.2 71.6 0.3 84.0 0.3 81.6 0.3 68.6
LGSimCLR (256) RedCaps SBERT (MPNet) 90.3 0.2 66.6 0.3 75.8 0.3 81.6 0.3 92.6 0.2 75.3 0.3 50.5 0.4 81.6 0.3 83.2 0.3 95.3 0.1 97.6 0.1 86.8 0.2 86.4 0.2 88.9 0.2 82.3
LGSimCLR (1024) RedCaps SBERT (MPNet) 90.3 0.2 64.9 0.3 75.7 0.3 83.8 0.3 92.6 0.2 78.2 0.3 52.6 0.4 80.9 0.3 83.6 0.3 95.6 0.1 97.6 0.1 86.7 0.2 86.0 0.2 88.6 0.2 82.6
LGSimCLR (2048) RedCaps SBERT (MPNet) 90.6 0.2 67.5 0.3 76.6 0.3 83.9 0.3 92.6 0.2 79.7 0.3 51.5 0.4 80.6 0.3 83.8 0.3 95.8 0.1 97.6 0.1 87.1 0.2 86.6 0.2 89.2 0.2 83.1
Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 90.3 0.2 66.3 0.3 75.5 0.3 83.1 0.3 92.7 0.2 77.6 0.3 50.6 0.4 81.1 0.3 84.1 0.3 95.4 0.1 97.6 0.1 86.5 0.2 85.0 0.2 89.0 0.2 82.5
LGSimSiam RedCaps SBERT (MPNet) 81.2 0.3 61.6 0.3 71.2 0.3 63.1 0.4 90.2 0.2 60.9 0.3 44.6 0.4 78.8 0.3 68.0 0.3 92.8 0.2 93.7 0.2 81.2 0.3 85.1 0.2 86.7 0.2 75.7
LGSLIP RedCaps SBERT (MPNet) 91.3 0.2 67.2 0.3 77.2 0.3 81.8 0.3 92.6 0.2 77.3 0.3 50.4 0.4 81.8 0.3 81.8 0.3 96.1 0.1 97.8 0.1 89.2 0.2 85.3 0.2 89.1 0.2 82.8



Table 6. ImageNet Evaluations. We evaluate all models on several ImageNet robustness benchmarks. All models were trained using
the ImageNet train set. We report the linear probe and few-shot classification performance. Subscripts show the 95% confidence interval
across 5000 episodes.

Linear Probe Fewshot Classification
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Pre-trained Checkpoints
Supervised [40] ImageNet - 80.7 5.4 27.6 68.9 28.8 97.4 0.1 51.6 0.2 61.4 0.2 94.5 0.1 64.8 0.3

SimSiam [5] ImageNet - 30.8 1.0 10.6 25.0 9.9 90.4 0.2 39.8 0.2 52.9 0.2 85.6 0.2 56.3 0.3

MoCo v3 [6] ImageNet - 69.5 1.1 20.3 57.2 20.5 91.1 0.1 36.0 0.2 52.4 0.2 85.8 0.2 55.2 0.3

SwAV [2] ImageNet - 70.6 1.2 16.6 57.5 17.6 91.2 0.1 41.7 0.2 46.6 0.2 86.2 0.2 49.3 0.3

SimCLR [4] ImageNet - 68.7 0.9 16.0 56.1 15.7 90.2 0.2 36.2 0.2 43.7 0.2 84.8 0.2 44.9 0.3

CLIP [28] CLIP (400M) - 73.2 8.2 31.9 61.5 31.8 95.5 0.1 68.0 0.2 69.0 0.2 93.2 0.1 74.5 0.3

RedCaps-trained Baselines
SwAV RedCaps - 52.1 0.8 7.0 39.0 6.6 80.4 0.2 38.6 0.2 35.1 0.2 75.5 0.2 33.1 0.2

SimSiam RedCaps - 52.9 0.8 8.0 40.3 8.7 78.8 0.2 39.1 0.2 38.9 0.2 73.4 0.2 39.3 0.2

SimCLR RedCaps - 56.2 0.8 8.4 42.4 8.9 79.8 0.2 39.6 0.2 38.7 0.2 74.4 0.2 38.6 0.2

Visual NNCLR RedCaps - 54.4 0.8 8.3 41.0 8.3 81.3 0.2 39.5 0.2 38.0 0.2 76.3 0.2 36.8 0.2

CLIP RedCaps - 62.6 2.1 14.5 49.8 13.7 88.7 0.2 44.7 0.2 46.6 0.2 84.7 0.2 46.1 0.3

CLIP (SBERT Encoder) RedCaps - 61.5 2.1 14.4 49.2 13.2 89.1 0.2 42.6 0.2 46.4 0.2 84.7 0.2 49.2 0.3

Language NNCLR RedCaps - 61.6 2.1 13.7 49.6 13.3 89.0 0.2 45.1 0.2 47.4 0.2 84.9 0.2 48.8 0.3

SLIP RedCaps - 62.6 0.9 12.6 49.2 12.5 86.7 0.2 43.0 0.2 43.5 0.2 82.0 0.2 43.8 0.3

Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 65.3 1.2 16.8 52.8 16.8 91.0 0.1 45.1 0.2 58.4 0.2 86.6 0.2 60.8 0.3

LGSimCLR RedCaps CLIP (400M) 65.7 1.2 16.7 53.0 16.8 90.9 0.2 45.4 0.2 57.1 0.2 86.6 0.2 59.2 0.3

LGSimCLR RedCaps CLIP (RedCaps) 65.4 1.3 16.9 53.0 16.5 90.6 0.2 45.4 0.2 57.1 0.2 86.2 0.2 58.5 0.3

LGSimCLR RedCaps FastText BoW 62.6 0.6 15.5 49.7 14.9 89.7 0.2 44.0 0.2 55.8 0.2 84.9 0.2 57.0 0.3

Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 66.9 0.8 19.0 53.6 16.7 91.2 0.1 41.4 0.2 56.0 0.2 86.1 0.2 53.4 0.3

LGSimCLR RedCaps SimCLR 63.0 0.8 12.8 49.1 12.2 88.4 0.2 38.7 0.2 45.8 0.2 83.1 0.2 46.0 0.3

LGSimCLR RedCaps CLIP (400M) 68.4 1.3 18.1 55.2 16.7 90.9 0.2 45.2 0.2 55.1 0.2 86.3 0.2 52.7 0.3

Sampling Scope
LGSimCLR RedCaps SBERT - Year 64.5 0.9 15.6 51.6 15.9 88.9 0.2 43.2 0.2 53.2 0.2 84.2 0.2 51.8 0.3

LGSimCLR RedCaps SBERT - Sub-Year 66.2 1.3 19.0 53.2 20.1 85.8 0.2 41.2 0.2 53.3 0.3 80.6 0.2 53.1 0.3

LGSimCLR RedCaps SBERT - Sub 67.0 1.5 19.5 54.4 20.8 80.1 0.2 38.8 0.2 48.2 0.3 75.3 0.2 42.9 0.3

Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 17.5 1.0 8.9 13.4 5.4 87.9 0.2 41.2 0.2 56.6 0.2 83.5 0.2 60.8 0.3

LGSimCLR CC12M SBERT (MPNet) 65.0 0.7 22.8 52.1 27.1 91.9 0.1 45.7 0.2 66.0 0.2 87.8 0.2 73.0 0.3

LGSimCLR RedCaps 2020 SBERT (MPNet) 58.7 0.6 13.1 45.4 11.4 87.5 0.2 41.1 0.2 52.1 0.2 82.3 0.2 51.3 0.3

Batch Size Scaling
SimCLR (256) RedCaps - 54.8 0.7 7.9 41.6 8.1 79.5 0.2 39.5 0.2 38.4 0.2 74.0 0.2 38.3 0.2

SimCLR (1024) RedCaps - 57.2 0.7 8.8 43.7 8.7 80.5 0.2 39.4 0.2 39.2 0.2 75.1 0.2 38.3 0.2

SimCLR (2048) RedCaps - 58.1 0.8 9.0 44.5 9.2 81.1 0.2 39.3 0.2 39.5 0.2 75.8 0.2 38.9 0.2

LGSimCLR (256) RedCaps SBERT (MPNet) 64.9 1.2 16.7 52.0 16.6 90.6 0.2 46.3 0.2 57.4 0.2 86.3 0.2 59.7 0.3

LGSimCLR (1024) RedCaps SBERT (MPNet) 65.8 1.2 16.7 52.9 16.8 90.7 0.2 44.8 0.2 57.2 0.2 86.3 0.2 58.8 0.3

LGSimCLR (2048) RedCaps SBERT (MPNet) 66.2 1.1 17.3 53.1 17.4 90.8 0.2 44.7 0.2 58.0 0.2 86.3 0.2 60.1 0.3

Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 65.2 1.1 16.6 52.5 16.2 90.9 0.2 45.0 0.2 57.4 0.2 86.4 0.2 59.2 0.3

LGSimSiam RedCaps SBERT (MPNet) 58.9 0.7 12.2 45.9 12.2 88.1 0.2 44.1 0.2 48.8 0.2 83.5 0.2 50.7 0.3

LGSLIP RedCaps SBERT (MPNet) 66.8 1.4 18.2 54.3 18.9 90.4 0.2 46.2 0.2 58.4 0.2 86.2 0.2 59.7 0.3
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