
⋆ Supplementary Material ⋆
AdaMAE: Adaptive Masking for Efficient Spatiotemporal

Learning with Masked Autoencoders

A. Pre-training on smaller datasets

Table 1 compares the performance of AdaMAE on smaller
datasets such as UCF101 and HMDB51 for the default con-
figuration in Table 1. We can see that the proposed AdaMAE
performs well on smaller datasets as well.

Method UCF HMDB
VideoMAE 91.3 62.6
AdaMAE 92.8 64.0

Table 1. Results on smaller datasets.

B. Feature transferability

we present fine-tuning results on smaller datasets, UCF
and HMDB for the model pre-trained on K400 in Tab. 2, in
addition to the already discussed transfer learning results on
SSv2 and K400 datasets in the paper. These results empiri-
cally demonstrate that representations learned by AdaMAE
are more transferable than VideoMAE and STMAE.

Method SSv2 UCF HMDB

VideoMAE 68.5 96.1 73.3
STMAE 69.1 NA NA
AdaMAE 69.9 97.0 74.1

Table 2. Transfer learning performance (top-1 %) of pre-trained
model on K400.

C. Linear probing results

We compare linear probing results of AdaMAE with
VideoMAE and STMAE in Tab. 3 for the exact setting
used in VideoMAE. As shown in Tab. 3, AdaMAE achieves
the best top-1 accuracy with lower budget supervision which
empirically shows that representations learned by AdaMAE
are more favorable towards action classification than Video-
MAE.

Method SSv2

VideoMAE 38.9
STMAE NA
AdaMAE 40.1

Table 3. Linear probing results (top-1 %).

D. Computational efficiency:

We benchmark average time per epoch of AdaMAE and
VideoMAE on the SSv2 dataset for the ViT-B backbone
with batch size of (16 /gpu) × 8 gpus. We can see that the
proposed AdaMAE completes one epoch 38 s faster than
VideoMAE / STMAE. If we pre-train for 800 epochs, then
this results in saving 38 s ×800 ≈ 506 min ≈ 8 hrs!, while
utilizing lower memory (see ablation study) and achieving
better performance on the downstream tasks.

Method Avg. Time / Epoch
VideoMAE 9 min 49 s
AdaMAE 9 min 11 s

Table 4. Wall clock time.

Memory Efficiency: The slight memory increase (+0.7
GB) at the 90% masking ratio is due to the sampling network
in our architecture. However, this sampling network enables
us to achieve better performance with a higher masking ratio
(95%) which ultimately reduces the memory requirement
compared to VideoMAE / STMAE.

E. Pseudocode for AdaMAE

The pseudocode for our AdaptiveTokenSampler net-
work is given in Algorithm 1 and AdaMAE for 2.

1

Algorithm 1 Pseudo-code for AdaptiveTokenSampler.
Inputs: Tokenized video: X ∈ RN×d, Masking ratio:
ρ ∈ (0, 1)
Outputs: Categorical distribution: p, Sampled mask in-
dices: Im, Sampled mask: M
P = TokenProbs(X) ▷ token probabilities
p ∼ CAT(P) ▷ categorical distribution
Nv = int(N × (1− ρ)) ▷ # of visible tokens
Iv = p.sample(Nvis) ▷ visible token indices
Im = U − Iv ▷ mask token indices
M = GetBooleanMask(Iv, Im) ▷ binary mask

Algorithm 2 Pseudo-code for our AdaMAE.
Input: The video dataset D = {V i : for i =
1, 2, 3, · · · , |D|}, Masking ratio: ρ ∈ (0, 1)
for V i ∈ D do

Xi = Tokenizer(V i) ▷Tokens
Xi = Xi + PosEmbd ▷Positional embedding
p, Iv,M = AdaptiveTokenSampler(Xi, ρ)
Xv = Xi[∼ M] ▷ visible tokens
F v = ViTEncoder(Xv) ▷ visible feats
F v = F v + PosEmbd[∼ M]
Fm = fm + PosEmbd[M] ▷ mask feats
F = F v ⊕ Fm ▷ visible + mask feats
X̂ = ViTDecoder(F) ▷Decoder

X̂m = X̂[M] ▷ masked prediction
Xm = X[M] ▷ masked GT

LR = ∥X̂m −Xm∥2 ▷ reconstruction loss
LS = − (p.LogProb(Im)) · LR.detach() ▷ sampling

loss
L = LR + 1e− 4 · LS ▷ final loss
L.backward() ▷ back-propagation

end for

F. Network architectures for Adaptive Token
Sampler

We consider two network architectures for our adaptive
sampling network.

1. MLP: Keeping the importance of a computationally
light-weight design for an adaptive sampling network,
we first experimented with a simple MLP network
for the sampling network as shown in Fig. 1 (a).
In this architecture, we process all the tokens (X ∈
RN×d) through a Linear layer with in features =
out features = d (denoted by Linear(d, d)) fol-
lowed by a Linear(d, 1) to bring down the embedding
dimension from d to 1. We then apply a Softmax()
layer to obtain the probability values P ∈ RN .

Although this network is computationally very light-
weight, the experimental results were not encouraging.
Specially, it was not able to capture the spatiotemporal

information of input tokens; resulted in predicted prob-
ability density map to have no/very-less relationship
with the high/low activity regions. This resulted in poor
performance as demonstrated in ablation study. This is
understandable because it operates only on the embed-
ding dimension and not be able to model the interaction
between the patches that is necessary for predicting
proper probability map.

2. MHA: Motivated from the drawback that we observed
with MLP-based sampling network, we decided to uti-
lize multi-head self-attention network for this purpose,
because it can properly model the interconnectivty be-
tween all the patches through the attention mechanism.
Since we want to keep it computationally light-weight
as much as possible, we experimented with the effect
of different number of blocks and reduced embedding
dimension. By utilizing MHA-based sampling network,
we were able to generate visually appealing probability
density maps (as shown in Figure 2-6) that are in line
with our intuition for adaptive sampling.

(a) (b)

Figure 1. The network architectures considered for adaptive
token sampling network: (a) MLP-based sampling network (b)
MHA-based sampling network.

F.1. Understanding the formulation of sampling loss
LS

Here we provide some additional visualizations to further
understand our AdaMAE for selected videos from SSv2
(Figure 2, 3, 4, 5, and 6) and K400 (Figure 7, 8, 9, and 10.).

For example, let us consider Figure 2. We see that most of
the spatiotemporal information is concentrated in the upper

part of each frame (the region containing the bottle and the
part of a hand), making those patches difficult to reconstruct
accurately (see second and third rows). Since the proposed
AdaptiveSampling network is optimized by maximizing
E[LR], it predicts higher probabilities for the patches from
the high activity region. Hence, when sampling the visible
tokens, MAE gets relatively more tokens from the high ac-
tivity region than the low activity region as shown in the last
row.

We can make the similar observations for the other exam-
ples as well.

Note that these results are for the default setting except
here we visualize at 100-th epoch of pre-training.

Figure 2. An example visualization of our adaptive sampling on
SSv2 dataset.

Figure 3. An example visualization of our adaptive sampling on
SSv2 dataset.

Figure 4. An example visualization of our adaptive sampling on
SSv2 dataset.

Figure 5. An example visualization of our adaptive sampling on
SSv2 dataset.

Figure 6. An example visualization of our adaptive sampling on
SSv2 dataset.

Figure 7. An example visualization of our adaptive sampling on
K400 dataset.

Figure 8. An example visualization of our adaptive sampling on
K400 dataset.

Figure 9. An example visualization of our adaptive sampling on
K400 dataset.

Figure 10. An example visualization of our adaptive sampling on
K400 dataset.

G. Encoder-decoder architecture
Table 5 summarizes the encoder-decoder architecture of

our AdaMAE. Specifically, we consider 16-frame vanilla
ViT-Base architecture for all experiments. We use asym-
metric encoder-decoder architecture for self-supervised pre-
training and discard the decoder during the fine-tuning.

Given a video we first extract 16 frames (3× 16× 224×
224). We use temporal stride of 4 and 2 for K400 and SSv2
datasets, respectively. Next we process these 16 frames
through a Tokenizer which is essentially a 3D convolution
layer with kernel size of 2×16×16, stride of 2×16×16 and
output embedding dimension of 768. This process results
in a total of 1568 tokens and each token is represented by a
768 dimension vector. Next, we sample (1−ρ)×1568 num-
ber of tokens as the visible tokens from our adaptive token
sampling network. These visible tokens are then processed
through the ViT encoder that comprises of 12 cascaded multi-
head self-attention blocks (MHA blocks). The outputs from
the ViT encoder is then combined with a fixed learnable
representation for masked tokens which results in the 1568
token representations. These 1568 representations are then
process through a projector which brings down their em-
bedding dimension from 768 embedding dimension to 384
by an MLP layer. These projected representations are then
process through the ViT-decoder which consists of 4 MHA
blocks followed by an MLP layer to bring the embedding
dimension from 384 to the total number of pixels in a cube
which given by 2× 3× 16× 16 = 1536. This is finally re-
shaped back back to the original space and used to compute
the reconstruction loss.

Table 5. Encoder-Decoder architecture of our AdaMAE. MHA
denotes joint space-time multi-head self-attention.

Stage ViT-Base Output shape

Input Video
stride 4× 1× 1 for K400

3× 16× 224× 224
stride 2× 1× 1 for SSv2

Tokenization
stride 2× 16× 16

1568× 768
emb. dim 768

Masking
Adaptive Masking

[(1− ρ)× 1568]× 768
masking ratio ρ

Encoder [MHA(768)]× 12 [(1− ρ)× 1568]× 768

Projection
MHA(384)

1568× 384
concat masked tokens

Decoder [MHA(384)]× 4 [(1− ρ)× 1568]× 384

Projector MLP (1536) 1568× 1536

Reshaping from 1536 to 3× 2× 16× 16 3× 16× 224× 224

H. Pre-training setting
Table 6 summarizes the pre-training setting on SSv2 and

K400 dataset. In addition, we linearly scale the base learning
rate with respect to the overall batch size, lr = base learning
rate× batch size 256. We adopt the PyTorch and DeepSpeed
frameworks for faster training.

Table 6. Pre-training setting on SSv2 and K400 datasets.

Configuration SSv2 K400
Optimizer Adamw
Optimizer betas {0.9, 0.95}
Base learning rate 1.5e-4
Weight decay 5e-2
Learning rate shedule cosine decay
Warmup epochs 40
Flip augmentation False True
Augmentation MultiScaleCrop

I. End-to-end fine tuning setting
Table 7 summarizes the end-to-end fine-tunining setting

on SSv2 and K400 datasets.

J. Mask visualizations
Figure 11, 12, 13, and 14 show the adaptive mask visual-

izations for masking ratio of 80%, 85%, 90%, and 95% for
selected videos from SSv2 dataset.

K. Animated mask visualizations.
The animated mask visualizations of our adaptive mask-

ing technique can be found through these links:

1. For SSv2 dataset: https://www.dropbox.com/s/
z0ijog5vt5sa546/adamae vis ssv2.mp4

Table 7. Pre-training setting on SSv2 and K400 datasets.

Configuration SSv2 K400
Optimizer Adamw
Optimizer betas {0.9, 0.999}
Base learning rate 1.5e-4 1e-3
Layer-wse lr decay 0.75
Weight decay 5e-2
Learning rate shedule cosine decay
Warmup epochs 40
Flip augmentation False True
RandAug (0.9, 0.05)
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
drop path 0.1

2. For Kinetics-400: https://www.dropbox.com/s/
eki7q829x4xo70c/adamae vis k400.mp4

 https://www.dropbox.com/s/z0ijog5vt5sa546/adamae_vis_ssv2.mp4
 https://www.dropbox.com/s/z0ijog5vt5sa546/adamae_vis_ssv2.mp4
 https://www.dropbox.com/s/eki7q829x4xo70c/adamae_vis_k400.mp4
 https://www.dropbox.com/s/eki7q829x4xo70c/adamae_vis_k400.mp4

Figure 11. Mask visualizations of our AdaMAE for 80% masking ratio on SSV2 dataset.Given a video (first row), our AdaMAE first
predicts the categorical distribution (second row), and then sample the mask (third row) from that distribution. Colors closer red and blue
denotes the patches with high and low probability, respectively. In mask visualizations, black and white corresponds to the masked and
visible path locations, respectively.

Figure 12. Mask visualizations of our AdaMAE for 85% masking ratio on SSV2 dataset.Given a video (first row), our AdaMAE first
predicts the categorical distribution (second row), and then sample the mask (third row) from that distribution. Colors closer red and blue
denotes the patches with high and low probability, respectively. In mask visualizations, black and white corresponds to the masked and
visible path locations, respectively.

Figure 13. Mask visualizations of our AdaMAE for 90% masking ratio on SSV2 dataset.Given a video (first row), our AdaMAE first
predicts the categorical distribution (second row), and then sample the mask (third row) from that distribution. Colors closer red and blue
denotes the patches with high and low probability, respectively. In mask visualizations, black and white corresponds to the masked and
visible path locations, respectively.

Figure 14. Mask visualizations of our AdaMAE for 95% masking ratio on SSV2 dataset.Given a video (first row), our AdaMAE first
predicts the categorical distribution (second row), and then sample the mask (third row) from that distribution. Colors closer red and blue
denotes the patches with high and low probability, respectively. In mask visualizations, black and white corresponds to the masked and
visible path locations, respectively.

	. Pre-training on smaller datasets
	. Feature transferability
	. Linear probing results
	. Computational efficiency:
	. Pseudocode for AdaMAE
	. Network architectures for Adaptive Token Sampler
	. Understanding the formulation of sampling loss LS

	. Encoder-decoder architecture
	. Pre-training setting
	. End-to-end fine tuning setting
	. Mask visualizations
	. Animated mask visualizations.

