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1. DEQ Framework
We adhere to the general framework of DEQ [2, 3] and

employ a quasi-Newton solver to accelerate convergence.
In our experiments, we utilize the Anderson solver [1]. A
DEQ model computes A = I− ∂U

∂ z∗ at the fixed point z∗ to
obtain the gradient. This is typically achieved by performing
another fixed-point iteration. However, in line with [2, 5, 8],
we approximate A = I and utilize the inexact gradient for
training.
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Figure 1. The progression of Abs Rel errors in each DualRefine iteration
for KITTI depth.
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Figure 2. The progression of Abs Rel errors in each DualRefine iteration
for KITTI improved depth.

2. Training Loss Combinations

Determining the optimal pairings to calculate the self-
supervision losses at the refined fixed point is not straightfor-
ward. For each refined estimate (D∗ and T ∗), we can calcu-
late the self-supervision loss using either the detached initial
estimates ([D∗ ←→ detached T0] pair and [T ∗ ←→ detached
D0] pair) or the corresponding refined estimate ([D∗←→ T ∗]
pair and [D∗←→ T ∗]).

We observe a worse accuracy when both final estimates
are paired with the corresponding initial estimates. We infer
that, by pairing the final estimates with the initial ones, we
impose a strong constraint on the model, limiting the scope
of the output. We observe the best results when at least one
of the final estimates is paired with the corresponding initial
estimate. One example is when the depth loss is computed
using the [D∗ ←→ detached T0] pair, while the pose loss is
computed using the [T ∗←→ D∗] pair. From this experiment,
pairing the refined estimates with each other seems to display
the best accuracy. However, to ensure scale consistency with
the teacher networks, we follow the third loss pairing in the
table.

3. Additional results on KITTI Depth

3.1. KITTI improved depth

In Tab. 1 we present evaluation results on the improved
dense ground truth [19] of the KITTI [7] eigen split [4]. We
perform garg cropping [6] and report the error for distances
up to 80m. Our refinement module improves the initial es-
timates and outperforms most previous models while still
being competitive with the Transformer [20]-based Depth-
Former [12] model.

3.2. DEQ results

In Tab. 2 we present the error for the output of our model
in each DEQ iteration. Iteration 0 corresponds to the depth
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Method Test frames W ×H Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
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Ranjan [17] 1 832×256 0.123 0.881 4.834 0.181 0.860 0.959 0.985
EPC++ [15] 1 832×256 0.120 0.789 4.755 0.177 0.856 0.961 0.987

Johnston [13] et al. 1 640×192 0.081 0.484 3.716 0.126 0.927 0.985 0.996
Monodepth2 [9] 1 640×192 0.090 0.545 3.942 0.137 0.914 0.983 0.995

PackNet-SFM [11] 1 640×192 0.078 0.420 3.485 0.121 0.931 0.986 0.996
DualRefine-initial (D0) 1 640×192 0.075 0.379 3.490 0.117 0.936 0.989 0.997

Patil et al. [16] N† 640×192 0.087 0.495 3.775 0.133 0.917 0.983 0.995
Wang et al. [21] 2 (-1, 0) 640×192 0.082 0.462 3.739 0.127 0.923 0.984 0.996
ManyDepth [22] 2 (-1, 0) 640×192 0.064 0.320 3.187 0.104 0.946 0.990 0.995

DepthFormer [12] 2 (-1, 0) 640×192 0.055 0.271 2.917 0.095 0.955 0.991 0.998
DualRefine-refined (D∗) 2 (-1, 0) 640×192 0.056 0.281 3.040 0.095 0.960 0.992 0.998
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s DRO [10] 2 (-1, 0) 960×320 0.057 0.342 3.201 0.123 0.952 0.989 0.996
ManyDepth (HR ResNet50) [22] 2 (-1, 0) 1024×320 0.062 0.343 3.139 0.102 0.953 0.991 0.997

DualRefine-refined (D∗) 2 (-1, 0) 960×288 0.052 0.282 2.880 0.090 0.966 0.993 0.998

Table 1. Results and comparison with other state-of-the-arts models on the KITTI [7] Eigen split [4] with improved depth maps [19]. Bold: Best, Underscore:
Second best. † : evaluated on whole sequences

# iters Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
0 0.103 0.726 4.497 0.181 0.893 0.965 0.983
1 0.103 0.702 4.360 0.179 0.900 0.967 0.984
2 0.099 0.700 4.321 0.174 0.906 0.968 0.984
3 0.098 0.695 4.318 0.175 0.905 0.968 0.984
4 0.095 0.690 4.308 0.174 0.908 0.967 0.984
5 0.092 0.673 4.264 0.172 0.911 0.968 0.984
6 0.090 0.658 4.237 0.171 0.912 0.967 0.984
7 0.089 0.653 4.23 0.172 0.912 0.967 0.983
8 0.090 0.653 4.234 0.173 0.910 0.967 0.983
9 0.091 0.655 4.251 0.174 0.909 0.966 0.983

Table 2. The progression of the errors on the KITTI [7] Eigen split in each DualRefine iteration.

# iters Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
0 0.075 0.379 3.490 0.117 0.936 0.989 0.997
1 0.071 0.329 3.186 0.108 0.950 0.991 0.997
2 0.069 0.324 3.143 0.105 0.953 0.991 0.997
3 0.067 0.319 3.135 0.104 0.953 0.991 0.997
4 0.063 0.307 3.098 0.101 0.956 0.992 0.998
5 0.058 0.291 3.050 0.097 0.959 0.992 0.998
6 0.056 0.281 3.040 0.095 0.960 0.992 0.998
7 0.055 0.278 3.041 0.095 0.960 0.992 0.998
8 0.055 0.279 3.056 0.096 0.958 0.992 0.998
9 0.057 0.283 3.091 0.097 0.957 0.992 0.998

Table 3. The progression of the errors on the KITTI [7] Eigen split [4] with improved depth maps [19] in each DualRefine iteration.

Loss pairs Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑D∗ T ∗

1 T0 D0 0.99 0.765 4.449 0.898
2 T ∗ D0 0.093 0.698 4.342 0.907
3 T0 D∗ 0.092 0.657 4.34 0.908
4 T ∗ D∗ 0.089 0.632 4.305 0.907

Table 4. Ablation experiment for the effect of pose updates and self-
supervision pairings on the KITTI [7] Eigen split. Bold: Best.

estimates produced by the initial depth estimator. We can
see that our model converges around the 6th iteration. We
also plot the Abs Rel error on Fig. 1

3.3. KITTI improved depth DEQ results

We also present detailed DEQ errors in Tab. 3 and plot
the Abs Rel error in each iteration on Fig. 2 for the KITTI
improved depth ground truth. Similarly, our model converges
around the 6th iteration.

3.4. Additional qualitative results

We illustrate through Figs. 3 and 4 additional results in
the KITTI dataset. An interesting observation is how the
model learns to give low confidence to vehicles and texture-
less image regions. We also show in Fig. 4 how the epipolar
geometry differs between the initial estimates and the refined
estimates, which may cause inaccurate photometric losses



Methods terr(%) ↓ rerr(
◦/100m) ↓ ATE (m) ↓

ORB-SLAM2 [61] 12.96 0.7 44.09
Monodepth2 [22] 12.28 3.1 99.36
Zou et al. [102] 7.28 1.4 71.63

DualRefine-initial (T0) 12.50 4.04 118.29
DualRefine-refined (T ∗) 5.82 1.51 17.27

Table 5. Additional results on KITTI odometry test split (Seq. 11 ∼ 21)
using ORB-SLAM2 stereo as pseudo-GT. We provide a comparison with
representative state-of-the-art self-supervised depth and odometry methods.
ORB-SLAM2 is included as a representative non-learning based method.

as well as matching costs.

4. Additional results on KITTI odometry
We perform an additional evaluation on Seq. 11-21 of

the KITTI odometry dataset, using the stereo version of
ORB-SLAM2 as a pseudo-GT following Zou et al. [23] We
present the average results in Tab. 5 The refinement greatly
improves over the initial predictions and also displays better
ATE even in comparison to ORB-SLAM2 with loop closure.

5. Conv-GRU Update Implementation
In our approach, we use the standard Conv-GRU

block [18] to compute the updates as follows:

zk+1 = σ(CNNz([hk,xk]))

rk+1 = σ(CNNr([hk,xk]))

h̃k+1 = tanh(CNNh̃([rk+1⊙hk,xk]))

hk+1 = (1− zk+1)⊙hk + zk+1⊙ h̃k+1

(1)

where σ represents the sigmoid activation function. Explor-
ing other variants of the Conv-GRU block will be considered
in the future.



Figure 3. Qualitative results in the KITTI [7] dataset. top left: input image, top center: initial disparity, top right: refined disparity, middle center: initial error
map, middle right: refined error map, bottom center: fixed confidence weights, bottom right: 6th iter confidence weights.



Figure 4. The epipolar line in the source image, calculated from yellow points in the target image, for the PoseNet [14] initial pose (red) and our refined pose
(green). The yellow point in the source image is calculated based on our final depth and pose estimates.
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