
A. Additional Results and Analyses
A.1. Qualitative analysis of generated reports

Table A.1 shows example reports generated with
BioViL-T and BioViL models, which are compared to the
reference radiologist’s reports. In comparison with BioViL
which only models the current image, BioViL-T shows the
benefit from incorporating prior study information and is
able to provide factually more accurate reports especially
in terms of describing temporal progression of the findings.
This is showcased in the first two examples in the table: In
the first row, BioViL-T is able to comment on not only the
presence of the pleural effusion but also its improvement
while BioViL fails to mention the change. In the second
example, BioViL-T is able to correctly identify that there is
no relevant change by comparing with the previous study,
while BioViL wrongly hallucinates the tube in the current
image as a new placement. BioViL-T can also avoid hallu-
cination of the temporal information when there is no prior
study. For instance, in the third example, BioViL-T cor-
rectly acknowledges that there is no prior image and gen-
erates the report based on information from the single cur-
rent image, while BioViL hallucinates a non-exisistent prior
study and wrongly generates temporal descriptions in the
report.

A.2. Further analysis on temporal classification

A subset of the MS-CXR-T benchmark dataset is re-
annotated by an expert radiologist by blinding them to the
existing ground-truth labels and displaying only pairs of im-
ages obtained from each subject. With the new set of labels,
the analysis focuses on measuring the correlation between
inter-rater agreement and image model’s prediction errors.
Figure A.1 shows the dependency between the two where
the x-axis corresponds to the cross entropy loss between the
MS-CXR-T benchmark labels and model predictions. We
observe lower model performance on cases with smaller
inter-rater reliability for the three classes in the dataset, in-
dicating that the model’s prediction errors occur more often
for the cases where experts may disagree with each other.

A.3. Self-attention visualisation

In Figure A.2, we show examples of self-attention roll-
out [1] maps for pleural effusion and consolidation, includ-
ing radiologist-annotated bounding boxes surrounding the
corresponding pathology in each prior and current image.

To model the attention flow through the transformer en-
coder block, we first average each attention weight matrix
across all heads, subsequently we multiply the matrices be-
tween every two layers. For every block we add the identity
matrix in order to model the residual connections. Last, we
only keep the top 10 % of attention weights per block to re-
duce noise in the final rollout map. In contrast to [21], we
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Figure A.1. Cross entropy between model predictions and
MS-CXR-T temporal classification labels. ‘Disagreement’ indi-
cates cases for which annotations differed amongst radiologists.
Model performance is higher for cases with with low ambiguity
(‘Agreement’).

do not visualize the rollout map with respect to a [CLS]
token. Instead, we choose a reference image patch from the
center of the radiologist-annotated bounding boxes, marked
with ★ in Figure A.2.

We find that the rollout maps in Figure A.2 are in good
agreement with radiologist-annotated bounding boxes, i.e.,
the reference patch attends to other patches within the
bounding boxes in the prior and current image. In addition,
we find that BioViL-T is robust to pose variations, e.g., in
Figure A.2 (a) we show that despite the vertical shift be-
tween prior and current image, the reference patch attends
to the correct image patches in the prior image.

To further assess the robustness of BioViL-T against
pose variations between prior and current images, we per-
formed multiple rotations to the prior image within a pair
and computed rollout maps from the same reference patch
in the current image. Figure A.3 shows that BioViL-T con-
sistently attends to the corresponding anatomical region in-
dependently of the spatial transformation applied, demon-
strating that registration is not needed.

A.4. Data curation of imaging datasets

Large datasets often contain instances that are misla-
belled or out of distribution [35]. We used BioViL-T to per-
form pairwise ranking of instances in MIMIC-CXR (Sec-
tion 3.3, δ = 0.2) and selected representative examples
found in the dataset. Our method is able to select the most
appropriate image for a range of different image-acquisition
or image-processing issues (Figure A.4).

We found that many lateral acquisitions in the dataset
were unexpectedly labelled as frontal (Figure A.4a). Some
images contained only noise (Figure A.4b), non-human
samples (Figures A.4d and A.4e) or incorrect anatomy (Fig-
ure A.4g). Often, acquisitions with an incomplete field of
view (FOV) (i.e., the lungs are not completely visible) were
repeated (Figure A.4c). Lastly, post-processed images were



Reference (by radiologist) BioViL BioViL-T

No evidence of acute cardiopul-
monary process. Decreased
right pleural effusion.

Small right pleural effusion. Small right pleural effusion,
decreased since .

No relevant change as com-
pared to the previous image. No
evidence of pneumonia or other
parenchymal pathology. Normal
size of the heart. No pleural
effusions.

In comparison with the study of , there has

been placement of a right ij port - a - cath that
extends to the lower svc. No evidence of post
procedure pneumothorax. The cardiac silhouette
is within normal limits and there is no vascular
congestion or pleural effusion. There is some
asymmetry of opacification at the bases, more
prominent on the left. In the appropriate clinical
setting, this could possibly represent a develop-
ing consolidation.

As compared to the previous ra-
diograph, no relevant change is
seen. The lung volumes are nor-
mal. Normal size of the car-
diac silhouette. Normal hilar and
mediastinal structures. No pneu-
monia, no pulmonary edema, no
pleural effusions.

No previous images . The car-
diac silhouette is within normal
limits and there is no evidence of
vascular congestion, pleural effu-
sion, or acute focal pneumonia.

In comparison with the study of , there is

little change and no evidence of acute car-
diopulmonary disease. No pneumonia, vascular
congestion, or pleural effusion.

No previous images . The car-
diac silhouette is within normal
limits and there is no vascular
congestion, pleural effusion, or
acute focal pneumonia.

Table A.1. Comparison between reports generated by radiologists, BioViL using only a single current image and BioViL-T using both
the current and previous study. BioViL-T with access to longitudinal information can generate more accurate reports with more precise
details on the progression of findings (as in the first and second example) while avoiding hallucination (in the third example). Blue box

highlights the correct temporal information and brown box highlights incorrect temporal information including hallucination.

Prior image Current image

(a) Example of improving pleural effusion

Prior image Current image

(b) Example of stable pleural effusion

Prior image Current image

(c) Example of worsening pleural effusion

Prior image Current image

(d) Example of improving consolidation

Prior image Current image

(e) Example of stable consolidation

Prior image Current image

(f) Example of worsening consolidation

Figure A.2. Self-attention rollout maps [1] from the reference patch (marked with ★) to the current and prior images, overlaid on example
cases of (a) improving, (b) stable and (c) worsening pleural effusion (top row) and consolidation (bottom row). The bounding boxes,
annotated by a radiologist, show the area corresponding to the pathology. The centre patch in the bounding box for the current image was
selected as reference. The grid (14 × 14) represents the visual tokens processed in the transformer encoder blocks.

detected by the algorithm such as contrast-enhanced scans (Figure A.4i) that are not often used for diagnostic purposes



Prior image Current image

(a) Previous image rotated -30°

Prior image Current image

(b) Original pair

Prior image Current image

(c) Previous image rotated 30°

Figure A.3. Comparison of roll-out maps computed after applying in-plane spatial rotations to the prior image. The reference visual token
(★) attends to the corresponding anatomical region annotated by an expert independent of the underlying spatial transformation.

in clinical practice.

A.5. Phrase-grounding on external data

We have additionally conducted a robustness analysis on
an out-of-distribution dataset. For this purpose, a small set
of expert labels (N=137 bounding-box–caption pairs) were
collected on Open-Indiana CXR dataset [18] for phrase
grounding on the same set of abnormalities as MS-CXR
benchmark [10]. The dataset differs in terms of text token
distribution, demographics, and disease prevalence. The ex-
periment was performed with the same methods and setup
described in Section 4.3. The results show that the perfor-
mance gains due to temporal pre-training is observed to be
consistent on external datasets.

Table A.2. Multi-modal phrase-grounding results obtained on
a subset of Open-Indiana CXR dataset [18] image-text pairs.
“Multi-image” column indicates the input images used at test time.
The results are reported in terms of micro-averages owing to the
limited number of samples in some classes.

Method Pre-Train Multi-Image Avg. CNR Avg. mIoU

BioViL [9] Static ✗ 1.19 ± 0.04 0.259 ± 0.003
BioViL-T Temporal ✗ 1.53 ± 0.05 0.289 ± 0.006

B. Temporal aspects of the MIMIC-CXR v.2
dataset

Subjects in the MIMIC-CXR dataset often have multi-
ple associated studies that happened at different times. A
study, sometimes referred to as an ‘exam’ or ‘procedure’,
refers to “one or more images taken on a single visit to a
medical facility”8. To assess pathology progression, radi-
ologists compare images (also referred to as ‘scans’ or ‘se-
ries’) from different studies. In the MIMIC-CXR dataset,
each study (with one or more images) is accompanied by the
report written by the radiologist. Figure B.1 represents the
distribution of studies per subject within MIMIC-CXR and
the corresponding cumulative distribution function, show-
ing that 67 % of the subjects have at least two different as-

8Adapted from https://ncithesaurus.nci.nih.gov/

sociated studies (and therefore at least two images acquired
at different stages of the disease).

Another way to quantify temporal information in
MIMIC-CXR is through the progression labels provided
by the Chest ImaGenome dataset [72]. These progression
labels are extracted from the reports and thus identify the
cases when the radiologist explicitly describes changes. We
found that in MIMIC, around 40 % of the reports are as-
sociated with a progression label from any of the available
findings defined by ImaGenome.

C. MS-CXR-T benchmark

C.1. Temporal image classification

The MS-CXR-T temporal image classification contains
progression labels for five findings (Consolidation, Edema,
Pleural Effusion, Pneumonia and Pneumothorax) across
three progression classes (Improving, Stable, and
Worsening). This benchmark builds on the publicly
available Chest ImaGenome gold and Chest ImaGenome
silver datasets [72] which provide progression labels auto-
matically derived from radiology reports. We collected a set
of studies that are part of the ImaGenome silver dataset, ex-
cluding any studies that had been previously verified as part
of the ImaGenome gold dataset. Additionally, we excluded
studies where there are multiple progression labels for a sin-
gle pathology (e.g. left pleural effusion has increased, right
pleural effusion remains stable). We conducted a review
process of the selected candidates, asking a board certified
radiologist to either accept or reject the label. To inform
their review of the labels, the radiologist was given access to
the radiology report for the current image, and the sentence
from which the auto generated label had been extracted.

After collecting our curated labels and labels from the
ImaGenome gold dataset, we matched the report-based la-
bels to specific image pairs, performing a second data cu-
ration step to create the image dataset. To ensure the di-
agnostic quality of all images in the dataset, if a study had
multiple frontal scans we performed a quality control step
asking a radiologist to select the best image for each study.
Fig. F.1 shows examples from the benchmark across differ-

https://ncithesaurus.nci.nih.gov/


(a) Incorrect view (b) Invalid acquisition (c) Incomplete field of view (d) Non-human sample (e) Non-human sample

(f) Inverted intensities (g) Non-chest sample (h) Image orientation (i) Post-processed image (j) Processing artefacts

Figure A.4. Pairwise ranking of images performed by the proposed data curation method (see Section 3.3) on images from the MIMIC-
CXR v2 dataset. Images highlighted with dashed green rectangles are automatically selected by our method and used for training to
improve model’s downstream performance. The rejected image samples may not be appropriate for training due to image acquisition or
image processing issues as shown in each subfigure above.
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Figure B.1. Number of studies per subject in the MIMIC-CXR
dataset. A study, sometimes referred to as an ‘exam’ or ‘proce-
dure’, refers to “one or more images taken on a single visit to
a medical facility” (adapted from https://ncithesaurus.
nci.nih.gov/). Note that 67 % of subjects have at least two
studies that happened at different times.

ent pathologies and progression labels.
The class distribution for the image classification task in

MS-CXR-T is shown in Tab. C.1. As seen in the table, the
class distribution of the dataset skews towards the stable
and worsening classes. This could be explained as pa-
tients are more likely to get a chest X-ray scan when their
condition is stable or deteriorating as opposed to when there
is an improvement in patient condition.

C.2. Temporal sentence similarity

In this section, we describe the process of creating the
MS-CXR-T temporal sentence similarity benchmark, which
consists of pairs of paraphrase or contradiction sentences in
terms of disease progression. We create this dataset using
two different methods, RadGraph where paraphrase and
contradiction sentence pairs are discovered by analysing

Table C.1. MS-CXR-T temporal image classification benchmark:
Showing the distribution of multi-image studies across different
clinical findings, distribution of classes {Improving, Stable,
Worsening} per finding, and number of subjects.

Findings # of annotation pairs Class distribution # of subjects

Consolidation 201 14% / 42% / 44% 187
Edema 266 31% / 26% / 43% 241
Pleural effusion 411 19% / 49% / 32% 370
Pneumonia 237 8% / 25% / 67% 218
Pneumothorax 211 15% / 55% / 30% 148

Total 1326 18% / 40% / 42% 800

Table C.2. MS-CXR-T temporal sentence similarity benchmark:
Number of paraphrase and contradiction examples in the full
dataset and across the RadGraph and Swaps subsets.

Subset # of paraphrase pairs # of contradiction pairs Total

Radgraph 42 75 117
Swaps 99 145 244

Total 141 220 361

graph representations of sentences and Swaps where para-
phrases and contradictions are created by swapping out tem-
poral keywords in the sentence.

To create this dataset, we first collected a set of sentences
from the MIMIC dataset, using the Stanza constituency
parser [82] to extract individual sentences from reports. Us-
ing the CheXbert labeller [63], we filtered this set to sen-
tences that described one of seven pathologies - Atelecta-
sis, Consolidation, Edema, Lung Opacity, Pleural Effusion,
Pneumonia or Pneumothorax. We then filtered to sentences
which contained at least one mention of a temporal key-
word. Using this sentence pool, paraphrase and contradic-
tion pairs were constructed in two ways. (I) We paired sen-
tences from the sentence pool by matching on RadGraph

https://ncithesaurus.nci.nih.gov/
https://ncithesaurus.nci.nih.gov/


Table C.3. Examples of paraphrase and contradiction sentence pairs from the MS-CXR-T temporal sentence similarity benchmark. The
examples are selected from the RadGraph and Swaps subsets (see Appendix C.2).

Label Sentence 1 Sentence 2

Sw
ap

s Paraphrase “Unchanged small-to-moderate right pleural effusion.” “Stable small-to-moderate right pleural effusion.”

Contradiction “Interval worsening of the right-sided pneumothorax.” “Interval resolution of the right-sided pneumothorax.”

R
ad

G
ra

ph Paraphrase “There has also been a slight increase in left basal consolidation.” “There is slight interval progression of left basal consolidation.”

Contradiction “Right mid and lower lung consolidations are unchanged.” “There has been worsening of the consolidation involving the right
mid and lower lung fields.”

[34] entities, relaxing the matching constraint only for tem-
poral keywords and possible mentions of pathologies. (II)
We swapped out temporal keywords in a sentence to cre-
ate sentence pairs, choosing swap candidates from the top 5
masked token predictions from CXR-BERT-Specialized [9]
provided they were temporal keywords. After creating can-
didate sentence pairs, we manually filtered out sentence
pairs with ambiguous differences in terms of disease pro-
gression. A board certified radiologist then annotated each
sentence pair as either paraphrase or contradiction. Sen-
tences were filtered out in the annotation process if (I) they
were not clear paraphrases or contradictions (II) the sen-
tences differed in meaning and this difference was not re-
lated to any temporal information (III) they were not gram-
matically correct. The distribution of sentence pairs across
the paraphrase and contradiction classes are described in Ta-
ble C.2, see Table C.3 for examples from the benchmark.

D. Temporal entity matching

To quantify how well the generated report describes
progression-related information, we propose a new metric,
namely temporal entity matching (TEM) score.

D.1. Metric Formulation

We first extract entities (tagged as “observation” or “ob-
servation modifier”) from the text by running the named en-
tity recognition model in the Stanza library [82]. Within the
extracted entities, we manually curated a list of temporal
entities that indicate progression (Appendix D.2). The list
is reviewed by an expert radiologist. Given extracted tem-
poral entities E in N pairs of reference and generated re-
ports, we calculate global precision (pE) and global recall
(rE), which are later used to compute the TEM score. It is
defined as the harmonic mean of precision and recall (also
known as the F1 score).

pE =
∑N

i=1 ∣Ei
gen ∩Ei

ref ∣

∑N
i=1 ∣Ei

gen∣
(3)

rE =
∑N

i=1 ∣Ei
gen ∩Ei

ref ∣

∑N
i=1 ∣Ei

ref ∣
(4)

D.2. List of temporal keywords

The list of temporal keywords used to compute the TEM
score are as follows: {bigger, change, cleared, constant,
decrease, decreased, decreasing, elevated, elevation, en-
larged, enlargement, enlarging, expanded, greater, growing,
improved, improvement, improving, increase, increased,
increasing, larger, new, persistence, persistent, persisting,
progression, progressive, reduced, removal, resolution, re-
solved, resolving, smaller, stability, stable, stably, un-
changed, unfolded, worse, worsen, worsened, worsening,
unaltered}.

E. Architecture and implementation details
E.1. Hyper-parameters

The models are trained in a distributed setting across 8
GPU cards. For pre-training, we use a batch size of 240
(30 * 8 GPUs) and the AdamW optimizer [43]. We use a
linear learning rate scheduler with a warm-up proportion of
0.03 and base learning rate of 2× 10−5. We train for a max-
imum of 50 epochs and use validation set loss for check-
point selection. The overall loss is a sum of components
with weighting factors: global contrastive (1.0), local con-
trastive (0.5), and image-guided MLM (1.0) respectively,
see Sec. 3.1 for further details on their formulation.

Following [9] we use sentence permutation as text-based
data augmentation. Similarly, spelling errors in the reports
are corrected prior to tokenisation of the text data9. For
image augmentations, note that we apply the same augmen-
tation to current and prior images to prevent severe mis-
alignment. We resize the shorter edge to 512 and centre-
crop to (448, 448). We apply random affine transformations
(rotation up to 30○ and shear up to 15○) and colour jitter
(brightness and contrast).

E.2. Training infrastructure

We train with distributed data processing (DDP) on eight
NVIDIA Tesla V100s with 32GB of memory each. To han-
dle inconsistently-present prior images with DDP, we define

9https://github.com/farrell236/mimic-cxr/blob/
master/txt/section_parser.py

https://github.com/farrell236/mimic-cxr/blob/master/txt/section_parser.py
https://github.com/farrell236/mimic-cxr/blob/master/txt/section_parser.py


a custom batch sampler. This sampler is a mixture of two
samplers, in proportion to their dataset coverage: a sam-
pler which produces batches with only multi-image exam-
ples – (xcurr

img ,x
prior
img ,xcurr

txt ) ∈ Dm and one with only single-
image examples – (xcurr

img ,∅,xcurr
txt ) ∈ Ds. Each GPU then

processes a batch which is entirely single or multi-image,
avoiding branching logic within the forward pass and en-
abling an efficient single pass through the CNN to process
all input images (current or prior) by concatenating them
along the batch dimension.

We confirmed that although the custom sampler theoret-
ically impacts the order in which the dataset is traversed,
it has a negligible effect on training metrics relative to fully
random sampling. Since we train on eight GPUs and collect
negatives across all GPUs during contrastive training, each
update involves on average a representative mixture of both
single-image and multi-image samples.

Finally, following [9] we use the DICOM images from
MIMIC-CXR to avoid JPEG compression artefacts.

F. Adaptation and experimentation details

F.1. Fine-tuning BioViL-T for report generation

During fine-tuning of BioViL-T for report generation,
we minimise the cross entropy loss to maximise the log like-
lihood of the report in an autoregressive manner given the
input images. The model is initialised from the pretrained
weights of the image encoder and the text encoder. Sim-
ilar to the cross-modal masked language modelling task,
we additionally train a linear projection layer to map the
projected patch embeddings to the same hidden dimension
of the text encoder, and we train cross-attention layers in
each transformer block. The difference from the masked
language modelling task is that we change the bidirectional
self-attention to unidirectional causal attention that can only
access the past tokens. If trained with prior report, we pass
the prior report as prefix to condition the generation of the
current report (the current and prior report are separated by
[SEP]), and we only back-propagate the gradients from
the loss on the tokens in the current report.

For all experiments, we train the model for 100 epochs
and we chose the best checkpoint according to metrics on
the validation set. We performed grid search for learning
rate in [10−5,2 × 10−5,5 × 10−5] and found 2 × 10−5 to be
optimal. We ran each experiment with 3 random seeds and
report mean and standard deviation.

In addition to the metrics we reported in the main text,
we also evaluate the generated reports by named entity met-
ric (NEM). This metric was defined in [45] to measure the
accuracy of reporting clinically relevant entities in the gen-
erated reports (Similar to how TEM is computed to measure
the match of temporal entities in our study). Following [45],
we extract entities (tagged as “observation” or “observa-

Table F.1. Results for report generation task: Predictions are
evaluated on NEM. The approaches are grouped into two broad
categories: NN (Nearest Neighbour) and AR (Auto-Regressive).
BioViL-T pre-training consistently yields superior decoding per-
formance. Further, the use of prior image and report consistently
yield performance gains demonstrating the importance of such do-
main priors.

Method Pre-training Prior Img/Report NEM

N
N

CXR-RePaiR-2 [25] BioViL ✗ / ✗ 13.36
Baseline (NN) [9] BioViL ✗ / ✗ 16.25
Proposed (NN) BioViL-T ✓/ ✗ 17.55

A
R

Baseline (AR) [9] BioViL ✗ / ✗ 24.27 ± 0.22
Proposed BioViL-T ✓/ ✗ 25.50 ± 0.04
Proposed BioViL-T ✓/ ✓ 26.95 ± 0.17

tion modifier”) from the text by running the named entity
recognition model in the Stanza library [82]. The results are
presented in Tab. F.1.

F.2. Nearest-neighbour-based report retrieval

The joint latent space learnt by BioViL-T can also be
used to directly perform report retrieval without requiring
task-specific model fine-tuning. Given the test image, we
retrieve its semantically closest report from the training set
in the joint latent space. Specifically, we encode each test
image with the image model in BioViL-T and collect its
projected image embeddings, and similarly we encode all
the reports in the training data with their projected text em-
beddings. For each test study, we compute cosine similarity
between the test image embedding and all the text embed-
dings from the training set in the joint latent space, and we
retrieve the closest text embedding and use its correspond-
ing report as the prediction. To evaluate the retrieval perfor-
mance, we use the same decoding metrics on the retrieved
reports and report results in the top section of Table 1.
In a separate set of experiments, we also tried performing
nearest neighbour search only within the image embedding
space by retrieving the report associated with the closet im-
age embedding, but this yielded sub-optimal performance
compared with using the joint latent space.

F.3. Fine-tuning for temporal image classification

In this section, we describe the training dataset and fine-
tuning procedure for the fully supervised and few-shot set-
tings of the temporal image classification task. For this task,
we finetune BioViL-T on a subset of the Chest ImaGenome
silver dataset [72] to predict progression labels for 5 differ-
ent pathologies. To create our training dataset, we filter out
image pairs from this dataset where there are multiple di-
rections of progression of a single pathology in the image-
pair. We additionally perform an automatic data curation
step to choose higher quality image pairs when possible, as



described in 3.3. Table F.2 shows the number of training
samples and label distribution for the training dataset.

Table F.2. Statistics of the training dataset used for downstream
fine-tuning on temporal image classification.

Findings # labelled pairs Class distribution # of subjects

Consolidation 7012 15% / 42% / 43% 3308
Edema 14170 28% / 33% / 39% 4813
Pleural effusion 26320 16% / 53% / 31% 6838
Pneumonia 8471 12% / 29% / 59% 4197
Pneumothorax 3795 21% / 57% / 22% 1161

For the fully supervised setting, we add a multilayer clas-
sification head to the BioViL-T image encoder and fine-
tune the model independently for each pathology. We use
weighted cross entropy loss with a batch size of 128 and
the AdamW optimizer [43]. During parameter optimisation,
positional encodings and missing-image embeddings are
exempt from weight decay penalty as in [73]. We train for
30 epochs, with a linear learning rate schedule, a warmup
proportion of 0.03 and a base learning rate of 1 × 10−5. For
data augmentation, we first resize the shorter edge of the im-
age to 512 and centre crop to (448, 448). We apply random
horizontal flips, random cropping, random affine transfor-
mations (rotation up to 30○, shear up to 15○), colour trans-
forms (brightness and contrast) and Gaussian noise.

For the few-shot setting we tune only a single-layer lin-
ear head on the BioViL-T image encoder and freeze the rest
of the encoder. We initialise the weight matrix of the linear
head with values from encoded text prompts [9] for each
of the three progression classes, and the bias matrix is ini-
tialised with zeros. To train, we again use weighted cross
entropy loss, with a batch size of 32 and the AdamW opti-
mizer. We use a learning rate of 1 × 10−3 and train for 40
epochs. For data augmentation, we resize the shorter edge
of the image to 448 and center crop to (448, 488). We ap-
ply random horizontal flips, random affine transformations
(rotation up to 45○ and shear up to 25○), colour transforms
(brightness and contrast). As in the pre-training step, we
always synchronise image data augmentations to apply the
identical transforms to the current and prior images.

F.4. Auto-regressive prompting for zero-shot tem-
poral image classification

Following the GPT-3 style language prompting [11], we
prompt the fine-tuned AR language decoding model with
the template: “[FINDING] is” and infer the next token
to perform temporal classification for each of the five find-
ings. The mapping from the predicted next token to the
three progression classes is characterised by a short list of
tokens provided in Table F.3. After computing the posterior
for each token in the list, the obtained values are normalised
across the three classes, and the class with the highest score

Table F.3. Prompting the AR language decoding model for zero-
shot image classification. The list above shows the mapping from
decoded tokens to progression classes.

Target class Tokens

Improving better, cleared, decreased, decreasing, im-
proved, improving, reduced, resolved, re-
solving, smaller

Stable constant, stable, unchanged

Worsening bigger, developing, enlarged, enlarging,
greater, growing, increased, increasing,
larger, new, progressing, progressive,
worse, worsened, worsening

is selected as the prediction. The corresponding results are
reported in Table 2.

F.5. Further analysis of image-guided MLM

In Section 4.6 we used a simplified notation for the
computation of ∆prior

img (m) for ease of exposition – here
we provide further detail. Recall that w = (w1, . . . ,wM)
is a sequence of tokens and w/m is that sequence
with token m masked. Let pθ(wm ∣w/m,xcurr

img ,x
prior
img )

be the text model’s predicted probability of token m
given xcurr

img ,x
prior
img , and w/m (θ are the weights of the

model). Then, l(w,pθ(wm ∣w/m,xcurr
img ,x

prior
img )) is the

cross-entropy loss of predicting token m given those inputs.
It is possible for different sentences in a report to refer

to the same image finding. Since we mask single tokens
at a time, to prevent information leakage from other sen-
tences we consider each sentence in a report independently.
Suppose report xcurr

txt consists of S sentences, so we have
xcurr
txt = [w1,[SEP], . . . ,[SEP],wS], where ws is the to-

kens of sentence s and [SEP] separates sentences.
For a given sample (xcurr

img ,x
prior
img ,xcurr

txt ) ∈ Dm in the test
set indexed by i, we define

δi(m) = ∑
s∈S
[l(m,pθ(ws

m ∣ws
/m,xcurr

img ,∅))

−l(m,pθ(ws
m ∣ws

/m,xcurr
img ,x

prior
img ))]

This is the MLM loss for predicting m given each sentence
in the report with and without the prior image. Note that if
m does not appear in a given sentence, its contribution to
the sum is zero. The overall ∆prior

img (m) is computed across
all samples:

∆prior
img =

1

Nm

⎛
⎝ ∑i∈Dtest

m

δi(m)
⎞
⎠

(5)

where Nm is the number of sentences in reports in Dtest
m

in which token m appears. This estimate is subject to high
variance when Nm is small. Hence, for Figure 4 we filter



Category Description Examples

Progression Pertaining to change or progression bigger, cleared, new
Support devices Tubes, lines and implants nasogastric, pacemaker, cannula
‘Other’ No clear category can, relevant, overall
Stop word ‘Insignificant’ words the, no, of
Positional Localisation (not anatomical) right, lower, bilateral
Meta Pertaining to the report itself or practice of radiology evidence, radiograph, study
Anatomy Anatomical locations pulmonary, chest, mediastinal
Descriptive Qualitative appearance of a finding layering, focal, patchy
Size or degree Quantifying extent or severity extensive, moderate, severe
Finding Radiographic finding or pathology edema, penumonia, pneumothorax
Uncertain Expression of certainty or doubt may, possible, concerning

Table F.4. Semantic categories used in Figure 4.

to tokens m with Nm ≥ 10. We collected 931 tokens with
Nm ≥ 10 from the validation set for manual annotation by
a board-certified radiologist. The categories, shown in Fig-
ure 4 and described in Table F.4 are specific to the radiology
domain.

F.6. Sentence similarity experiment

The text models are evaluated in isolation to observe if
their encoding is sensitive to key clinical observations. To
achieve this, we assess the quality of sentence represen-
tations obtained from our text model by examining how
well the contradiction and paraphrase pairs can be sepa-
rated in the embedding space. Unlike the traditional NLI
task where a model needs to be fine-tuned, here the models
are probed in a zero-shot setting and the BERT output token
embeddings are utilised. To do so, we encode the sentences
from RadNLI and MS-CXR-T sentence similarity datasets
with the [CLS] token from CXR-BERT-Specialised [9]
and BioViL-T. For PubMedBERT [29] and CXR-BERT-
General [9] which did not directly optimise the [CLS] to-
ken during pretraining, we follow [56] to average the token
output embeddings to represent each sentence.

Cosine similarity is computed between the representa-
tions of each sentence pair in the dataset [56] and is used as
logits for the binary classification between paraphrase and
contradiction. Note that for RadNLI, we use the subset of
‘entailment’ and ‘contradiction’ pairs and discard the ’neu-
tral’ pairs to unify the task across the two datasets. Given
the similarities for each sentence pair, we report ROC-AUC
and binary-accuracy. For the latter, a threshold value for
each method is derived by setting aside a validation set.
For this, we perform ten-fold cross validation and tune the
threshold with step size of 0.005 on the validation set.

F.7. Image registration algorithm

In Section 4.2, image registration is applied to pairs of
images as a preprocessing step to enable a fair compari-

son for the baseline approaches (e.g., BioViL [9]). We per-
formed bidirectional multi-scale registration between image
pairs optimising an affine transformation (4 degrees of free-
dom), using mutual information (MI) [65] with 128 bins as
the similarity criterion. In more detail, the spatial transfor-
mation is characterised by four parameters: two for transla-
tion, one for isotropic scaling, and one for rotation. The op-
timisation is repeated five times with different random seeds
for initialisation, and the run with the highest MI is selected
to determine the final spatial alignment. To better identify
the correspondences between the scans, bilateral filtering is
applied to each image before registration to remove detailed
texture whilst preserving edge information [38]. Our imple-
mentation is based on the SimpleITK library [44].



Prior image Current image

(a) Improving consolidation

Prior image Current image

(b) Stable consolidation

Prior image Current image

(c) Worsening consolidation

Prior image Current image

(d) Improving pulmonary edema

Prior image Current image

(e) Stable pulmonary edema

Prior image Current image

(f) Worsening pulmonary edema

Prior image Current image

(g) Improving pleural effusion

Prior image Current image

(h) Stable pleural effusion

Prior image Current image

(i) Worsening pleural effusion

Figure F.1. Examples of image pairs in our MS-CXR-T benchmark.
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