
A. 3D View Synthesis
A.1. Sparse and Unconstrained Multi-Views

We use 24 time instants from multi-view temporal se-
quences from the Open4D dataset [3]. The dynamic scenes
are captured by a varying number of cameras in these se-
quences. The number of views vary from 7 to 11. We use
one held-out view (or camera) for evaluation. Figure 9 con-
trasts our results on these sequences with NeRF and DS-
NeRF. Following is the setup for this analysis:

Sequences
WFD-01: 6 time-stamps - {2000, 2500, 3000, 3500,
4000, 4500}. Test CAM-ID: {2, 9, 2, 2, 6, 4}.
WFD-02: 5 time-stamps - {1900, 3000, 3500, 4000,
4500}. Test CAM-ID: {3, 6, 4, 2, 3}.
JiuJitsu: 7 time-stamps - {3000, 3500, 4000, 4500,
5000, 5500, 6000}. Test CAM-ID: {5, 4, 9, 5,
7, 11, 1}.
Gangnam: 3 time-stamps - {0200, 0300, 0900}. Test
CAM-ID: {4, 4, 4}.
Jumping: 3 time-stamps - {0200, 0300, 0400}. Test
CAM-ID: {0, 0, 0}.

A.2. Hi-Resolution View Synthesis
Shiny Dataset: We use 8 multi-view sequences from the
Shiny Dataset [45] that consists of multi-views captured
for specular surfaces. The resolution of 6 sequences (less
than 60 samples in each) in this dataset is 4032 ⇥ 3024,
and the remaining two (cd and labs have more than 300
samples) have resolution 1920 ⇥ 1080. We train NeRF on
the original resolution of these sequences for 2M iterations
(64 hours per GPU). We contrast the performance with our
approach that is trained for 10 epochs and 50 epochs. Ta-
ble 7 shows the performance of different methods. We fol-
low the evaluation criteria (average of per-sequence PSNR,
multi-channel SSIM, LPIPS1) from NeX [45]. We also add
the results generated by NeX [45] that synthesizes on one-
fourth resolution for these sequences. We do a simple 4⇥-
upsampling of their results to target resolution for an apples-
to-apples comparison. Our model trained for 10 minutes
achieves results close to the best performance.
LLFF-12: We use twelve high-resolution (4032 ⇥ 3024)
multi-view sequences from the LLFF dataset [26] that con-
tain challenging specular surfaces. In this setting, we train
NeRF [27] on these sequences for 2, 000, 000 iterations
which take approximately 64 hours on a single NVIDIA
V100 GPU (10, 000 iterations take 20 minutes). Perfor-
mance saturates at 1M iterations after 32 hours of training.
We also show the performance for vanilla NeRF that is

1We, however, use LPIPS via AlexNet (alex) instead of VGG-Net (vgg)
to fit 12MP images on a single GPU.

8 sequences PSNR" MCSSIM" LPIPS #

4032⇥3024
NeRF
vanilla 21.141 ± 3.528 0.735 ± 0.155 0.528 ± 0.157
2M iterations 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153

Naive Composition 16.624 ± 2.906 0.648 ± 0.197 0.342 ± 0.096
Naive Composition++ 17.535 ± 2.698 0.688 ± 0.184 0.317 ± 0.107

Ours (10 minutes)
K = 50, N = 50 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108
K = 100, N = 100 22.868 ± 4.588 0.802 ± 0.140 0.269 ± 0.120
K = 200, N = 200 23.016 ± 4.698 0.803 ± 0.144 0.285 ± 0.132
K = ALL, N = 200* 22.090 ± 4.263 0.786 ± 0.154 0.332 ± 0.145

Ours (50 minutes)
K = 50, N = 50 22.261 ± 4.812 0.791 ± 0.144 0.252 ± 0.105
K = 100, N = 100 22.739 ± 4.637 0.801 ± 0.142 0.258 ± 0.113
K = 200, N = 200 23.020 ± 4.690 0.805 ± 0.143 0.271 ± 0.123
K = ALL, N = 200* 21.788 ± 4.243 0.780 ± 0.154 0.317 ± 0.137

resized
NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180
NeX [45] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 7. Shiny dataset: We study our approach on the 8 real
sequences from the Shiny dataset [45]. NeRF is trained for 2M
iterations taking approx 64 hours. We also add the results of 4⇥
bi-linearly upsampled results from NeX [45] on these sequences.
Our approach gets competitive performance in only a few minutes.

trained for 200, 000 iterations and takes 400 � 420 minutes
to train. We train our model for 10 epochs, which takes
around 10 minutes on a single GPU and only 1GB GPU
of memory. We estimate disparity [47] for multiple stereo
pairs at one-fourth resolution for these sequences. Dispar-
ity estimation using the off-the-shelf model takes less than 5
minutes per sequence on a single GPU. Table 8 contrasts the
performance of NeRF models at different intervals of train-
ing using PSNR, SSIM, and LPIPS (AlexNet). We compute
the average of per-frame statistics as the number of sam-
ples in the test set for these 12 sequences are roughly the
same. We once again observe that it is crucial to include
all three evaluation criteria. Figure 10 shows the results of
NeRF at different intervals of time. We observe that the
NeRF model improves over time and captures sharp results
as suggested by LPIPS. Our method enables sharper out-
puts as compared to NeRF. Interestingly, NeRF does not
capture details even for training samples when trained suf-
ficiently long (64 hours) which suggests that it is non-trivial
to capture details using NeRF on held-out samples. The
qualitative and quantitative analysis suggest that we can ef-
ficiently generate results on 12MP images without drasti-
cally increasing the computational resources. We also show
the performance of naive composition to generate the final
outputs. We observe that MLPs allow us to obtain better
results. We also vary the number of stereo pairs (K) to syn-
thesize the target view. We observe that we can get better
results with a few stereo pairs than using all pairs. Synthe-
sizing a new view for a dense multi-view sequence can be
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Figure 9. View synthesis given sparse and spread-out multi-views: Our approach allows us to operate on sparse multi-views of
unbounded scenes [3]. We show novel view points for a fixed time instant for three unbounded scenes. Prior approaches such as NeRF [27]
and DS-NeRF [6] lead to degenerate outputs on these sequences.



12 sequences PSNR" SSIM" LPIPS #

NeRF [27]
2 hours 21.151 ± 2.783 0.577 ± 0.157 0.662 ± 0.099
4 hours 21.469 ± 2.881 0.588 ± 0.153 0.628 ± 0.096
vanilla 21.625 ± 2.933 0.596 ± 0.150 0.605 ± 0.092
8 hours 21.674 ± 2.958 0.598 ± 0.149 0.599 ± 0.091
16 hours 21.734 ± 2.981 0.602 ± 0.148 0.586 ± 0.088
32 hours 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087
64 hours . 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Naive Composition 16.008 ± 2.315 0.415 ± 0.142 0.427 ± 0.068
Naive Composition++ 17.022 ± 2.483 0.460 ± 0.144 0.406 ± 0.066

Ours (10 minutes)
K = 50, N = 50 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075
K = 100, N = 100 20.953 ± 2.805 0.598 ± 0.136 0.460 ± 0.078
K = 200, N = 200 20.783 ± 2.749 0.593 ± 0.135 0.494 ± 0.081
K = ALL, N = 200* 20.712 ± 2.656 0.591 ± 0.134 0.497 ± 0.077

Ours (50 minutes)
K = 50, N = 50 20.777 ± 2.809 0.591 ± 0.137 0.416 ± 0.075
K = 100, N = 100 21.006 ± 2.869 0.597 ± 0.136 0.448 ± 0.080
K = 200, N = 200 20.924 ± 2.847 0.592 ± 0.134 0.477 ± 0.082
K = ALL, N = 200* 20.825 ± 2.708 0.589 ± 0.132 0.480 ± 0.079

Ours (250 minutes)
K = 50, N = 50 20.582 ± 2.751 0.585 ± 0.135 0.409 ± 0.076
K = 100, N = 100 20.916 ± 2.874 0.593 ± 0.135 0.433 ± 0.078
K = 200, N = 200 20.640 ± 3.234 0.582 ± 0.139 0.474 ± 0.095
K = ALL, N = 200* 20.548 ± 3.104 0.580 ± 0.137 0.478 ± 0.092

Table 8. Hi-Res (12MP) View Synthesis: We evaluate on 12
sequences from LLFF containing specular surfaces on original
4032⇥ 3024 resolution. The details of these sequences are avail-
able in Appendix A.2. We contrast the performance of our ap-
proach with different intervals of training a NeRF model. Perfor-
mance saturates at 1M iterations after 32 hours of training. Our
composition model converges quickly in a few minutes. Here, we
show the results of our composition model trained for 10 epochs
that takes around 10 minutes, 50 epochs that takes less than 1 hour.
Training our model require 1 GB of GPU memory for training. We
also show the results when the model is trained for 250 epochs.
For each setting, we vary the number of stereo pairs (K) and num-
ber of 3D points (N ). We observe that using a few stereo-pairs
gives competitive and better results than using all the pairs. We
posit that noise introduced by using more stereo pairs might be re-
sponsible for the lower performance. Finally, we study the benefit
of using an MLP for composing per-pixel color and depth infor-
mation. The MLP allows us to obtain better results than a naive
composition (Fig. 4 in main paper). We refer the reader to Fig-
ure 10 for visual comparisons. We observe that details become
better for NeRF when trained for long. However, our approach
captures more details in a few minutes as compared to 32 hours
of training of a NeRF model. Consistent with the observation of
Zhang et al. [50], PSNR may favor averaged/blurry results while
LPIPS favors sharp results.

achieved by looking at the local neighborhood of the target
location instead of using all the views. Local neighborhood
is determined based on position in world space, i.e., we use
stereo-pairs corresponding to the closest camera and then

next and so on, unless we have K samples. This allows us
to speed-up training and testing.

Following are the details of 12 sequences from LLFF
dataset [26] for this analysis:

Sequences: airplants, data2 apeskeleton,
data2 benchflower, data2 bridgecar,
data2 chesstable, data2 colorfountain,
data2 colorspout, data2 redtoyota,
data3 ninjabike, data4 colinepiano,
data5 piano, pond.
Test IDs: For each sequence, we held-out every 8th frame
for evaluation.

Standard LLFF Sequences: We do not make any change
in our settings and quantitatively evaluate our approach on
8 forward-facing real-world multi-view sequences [27] in
Table 9. We use the original hi-res (4032 ⇥ 3024) undis-
torted images provided by Wizadwongsa et al. [45]. We
once again train NeRF models for these hi-res sequences
for 2M iterations (64 hours per GPU). Training the model
for long allows us to get better performing NeRF models for
these sequences. We follow the evaluation criteria (average
of per-sequence PSNR, multi-channel SSIM, LPIPS) from
NeX [45]. We also add the results reported by NeX [45].
These results were generated on one-fourth resolution. We
upsample them to the desired resolution. We report the
performance of our approach (without any modification for
these sequences) trained for 10 and 50 epochs. While other
methods were specifically tuned for these sequences, we use
our approach as-is. Our approach underperform both PSNR
and SSIM but achieves a competitive LPIPS score. How-
ever, we can generate novel hi-res views (12MP) in a few
minutes with limited computational resources.

A.3. Unbounded Views and Number of Views
We show the best performing result of NeRF on a held-

out view from one of these sequences in Figure 11. We
observe that our approach captures details better than NeRF.
We also study the influence of camera parameters using syn-
thetic multi-view sequences. We make two settings: (1)
camera parameters are estimated using Agisoft Metashape;
and (2) camera parameters provided with multi-view se-
quences. Table 10 contrasts the performance of our ap-
proach in these two settings. We vary the number of views
between {10, 20, 30, 40, 50}. We observe that performance
improves as we get better camera parameters. We also show
the improvement in performance when using more views in
Figure 12. Consistent with the quantitative analysis, we see
better results visually when increasing the number of views.

We use the following 13 synthetic multi-view sequences
for this analysis from the MVS-Synth dataset [13]:
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Figure 10. Improvement in NeRF over time: We show the progression (first 32 hours) of improvement for the NeRF model. We observe
that results improve over time as details become clearer over time. We contrast this with our approach that can generate sharp results in
only 10 minutes. Best viewed in electronic format.

Sequence IDs: {0000, 0001, 0002, 0003, 0004, 0005,
0006, 0007, 0008, 0009, 0010, 0011, 0012}.
For each sequence, we held-out every other frame for eval-
uation:
Test IDs: {000:002:098}.
Train IDs:
10 views: {003, 013, 023, 033, 043, 053, 063, 073,
083, 093}.
20 views: {003, 009, 013, 019, 023, 029, 033, 039,
043, 049, 053, 059, 063, 069, 073, 079, 083, 089,
093, 099}.
30 views: {003, 007, 009, 013, 017, 019, 023, 027,

029, 033, 037, 039, 043, 047, 049, 053, 057, 059,
063, 067, 069, 073, 077, 079, 083, 087, 089, 093,
097, 099}.

40 views: {001, 003, 007, 009, 011, 013, 017, 019,
021, 023, 027, 029, 031, 033, 037, 039, 041, 043,
047, 049, 051, 053, 057, 059, 061, 063, 067, 069,
071, 073, 077, 079, 081, 083, 087, 089, 091, 093,
097, 099}.

50 views: {001:002:099}.
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Figure 11. Best performing NeRF output on a synthetic sequence, Num Views = 50: (a) We cherry-pick the best performing synthesized
result on a held-out view synthesized using NeRF trained on a sequence with unbounded depth. (b) We then show results using our
approach. We zoom in to the billboard in the center of image (top-example), towards the bottom-left in second example, and on the truck
in the middle in bottom-example. Our approach captures details better than NeRF. (c) The ground truth is shown for reference.
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Figure 12. Varying number of views: We vary the number of views for training our model. We show three examples here: (1) left column
shows drastic performance improvement as we increase the number of views; (2) middle column shows improvement when increasing from
10 to 30 and then saturating; and (3) right column where the improvement is little as we increase the number of views. In general, we
observe that performance improves as we increase the number of views.

A.4. Hi-Res Studio Capture

Multi-View Facial Capture: We employ multi-view hi-
res facial captures. We can synthesize hi-resolution novel
views with a few minutes of training without any modifi-
cation and without using any expert knowledge such as fa-
cial details, foreground-background etc. Figure 13 shows
novel views synthesized and facial details (such as hair,
eyes, wrinkles, teeth, etc.) captured using a model trained
for a specific subject.
Multi-View Full Body Capture: Our approach also en-

ables us to synthesize full-bodies from hi-res multi-view
captures. Once again, we did not use any human-body spe-
cific information. Figure 16 shows novel views synthesized
and body details captured using a model trained for a spe-
cific subject.
Ability to Generalize: An important aspect of our ap-
proach is to enable generalization to unseen time instants
and unknown subjects. We train a model for one time in-
stant of one subject and can use it to synthesize new views
for unknown time instants. We show extreme facial expres-
sions and unseen subjects in Figure 14. We also contrast



Figure 13. Hi-Res Facial Details: Our approach allows us to capture hi-res facial details. We show novel views synthesized for various
subjects and emphasize different regions on the face to show details such as hair, eyes, teeth, and skin details.

8 sequences PSNR" MCSSIM" LPIPS #

4032⇥3024
NeRF
vanilla 25.192 ± 3.681 0.881 ± 0.063 0.396 ± 0.084
2M iterations 25.666 ± 3.833 0.887 ± 0.062 0.372 ± 0.080

Naive Composition 17.147 ± 2.878 0.687 ± 0.134 0.528 ± 0.116
Naive Composition++ 18.280 ± 2.852 0.732 ± 0.124 0.475 ± 0.118

Ours (10 minutes)
K = 50, N = 50 22.561 ± 3.361 0.848 ± 0.078 0.347 ± 0.085
K = 100, N = 100 22.951 ± 3.564 0.854 ± 0.077 0.361 ± 0.087
K = 200, N = 200 22.930 ± 3.612 0.854 ± 0.078 0.380 ± 0.096
K = ALL, N = 200* 21.650 ± 2.605 0.841 ± 0.072 0.416 ± 0.079

Ours (50 minutes)
K = 50, N = 50 22.335 ± 3.316 0.839 ± 0.086 0.355 ± 0.099
K = 100, N = 100 23.020 ± 3.500 0.851 ± 0.079 0.356 ± 0.093
K = 200, N = 200 23.237 ± 3.673 0.853 ± 0.082 0.369 ± 0.105
K = ALL, N = 200* 21.650 ± 2.605 0.841 ± 0.072 0.400 ± 0.090

SRN [40] 21.147 ± 3.140 0.821 ± 0.078 0.594 ± 0.113
LLFF [26] 23.334 ± 3.315 0.863 ± 0.064 0.431 ± 0.091
NeRF 25.076 ± 3.432 0.871 ± 0.062 0.439 ± 0.103
NeX 25.430 ± 3.503 0.881 ± 0.058 0.387 ± 0.077

Table 9. Real forward-facing dataset: We study our approach
on the original resolution of the 8 real sequences from Mildenhall
et al. [26]. We also add the results of 4⇥ bi-linearly upsampled
results from NeX [45] on these sequences. Our approach under-
perform PSNR and SSIM but competitive LPIPS score.

the results of generalization with a subject-specific model
in Figure 15. We observe that the learned model gener-
alizes well except for the clothing in the bottom part of
the images. We posit that there isn’t sufficient coverage
from multi-views in that area. However, an exemplar model

13 sequences PSNR" SSIM" LPIPS #

num-views=10
Ours (MS) 18.460 ± 4.099 0.656 ± 0.129 0.451 ± 0.167
Ours 19.439 ± 4.375 0.697 ± 0.128 0.410 ± 0.177

num-views=20
Ours (MS) 22.414 ± 4.197 0.766 ± 0.126 0.289 ± 0.147
Ours. 23.651 ± 4.045 0.813 ± 0.096 0.241 ± 0.120

num-views=30
Ours (MS) 24.191 ± 4.219 0.803 ± 0.122 0.243 ± 0.137
Ours 25.357 ± 3.709 0.846 ± 0.081 0.201 ± 0.094

num-views=40
Ours (MS) 24.832 ± 4.110 0.822 ± 0.117 0.218 ± 0.125
Ours 26.083 ± 3.691 0.865 ± 0.072 0.178 ± 0.077

num-views=50
Ours (MS) 25.529 ± 4.212 0.836 ± 0.112 0.198 ± 0.116
Ours 26.829 ± 3.621 0.878 ± 0.064 0.161 ± 0.070

Table 10. Varying Camera Parameter for Synthetic Multi-
View Sequences of Unbounded Scenes: We make two settings of
camera parameters: (1) MS, computed using Agisoft Metashape;
and (2) using ground truth camera parameters provided with syn-
thetic sequence. We vary the number of views to synthesize target
views using synthetic multi-view data. The held-out sequences
are fixed in these analysis. We observe that performance improves
with better camera parameter estimation.

learned for a specific subject is able to capture the details.
We leave the reader with an open philosophical question as
to whether we should think about generalization if we can
learn an exemplar model for a given data distribution in a
few seconds?



Figure 14. Generalization to unseen time instants and unseen subjects: The model is trained on a single time instant – shown on
top-left. Our model generalizes to unseen expressions (top-right) and unseen subjects (bottom row).

Exemplar Generalization GeneralizationExemplar

Figure 15. Contrasting Exemplar Models and Generalization: We contrast the results from exemplar model with the results obtained
using a model that has never seen these subjects. We term it Generalization here.



Figure 16. Hi-Res Body Synthesis: Our approach allows us to synthesize high quality novel views of human bodies. In the bottom-row,
we zoom to see the details captured on the face for each of three subjects. Best viewed in electronic format.

A.5. Convergence Analysis

We study the convergence properties of our approach
using 12 LLFF sequences [26] (Appendix A.2) and Shiny
Dataset [45]. We show the plots in Figure 17 for model
training in the first 10 epochs, i.e. from 60 seconds to 600
seconds. We observe that our model gets close to conver-
gence in the first few seconds. Crucially, our approach ob-
tains competitive results to prior work on the Shiny dataset
within 60 seconds of training as compared to 64 hours for

NeRF [27] on full-resolution and 24 � 30 hours of train-
ing of NeX [45] on one-fourth resolution. We also study
convergence using 24 sparse and unconstrained multi-view
sequences (Appendix A.1). Training an epoch on these se-
quences roughly take 10 seconds because these are sparse.
We observe that model gets close to the best performance in
the first 10 seconds of training.

We also provide the raw data used in the analysis.
We use 24 sparse and unconstrained multi-view sequences
(Sec A.1) from Open4D [3]. Training an epoch on these se-
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(b)  Shiny (8 sequences)
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(c)  Sparse and Unconstrained Multi-Views (24 sequences)

1 2 3 4 5 6 7 8 9 10
#Epochs

17.85

17.9

17.95

18

18.05

18.1

18.15

18.2

PS
N
R

1 2 3 4 5 6 7 8 9 10
#Epochs

0.559

0.56

0.561

0.562

0.563

0.564

0.565

0.566

SS
IM

1 2 3 4 5 6 7 8 9 10
#Epochs

0.522

0.524

0.526

0.528

0.53

0.532

0.534

LP
IP
S

Figure 17. Convergence Analysis: We study the convergence properties of our approach using 12 LLFF sequences [26] and 8 sequences
from Shiny Dataset [45]. We also study convergence using 24 sparse and unconstrained multi-view sequences. We observe that our model
gets close to convergence in the first few seconds. Note the difference in values on y-axis is small.

quences roughly take 10 seconds because these are sparse.
Table 11 shows the performance of our model for 10 epochs
(from 10 seconds to roughly 2 minutes). We also use two
hi-res (12 MP) datasets for these analysis: (1) 12 sequences
(Sec A.2) from LLFF dataset [26]; and (2) 8 sequences
from Shiny dataset [45]. We compute the performance of
the models for the first 10 epochs, i.e., from 60 to 600
seconds of training. We follow the three settings (as in
Sec 4.2) where we vary the number of stereo-pairs (K) and
number of 3D points (N ): (1) (K = 50, N = 50); (2)
(K = 100, N = 100); and (3) (K = 200, N = 200).

Table 12, Table 13, and Table 14 shows the performance
for 12 sequences from LLFF. Table 15, Table 16, and Ta-
ble 17 shows the performance for 8 sequences from the
Shiny dataset. We observe that our approach gets close to
convergence within the first 60 seconds of training in all the
settings.

B. 4D View Synthesis

We use temporal sequences from Open4D dataset [3] for
these analysis. Figure 18 shows different things we can do



24 sequences PSNR" SSIM" LPIPS #

Num-Epochs
1 18.181 ± 1.519 0.559 ± 0.079 0.533 ± 0.066

2 18.139 ± 1.378 0.562 ± 0.077 0.528 ± 0.062

3 18.016 ± 1.461 0.562 ± 0.077 0.527 ± 0.063

4 18.026 ± 1.420 0.563 ± 0.076 0.527 ± 0.063

5 18.115 ± 1.459 0.566 ± 0.076 0.523 ± 0.061

6 17.877 ± 1.409 0.561 ± 0.075 0.532 ± 0.061

7 17.951 ± 1.456 0.562 ± 0.076 0.531 ± 0.059

8 17.918 ± 1.511 0.562 ± 0.077 0.532 ± 0.061

9 17.951 ± 1.475 0.562 ± 0.076 0.531 ± 0.058

10 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061

NeRF [27] 13.693 ± 2.050 0.317 ± 0.094 0.713 ± 0.089

DS-NeRF [6] 14.531 ± 2.603 0.316 ± 0.099 0.757 ± 0.040

LLFF [26] 15.187 ± 2.166 0.384 ± 0.082 0.602 ± 0.090

Table 11. Sparse and Unconstrained Multi-Views : We follow
the evaluation criterion in Table 1. We observe that our model
gets the best performance in the the first 10 seconds of training.
We contrast the performance of NeRF and DS-NeRF which takes
420 minutes of training on a single NVIDIA V100 GPU. We also
show the performance of LLFF which is an off-the-shelf method
and does not require training.

12 sequences PSNR" SSIM" LPIPS #

Num-Epochs
1 20.519 ± 2.805 0.589 ± 0.137 0.445 ± 0.076
2 20.638 ± 2.736 0.592 ± 0.137 0.437 ± 0.076
3 20.744 ± 2.772 0.593 ± 0.137 0.435 ± 0.076
4 20.791 ± 2.783 0.593 ± 0.137 0.433 ± 0.075
5 20.761 ± 2.774 0.593 ± 0.137 0.433 ± 0.076
6 20.798 ± 2.787 0.594 ± 0.136 0.429 ± 0.076
7 20.829 ± 2.807 0.594 ± 0.136 0.428 ± 0.074
8 20.832 ± 2.803 0.594 ± 0.136 0.427 ± 0.075
9 20.841 ± 2.802 0.595 ± 0.136 0.425 ± 0.074

10 20.839 ± 2.798 0.594 ± 0.136 0.426 ± 0.075

NeRF-2M 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Table 12. LLFF-12 sequences and (K = 50, N = 50): We
use 50 stereo-pairs and 50 3D points. We follow the evaluation
criterion in Table 3. We observe that our model gets close to the
best performing model in the the first 60 seconds of training. For
reference, we also show the performance of NeRF which takes 64
hours of training on a single NVIDIA V100 GPU.

with 4D view synthesis. Figure 19 contrasts our approach
with naive composition.

B.1. Unseeen Temporal Sequences
We use all the available views of the following 5 pub-

licly available temporal sequences. Figure 20 contrasts our
approach with Open4D on unseen temporal sequences. We
observe better qualitative results. Our approach is able to
capture details such as human faces consistently better than

12 sequences PSNR" SSIM" LPIPS #

Num-Epochs
1 20.491 ± 2.966 0.590 ± 0.140 0.494 ± 0.079
2 20.742 ± 2.779 0.594 ± 0.138 0.479 ± 0.079
3 20.708 ± 2.851 0.593 ± 0.139 0.479 ± 0.080
4 20.765 ± 2.829 0.595 ± 0.138 0.473 ± 0.078
5 20.849 ± 2.783 0.595 ± 0.137 0.472 ± 0.079
6 20.878 ± 2.787 0.596 ± 0.137 0.467 ± 0.079
7 20.878 ± 2.807 0.596 ± 0.137 0.466 ± 0.078
8 20.914 ± 2.806 0.597 ± 0.137 0.464 ± 0.078
9 20.938 ± 2.801 0.597 ± 0.136 0.462 ± 0.079

10 20.958 ± 2.805 0.597 ± 0.136 0.461 ± 0.080

NeRF-2M 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Table 13. LLFF-12 sequences and (K = 100, N = 100): We
use 100 stereo-pairs and 100 3D points. We follow the evaluation
criterion in Table 3. We observe that our model gets close to the
best performing model in the the first 60 seconds of training. For
reference, we also show performance of a NeRF model that takes
64 hours of training on a single NVIDIA V100 GPU.

12 sequences PSNR" SSIM" LPIPS #

Num-Epochs
1 20.240 ± 2.955 0.586 ± 0.141 0.531 ± 0.083
2 20.433 ± 2.859 0.587 ± 0.139 0.523 ± 0.082
3 20.474 ± 2.842 0.586 ± 0.138 0.518 ± 0.083
4 20.519 ± 2.808 0.590 ± 0.137 0.507 ± 0.082
5 20.538 ± 2.816 0.590 ± 0.137 0.506 ± 0.081
6 20.633 ± 2.795 0.591 ± 0.136 0.504 ± 0.081
7 20.630 ± 2.825 0.590 ± 0.136 0.501 ± 0.082
8 20.679 ± 2.841 0.591 ± 0.136 0.499 ± 0.081
9 20.783 ± 2.777 0.592 ± 0.136 0.496 ± 0.081

10 20.799 ± 2.772 0.592 ± 0.136 0.493 ± 0.081

NeRF-2M 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Table 14. LLFF-12 sequences and (K = 200, N = 200): We
use 200 stereo-pairs and 200 3D points. We follow the evaluation
criterion in Table 3. We observe that our model gets close to the
best performing model in the the first 60 seconds of training. For
reference, we also show performance of a NeRF model that takes
64 hours of training on a single NVIDIA V100 GPU.

Open4D. Crucially, our approach does not require explicit
foreground-background modeling and can work with arbi-
trary temporal sequences.

Sequences
WFD-01: Training - {0011:0411}. Testing -
{0412:0511}.
WFD-02: Training - {0400:0800}. Testing -
{0801:0900}.
JiuJitsu: Training - {0001:0400}. Testing -
{0401:0500}.
Gangnam: Training - {0100:0400}. Testing -
{0401:0500}.



8 sequences PSNR" MCSSIM" LPIPS #

Num-Epochs
1 22.184 ± 4.211 0.793 ± 0.142 0.268 ± 0.110
2 22.270 ± 4.321 0.795 ± 0.142 0.263 ± 0.108
3 22.316 ± 4.372 0.795 ± 0.141 0.261 ± 0.107
4 22.348 ± 4.379 0.796 ± 0.141 0.260 ± 0.107
5 22.234 ± 4.399 0.795 ± 0.141 0.259 ± 0.107
6 22.395 ± 4.542 0.795 ± 0.141 0.258 ± 0.107
7 22.375 ± 4.579 0.795 ± 0.142 0.258 ± 0.017
8 22.386 ± 4.625 0.795 ± 0.142 0.257 ± 0.107
9 22.430 ± 4.677 0.795 ± 0.142 0.257 ± 0.107

10 22.430 ± 4.740 0.795 ± 0.142 0.256 ± 0.107

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180
NeRF-2M 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153
NeX [45] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 15. Shiny dataset and (K = 50, N = 50): We use 50
stereo-pairs and 50 3D points. We follow the evaluation criterion
in Table 7. We observe that our model gets close to the best per-
forming model in the first 60 seconds of training. For reference,
we also show the performance of NeRF models. We also show
the performance of NeX models take 24-30 hours of training for
one-fourth resolution.

8 sequences PSNR" MCSSIM" LPIPS #

Num-Epochs
1 22.519 ± 4.197 0.799 ± 0.142 0.287 ± 0.126
2 22.647 ± 4.264 0.801 ± 0.140 0.281 ± 0.123
3 22.665 ± 4.305 0.801 ± 0.140 0.279 ± 0.123
4 22.718 ± 4.347 0.801 ± 0.140 0.278 ± 0.123
5 22.745 ± 4.369 0.801 ± 0.141 0.277 ± 0.123
6 22.756 ± 4.437 0.801 ± 0.141 0.275 ± 0.123
7 22.812 ± 4.499 0.802 ± 0.141 0.273 ± 0.123
8 22.754 ± 4.401 0.802 ± 0.141 0.272 ± 0.123
9 22.843 ± 4.455 0.802 ± 0.141 0.270 ± 0.123

10 22.868 ± 4.588 0.802 ± 0.141 0.269 ± 0.123

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180
NeRF-2M 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153
NeX [45] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 16. Shiny dataset and (K = 100, N = 100): We use 100
stereo-pairs and 100 3D points. We follow the evaluation criterion
in Table 7. We observe that our model gets close to the best per-
forming model in the first 60 seconds of training. For reference,
we also show the performance of NeRF models. We also show
the performance of NeX models take 24-30 hours of training for
one-fourth resolution.

Birds: Training - {0309:0709}. Testing -
{0710:0809}.

B.2. Held-out Camera Views

We held-out one camera view from the following 5 pub-
licly available temporal sequences. Figure 21 contrasts our
approach with Open4D on held-out camera views. Once

8 sequences PSNR" MCSSIM" LPIPS #

Num-Epochs
1 22.563 ± 4.269 0.799 ± 0.147 0.311 ± 0.141
2 22.734 ± 4.385 0.800 ± 0.146 0.303 ± 0.138
3 22.788 ± 4.413 0.801 ± 0.145 0.301 ± 0.137
4 22.838 ± 4.428 0.802 ± 0.145 0.298 ± 0.137
5 22.847 ± 4.467 0.802 ± 0.145 0.294 ± 0.135
6 22.878 ± 4.478 0.802 ± 0.145 0.293 ± 0.135
7 22.916 ± 4.543 0.802 ± 0.145 0.291 ± 0.134
8 22.934 ± 4.571 0.802 ± 0.145 0.289 ± 0.133
9 22.947 ± 4.603 0.803 ± 0.144 0.287 ± 0.133

10 23.016 ± 4.698 0.803 ± 0.144 0.285 ± 0.132

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180
NeRF-2M 21.457 ± 3.657 0.751 ± 0.155 0.498 ± 0.153
NeX [45] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Table 17. Shiny dataset and (K = 200, N = 200): We use 200
stereo-pairs and 200 3D points. We follow the evaluation criterion
in Table 7. We observe that our model gets close to the best per-
forming model in the first 60 seconds of training. For reference,
we also show the performance of NeRF models. We also show
the performance of NeX models take 24-30 hours of training for
one-fourth resolution.

Open4D-24 sequences PSNR" SSIM" LPIPS #

no gamma 17.034 ± 2.663 0.539 ± 0.099 0.539 ± 0.075
no spatial 18.387 ± 2.308 0.569 ± 0.089 0.527 ± 0.066
no entropy 17.893 ± 1.481 0.551 ± 0.074 0.573 ± 0.064
direct MLP 17.905 ± 1.808 0.562 ± 0.081 0.546 ± 0.064

full 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061

LLFF-12 sequences PSNR" SSIM" LPIPS #

no gamma 18.831 ± 2.904 0.579 ± 0.133 0.444 ± 0.070
no spatial 20.536 ± 2.798 0.594 ± 0.135 0.429 ± 0.074
no entropy 20.792 ± 2.777 0.595 ± 0.136 0.435 ± 0.075
direct MLP 20.816 ± 2.796 0.593 ± 0.135 0.423 ± 0.076

full 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075

Shiny-8 sequences PSNR" MCSSIM" LPIPS #

no gamma 17.724 ± 2.313 0.765 ± 0.138 0.288 ± 0.094
no spatial 21.047 ± 3.177 0.791 ± 0.140 0.266 ± 0.097
no entropy 22.529 ± 4.787 0.796 ± 0.142 0.258 ± 0.110
direct MLP 22.419 ± 4.757 0.794 ± 0.142 0.259 ± 0.105

full 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108

Table 18. : We study the influence of different components on our
approach and see their benefits in our approach.

again, we observe that our approach is able to capture de-
tails (facial and body details) better than Open4D.

Sequences
WFD-01: time - {0011:0511}. Test CAM-ID: {4}.
WFD-02: time - {0400:0900}. Test CAM-ID: {4}.
JiuJitsu: time - {0001:0500}. Test CAM-ID: {0}.
Gangnam: time - {0100:0500}. Test CAM-ID: {4}.
Birds: time - {0309:0809}. Test CAM-ID: {7}.
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Figure 18. 4D view synthesis: We demonstrate our approach for 4D view synthesis on the challenging Open4D dataset [3]. Without any
background-foreground modeling or any modification, our approach learns to perform 4D visualization of dynamic events. (1). We can
freeze the time/event and move the view. (2). We can freeze the view and see the event happening. (3). We can vary both view and time.

Ground TruthNeural Composition Naive Composition

Figure 19. Naive Composition vs. Neural Composition for 4D View Synthesis: We contrast the performance of naive composition
using depth ordering with neural pixel composition for unseen temporal sequences. We observe that neural composition allows us to
generate more realistic views in contrast to the naive composition.

C. More Analysis
We run more analysis on our model for various settings

and study their impact on performance of our approach. In
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Figure 20. Unseen Temporal Sequences: We contrast Open4D with ours for unseen temporal sequences. We observe that our approach
allows us to capture details (such as details on human faces) consistently better than Open4D.

these experiments, we train the model for 10 epochs us-
ing LLFF-12 sequences (Sec A.2) and Shiny Dataset [45],
and we use K = 50 stereo-pairs and N = 50 3D points.
We also use 24 sparse and unconstrained sequences from
Open4D (Sec A.1).
Number of Filters: We vary the number of filters in our
MLP model, nf = {16, 32.64, 128, 256, 512}. Our de-
fault setting is nf = 256. Table 19 shows the performance
for Open4D-24 sequences, LLFF-12 sequences and Shiny
dataset. The performance improves as we increase the num-
ber of filters. The use of nf = 256 is a good balance be-
tween performance and size of model. We also observe that
we can make extremely compact model at the loss of slight
performance.
Number of Layers: We vary the number of layers in our

MLP model, nl = {1, 2, 3, 4, 5, 6}. Our default setting is
nl = 5. Table 20 shows the performance for Open4D-24
sequences, LLFF-12 sequences and Shiny dataset respec-
tively.
Influence of Gamma: We use � as a correction term that
helps us to obtain sharp outputs. Table 18 (first row)) shows
the performance for Open4D-24 sequences, LLFF-12 se-
quences and Shiny dataset. We observe that the additional
� term helps in inpainting the missing information.
Influence of Spatial Information: The second row in Ta-
ble 18 shows the performance of our approach without us-
ing spatial information as an input to MLP. We observe that
using spatial information enables us to provide smooth out-
puts and better inpaints missing information.
Influence of Uncertainty/Entropy: The third row in Ta-
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Figure 21. Held-Out Camera Views: We contrast Open4D with ours for held-out camera views. Once again, we observe that our
approach allows us to capture consistent details (such as details on human faces) better than Open4D.



Figure 22. Depth maps using learned MLPs: We show depth map for images for various sequences. We use the learned MLPs to select
the depth value corresponding to the max ↵i value from an array of depth values for a pixel. The “jet blue” color corresponds to missing
depth values for these images (e.g., the bottom right edge on the depth map of the first image).

(a) 10 views capturing a single person

(b) 9 views capturing two people

(c) 12 views capturing three people

(a) 10 views capturing a single person

(b) 9 views capturing two people

(c) 12 views capturing three people

(a) 10 views capturing a single person

(b) 9 views capturing two people

(c) 12 views capturing three people

(d) 12 views capturing more than thirty people
Figure 23. Dense 3D reconstruction from sparse views: We show dense 3D point clouds computed using our approach for a specific
time instant for four unconstrained multi-view sequences [3]. A user can easily explore the region by navigating the point clouds. We show
random views of the point clouds.



Open4D-24 sequences PSNR" SSIM" LPIPS #

Num-Filters
16 17.716 ± 1.485 0.555 ± 0.079 0.538 ± 0.067
32 17.775 ± 1.453 0.557 ± 0.081 0.536 ± 0.069
64 17.828 ± 1.584 0.556 ± 0.082 0.541 ± 0.068
128 17.985 ± 1.561 0.561 ± 0.079 0.535 ± 0.066

default = 256 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061
512 18.091 ± 1.707 0.564 ± 0.081 0.534 ± 0.067

LLFF-12 sequences PSNR" SSIM" LPIPS #

Num-Filters
16 20.320 ± 2.401 0.591 ± 0.135 0.441 ± 0.07
32 20.667 ± 2.755 0.592 ± 0.136 0.433 ± 0.075
64 20.737 ± 2.818 0.594 ± 0.136 0.429 ± 0.075
128 20.771 ± 2.785 0.594 ± 0.136 0.428 ± 0.075

default = 256 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075
512 20.833 ± 2.781 0.594 ± 0.135 0.422 ± 0.075

Shiny-8 sequences PSNR" MCSSIM" LPIPS #

Num-Filters
16 21.202 ± 4.283 0.787 ± 0.144 0.273 ± 0.110
32 22.058 ± 4.150 0.794 ± 0.141 0.262 ± 0.105
64 22.188 ± 4.322 0.795 ± 0.142 0.261 ± 0.106
128 20.371± 4.600 0.795 ± 0.142 0.259 ± 0.109

default = 256 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108
512 22.516 ± 4.809 0.795 ± 0.143 0.254 ± 0.108

Table 19. Number of Filters: We follow the evaluation crite-
rion in Table 1 for Open4D-24 sequences, Table 3 for LLFF-12
sequences and Table 7 for Shiny-8 sequences. The performance
improves as we increase the number of filters. We use nf = 256
as a good balance between performance and size of model.

ble 18 shows the performance of our approach without us-
ing the uncertainty of the depth estimates (H). Using un-
certainty provides slightly better performance.
Direct MLP: Finally, we observe the benefits of using

depth explicitly in computing ↵ to do a proper color compo-
sition. The fourth row in Table 18 shows the performance
for Open4D-24 sequences, LLFF-12 sequences and Shiny
dataset. We observe that using depth explicitly allows to do
better view synthesis.

Open4D-24 sequences PSNR" SSIM" LPIPS #

Num-Layers
1 17.601 ± 1.779 0.527 ± 0.086 0.587 ± 0.101
2 18.014 ± 1.688 0.549 ± 0.081 0.555 ± 0.082
3 17.971 ± 1.621 0.555 ± 0.081 0.541 ± 0.073
4 18.066 ± 1.565 0.559 ± 0.081 0.535 ± 0.065

default = 5 17.948 ± 1.472 0.562 ± 0.077 0.534 ± 0.061
6 17.996 ± 1.669 0.562 ± 0.079 0.534 ± 0.067

LLFF-12 sequences PSNR" SSIM" LPIPS #

Num-Layers
1 20.433 ± 2.972 0.573 ± 0.138 0.450 ± 0.090
2 20.707 ± 2.874 0.588 ± 0.136 0.432 ± 0.081
3 20.833 ± 2.805 0.593 ± 0.136 0.424 ± 0.076
4 20.828 ± 2.818 0.594 ± 0.136 0.424 ± 0.075

default = 5 20.834 ± 2.784 0.594 ± 0.136 0.426 ± 0.075
6 20.820 ± 2.775 0.594 ± 0.136 0.426 ± 0.075

Shiny-8 sequences PSNR" MCSSIM" LPIPS #

Num-Layers
1 22.334 ± 4.485 0.793 ± 0.142 0.256 ± 0.108
2 22.447 ± 4.659 0.794 ± 0.143 0.254 ± 0.108
3 22.412 ± 4.688 0.795 ± 0.143 0.254 ± 0.108
4 20.391± 4.730 0.794 ± 0.142 0.255 ± 0.108

default = 5 22.430 ± 4.748 0.795 ± 0.142 0.256 ± 0.108
6 22.367 ± 4.657 0.795 ± 0.143 0.256 ± 0.108

Table 20. Number of Layers: We follow the evaluation crite-
rion in Table 1 for Open4D-24 sequences, Table 3 for LLFF-12
sequences and Table 7 for Shiny-8 sequences. We use nl = 5 in
this work.
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