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A. Experimental Setup
We list the experimental setup for U-ViT presented in the main paper in Table 1.

Dataset CIFAR10 CelebA 64×64 ImageNet 64×64 ImageNet 256×256 ImageNet 512×512 MS-COCO

Latent space × × × ✓ ✓ ✓
Latent shape - - - 32×32×4 64×64×4 32×32×4
Image decoder - - - ft-EMA ft-EMA original

Batch size 128 128 1024 1024 1024 256
Training iterations 500K 500K 300K 500K 500K 1M
Warm-up steps 2.5K 5K 5K 5K 5K 5K

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Learning rate 2e-4 2e-4 3e-4 2e-4 2e-4 2e-4
Weight decay 0.03 0.03 0.03 0.03 0.03 0.03
Betas (0.99, 0.999) (0.99, 0.99) (0.99, 0.99) (0.99, 0.99) (0.99, 0.99) (0.9, 0.9)

Noise schedule VP VP VP SD SD SD

Sampler EM EM DPM-Solver DPM-Solver DPM-Solver DPM-Solver
Sampling steps 1K 1K 50 50 50 50

CFG × × × ✓ ✓ ✓
puncond - - - 0.1 0.1 0.1
Guidance strength - - - 0.4 0.7 1

Convolution ✓ ✓ ✓ × × ✓

Table 1. The experimental setup for U-ViT in the main paper. “ft-EMA” and “original” correspond to different weights of the image
decoder provided in https://huggingface.co/stabilityai/sd-vae-ft-ema. “VP” represents the continuous-time vari-
ance preserving noise schedule [11]. “SD” represents the discrete-time noise schedule used in Stable Diffusion [9]. “EM” represents the
Euler-Maruyama SDE sampler [11]. “DPM-Solver” represents the DPM-Solver ODE sampler [6]. “puncond” represents the unconditional
training probability in classifier free guidance (CFG). “Convolution” represents whether to add a 3×3 convolutional block before output.

In our early experiments, we try learning rates between 1e-4 and 5e-4, and find that a learning rate of 2e-4 performs
well for all datasets. On ImageNet 64×64, a learning rate of 3e-4 could further improve the performance. We try weight
decay between 0.01 and 0.05, and find that a weight decay of 0.03 performs well for all datasets. We try the running
coefficients β1, β2 of AdamW among {0.9, 0.99, 0.999}, and find that (β1, β2) = (0.99, 0.99) performs well for all datasets.
On CIFAR10, β2 = 0.999 could further improve the performance. On MS-COCO, (β1, β2) = (0.9, 0.9) could further
improve the performance. We train with mixed precision for efficiency, and the training time and devices are listed in
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Table 2. Besides, the training memory of U-ViT can be greatly reduced with the gradient checkpointing trick. For example,
the memory for forward and backward on a single A100 can be reduced from 53GB to 10GB when training U-ViT-L/2 with
a batch size of 128 on ImageNet 256×256.

During inference, with 1 A100, generating 500 samples with DPM-Solver takes around 19 seconds, 34 seconds, 59
seconds, 89 seconds, with U-ViT-S, U-ViT-M, U-ViT-L, U-ViT-H respectively. The time would double if classifier-free
guidance is used.

Dataset Model Training devices Training time Training iterations

CIFAR10 U-ViT-S/2 4 GeForce RTX 2080 Ti 24 hours 500K

CelebA U-ViT-S/4 4 GeForce RTX 2080 Ti 24 hours 500K

ImageNet 64×64 U-ViT-M/4 8 A100 59 hours 300K
ImageNet 64×64 U-ViT-L/4 8 A100 100 hours 300K

ImageNet 256×256 U-ViT-L/2 8 A100 100 hours 300K
ImageNet 256×256 U-ViT-H/2 8 A100 208 hours 500K

ImageNet 512×512 U-ViT-L/4 8 A100 166 hours 500K
ImageNet 512×512 U-ViT-H/4 8 A100 208 hours 500K

MS-COCO U-ViT-S/2 4 A100 60 hours 1M
MS-COCO U-ViT-S/2 (deep) 4 A100 74 hours 1M

Table 2. The training devices and time.

B. Effect of Depth, Width and Patch Size
In Figure 1, we present scaling properties of U-ViT by studying the effect of the depth (i.e., the number of layers), width

(i.e., the hidden size D) and patch size on CIFAR10.
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Figure 1. Effect of depth, width and patch size. The one marked with * corresponds to the setting of U-ViT-S/2.

C. Details of the U-Net Baseline on MS-COCO
We employ the U-Net with cross attention provided by LDM [9] for the baseline. The U-Net is performed on the 32×32

resolution latent representation, and down-samples it to 16×16, 8×8 and 4×4 resolution. The number of channels is 128 at
32×32 resolution, and 256 at other resolutions. Each resolution has 2 residual blocks. The U-Net performs self attention and
cross attention at 16×16 and 8×8 resolution. Such a configuration leads to a total of 53M parameters, which is comparable
to 45M of U-ViT-Small for a fair comparison. We use the AdamW optimizer with weight decay set to 0.01 and running
coefficients β1, β2 set to (0.9, 0.999), which are the setting used across LDM [9]. We tune the learning rate of U-Net and find
2e-4 performs the best. The training iterations and the batch size of U-Net are the same to U-ViT for a fair comparison.

D. Results of Other Metrics and Configurations on ImageNet
We present results of FID [3], sFID [7], inception score (IS) [10], precision and recall [5] on ImageNet in Table 3. Our U-

ViT is still comparable to state-of-the-art diffusion models based on U-Net on these metrics, and meanwhile has comparable



if not smaller GFLOPs.

ImageNet 64×64 #Params GFLOPs FID↓ sFID↓ IS↑ Precision↑ Recall↑
ADM [2] 296M 110 2.07 4.29 - 0.74 0.63

U-ViT-M/4 (VP, trained 300K, w/ conv) 131M 35 5.85 4.09 33.71 0.69 0.61
U-ViT-L/4 (VP, trained 300K, w/ conv) 287M 77 4.26 3.77 40.66 0.71 0.62

ImageNet 256×256 #Params GFLOPs FID↓ sFID↓ IS↑ Precision↑ Recall↑
ADM-G, ADM-U [2] 296M + 65M (Cls) + 312M (SR) 110 + 19 (Cls) + 632 (SR) 3.94 6.14 215.84 0.83 0.53
LDM [9] 400M + 55M (AE) 104 + 336 (AE) 3.60 - 247.67 0.87 0.48

U-ViT-L/2 (VP, trained 300K, w/ conv, original, puncond=0.15) 287M + 84M (AE) 77 + 312 (AE) 3.40 6.63 219.94 0.83 0.52
U-ViT-H/2 (VP, trained 300K, w/ conv, original, puncond=0.1) 501M + 84M (AE) 133 + 312 (AE) 3.10 6.70 250.82 0.84 0.53
U-ViT-H/2 (VP, trained 300K, w/o conv, original, puncond=0.1) 501M + 84M (AE) 133 + 312 (AE) 3.74 8.04 244.47 0.84 0.51

U-ViT-H/2 (SD, trained 300K, w/ conv, original, puncond=0.1) 501M + 84M (AE) 133 + 312 (AE) 3.14 7.81 229.03 0.82 0.55
U-ViT-H/2 (SD, trained 300K, w/o conv, original, puncond=0.15) 501M + 84M (AE) 133 + 312 (AE) 2.90 7.70 242.59 0.81 0.56
U-ViT-H/2 (SD, trained 300K, w/o conv, original, puncond=0.1) 501M + 84M (AE) 133 + 312 (AE) 2.78 7.55 251.83 0.82 0.56
U-ViT-H/2 (SD, trained 500K, w/o conv, original, puncond=0.1) 501M + 84M (AE) 133 + 312 (AE) 2.65 8.17 260.34 0.81 0.57
U-ViT-H/2 (SD, trained 500K, w/o conv, ft-EMA, puncond=0.1) 501M + 84M (AE) 133 + 312 (AE) 2.29 5.68 263.88 0.82 0.57

ImageNet 512×512 #Params GFLOPs FID↓ sFID↓ IS↑ Precision↑ Recall↑
ADM-G, ADM-U [2] 422M + 43M (Cls) + 309M (SR) 307 + 21 (Cls) + 2506 (SR) 3.85 5.86 221.72 0.84 0.53

U-ViT-L/4 (VP, trained 500K, w/ conv, original, puncond=0.15) 287M + 84M (AE) 77 + 1260 (AE) 4.67 5.87 213.28 0.87 0.45

U-ViT-H/4 (SD, trained 500K, w/o conv, original, puncond=0.1) 501M + 84M (AE) 133 + 1260 (AE) 4.34 8.44 261.13 0.84 0.48
U-ViT-H/4 (SD, trained 500K, w/o conv, ft-EMA, puncond=0.1) 501M + 84M (AE) 133 + 1260 (AE) 4.05 6.44 263.79 0.84 0.48

Table 3. Results of FID [3], sFID [7], inception score (IS) [10], precision and recall [5] on ImageNet. We also show the number of
parameters as well as the GFLOPs.

E. CKA Analysis

Centered kernel alignment (CKA) is widely used to analyze similarity between hidden representations in deep neural
networks [1, 4, 8]. In this section, we use the CKA method to analyze hidden representations of networks that employ three
ways to combine long skip branches: (1) concatenation, i.e., Linear(Concat(hm,hs)); (2) addition, i.e., hm + hs; (3) no
long skip connection. These three ways are elaborated in Section 3.1 in the main paper. We evaluate hidden representations
after each transformer block and fix the input time as t = 0.5 on CIFAR10.

(a) Concatenation (b) Addition (c) No long skip connection

Figure 2. CKA analysis on hidden representations of networks that employ three ways to combine long skip branches. We analyze the
similarity between hidden representations after each transformer block in the same network.

We find that the “addition” and “no long skip connection” settings share a similar phenomenon that neighboring blocks
in the network have similar representations, e.g., blocks 0-3, 6-11 in Figure 2 (b), and blocks 0-5, 6-11 in Figure 2 (c). In
contrast, the representations of neighboring blocks under the “concatenation” setting have low similarity, as shown in Figure 2
(a). Thus, the “concatenation” setting significantly changes the representations in the transformer, while the “addition” setting
does not.



F. Compare with U-Net Under Similar Amount of Parameters and Computational Cost
On ImageNet 256×256, we also try replace our U-ViT with a U-Net with a similar amount of parameters and computa-

tional cost. The U-Net employs implementation from ADM [2]. We set the model channels as 320, the channel multiplier as
(2, 2, 4), the number of residual blocks as 3, and employs attention at 2× and 4× down-sampling. This leads to a U-Net of
646M parameters and 135 GFLOPs, and our U-ViT has 501M parameters and 133 GFLOPs. We use the same optimizer con-
figuration as ADM. As shown in Figure 3, our U-ViT consistently outperforms U-Net at different training iterations without
classifier-free guidance. We also evaluate FID with 50K samples at 500K training iterations. With no classifier-free guidance,
U-ViT obtains a FID of 6.58 and U-Net obtains a FID of 10.69. With a classifier-free guidance scale of 0.4, U-ViT obtains a
FID of 2.29 and U-Net obtains a FID of 2.66. Under both settings, our U-ViT outperforms U-Net.
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Figure 3. Compare with U-Net under similar amount of parameters and computational cost (w/o classifier-free guidance).



G. Additional Samples

Figure 4. Generated samples on ImageNet 512×512, conditioned on goldfish (1), arctic fox (279), monarch butterfly (323), african elephant
(386), flamingo (130), tennis ball (852).



Figure 5. Generated samples on ImageNet 512×512, conditioned on cheeseburger (933), fountain (562), balloon (417), tabby cat (281),
lorikeet (90), agaric (992).



Figure 6. Random samples on ImageNet 512×512.



Figure 7. Generated samples on ImageNet 256×256, conditioned on goldfish (1), arctic fox (279), monarch butterfly (323), african elephant
(386), flamingo (130), tennis ball (852), cheeseburger (933), fountain (562), balloon (417), tabby cat (281), lorikeet (90), agaric (992).



Figure 8. Random samples on ImageNet 256×256.
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Figure 9. Random samples on MS-COCO. Prompts are randomly drawn from the validation set.
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