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1. Fine-tuning Correspondence Filtering

To demonstrate that the proposed dataset can be used
for improving correspondence-filtering networks, we fine-
tuned OANet [28]. We use only the correspondence classi-
fication loss on the training split of the dataset. We run 2
epochs with Adam optimizer and le-4 learning rate. The
OANet+RANSAC results on the test set improved from
0.368 to 0.379 mAA. We did not explore fine-tuning other

methods since most state-of-the-art networks have epipolar-
geometry-specific losses and parts inside. Repurposing
them to the homography-only case is outside the scope of
this paper.

2. Methods in the Main Experiments

In this section, we describe the components of each al-
gorithm compared in the main paper.

2.1. Traditional Algorithms

In all tested methods, the normalized direct linear trans-
formation [15] (DLT) algorithm runs both on minimal and
non-minimal samples to estimate homographies. The com-
pared methods and implementations are the following.
RANSAC (OpenCYV). The OpenCV implementation con-
tains the following components in addition to the original
RANSAC [11] algorithm.

1. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

2. Levenberg-Marquardt numerical optimization mini-
mizes the re-projection error on the final set of inliers.

3. Single-sided re-projection error, measured in the sec-
ond image, is used as point-to-model residual.

LMEDS (OpenCYV). The OpenCV implementation of the
Least Median of Squares algorithm [23] runs the same ad-
ditional components as the OpenCV RANSAC.

LSQ (OpenCYV). The least-squares fitting by the normal-
ized four-point algorithm implemented in OpenCV.

RANSAC (skimage). The RANSAC as implemented in the
scikit-image library [25]. It contains the following compo-
nents in addition to the original RANSAC [11] algorithm.
Single-sided re-projection error, measured in the second im-
age, is used as point-to-model residual. Unlike OpenCV
RANSAC, which is implemented in optimized C++ code,



scikit-image is implemented in pure Python with help of
the numpy package [14].

LO-RANSAC (kornia). LO-RANSAC [8] as imple-
mented in the kornia library [22]. It implements the LO-
RANSAC as proposed in [8] (version 2 in Section 3), where
the far-the-best model is obtained by running local opti-
mization using all inliers. Additional components:

1. Symmetric transfer error is used as point-to-model
residual.

2. Unlike LO-RANSAC, the kornia library uses iterated
re-weighted least squares for the local optimization.

3. Unlike the rest of the RANSAC implementations, kor-
nia generates and evaluates hypotheses in "’batches” of
1024 to make use of CPU and GPU parallelism.

LO-RANSAC+ (pydegensac). The algorithm from [18]
as implemented in pydegensac package.lt uses truncated
quadratic cost function and fast local optimization scheme
using a subset of inlier sets.

LO-RANSAC+ with LAF (pydegensac). The additional
component compared to the previous algorithm is the local
affine frame check constraint proposed in [20] for the fun-
damental matrix estimation.

GC-RANSAC (author). The implementation provided by
the authors. It uses a graph-cut-based local optimization
that considers the spatial coherence of the input data points.
The additional components are:

1. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

2. Single-sided re-projection error, measured in the sec-
ond image, is used as point-to-model residual.

3. Truncated quadratic cost function and fast iterative lo-
cal optimization scheme.

4. Gaussian elimination for fast homography estimation
from minimal samples.

5. Column-pivoting QR decomposition for larger-than-
minimal samples.

GC-RANSAC with PROSAC (author). The previous al-
gorithm with PROSAC sampling [6].

GC-RANSAC (OpenCV) and MAGSAC++ (OpenCYV).
The OpenCV implementation of the GC-RANSAC and
MAGSAC++ algorithms. Additional features:

1. Sequential Probability Ratio Test [7].
2. Gaussian elimination for fast homography estimation.

3. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

4. Levenberg-Marquardt numerical optimization mini-

mizes the re-projection error on the final set of inliers.

RHO (OpenCV). The OpenCV implementation of the
method proposed in [3]. The components are:

1. PROSAC sampling [6].

2. Sequential Probability Ratio Test [7].

3. Gaussian elimination for fast homography estimation.
4.

Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

MAGSAC (author) and MAGSAC++ (author). The im-
plementations provided by the authors. They use the fol-
lowing additional components for homography estimation.

1. PROSAC sampling [6].

2. Gaussian elimination for fast homography estimation
from minimal samples.

3. Column-pivoting QR decomposition for larger-than-
minimal samples.

4. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

VSAC (author). The implementation provided by the au-
thors. They use the following additional components for
homography estimation.

1. Gaussian elimination for fast homography estimation
from minimal samples.

2. Householder QR decomposition for larger-than-
minimal samples.

3. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

4. Local optimization: non-minimal estimation on small
subset of inliers (around 15-20 iterations)

5. The MAGSAC++ optimization is applied in the end.

VSAC with PROSAC (author). The previous algorithm
using PROSAC sampling [6].

EAS (author). The implementation provided by the
authors for the recently proposed algorithm in [10].
The method is implemented in pure Python using the
numpy [14] package.

Affine-RANSAC (author). The implementation provided
by the authors for the method in [2] using affine correspon-
dences to estimate the homography. Because our bench-
mark does not have affine correspondences, we approximate
them using the SIFT features. Given rotations aj, s €
[0, 27] and scales sq, s2 in the two images for a correspon-
dence, the affine transformation is calculated as A = J2J 1_1,
where J; = R;S;, R; is the 2D rotation matrix rotating by
a; degrees, and S; is the 2D scale matrix uniformly scaling



by s;, ¢ € [1,2], along each axis. They use the following
additional components for homography estimation.

1. SVD decomposition for estimating the homography
affine correspondences.

2. Sample cheirality check adapted for affine correspon-
dences to reject minimal samples early.

3. Graph-Cut RANSAC is used as robust estimator ex-
ploiting affine correspondences.

2.2. Deep Pre-filtering

The standard two-view matching pipeline with SIFT
or other local features uses SNN ratio test [19] to filter-
out unreliable correspondences before running RANSAC,
otherwise, the inlier ratio is too small to have good re-
sults [4,9, 17]. Recently, it was shown [4,21,24,26,28,29]
that using neural networks for correspondence pre-filtering
might provide significant benefits over the SNN ratio.

We evaluated how using such models for correspondence
pre-filtering for uncalibrated epipolar geometry help ho-
mography estimation algorithms. For our study, we took
pre-trained models, provided by the authors of each paper
and use them for scoring the correspondences. We empha-
size that we have neither trained, nor fine-tuned them for the
homography estimation task, so their performance is sub-
optimal compared to the same models, but trained for the
homography estimation. The reason why we did not take
the pre-trained models for homography is that authors do
not provide them. Since the sought homographies represent
3D planes in the COLMAP reconstruction, they stem from
static structures. The homography is thus consistent with
the epipolar geometry of the static background. Thus, fil-
tering the correspondences with deep networks trained on
epipolar geometry estimation reduces the outlier ratio also
for homographies and makes the robust estimation easier.
Unless stated otherwise, all the pre-trained models we used,
were trained on subset [26] of YCC100M dataset corre-
spondences for fundamental matrix estimation.

CNe [26]. Context normalization networks (CNe) is the
first paper on the topic which proposed to use PointNet
(MLP) with batch normalization [16] as “context” mech-
anism. The model does not use any side information and
the input is just a set of pair of coordinates in both images.

ACNe [24]. Attentive context normalization networks in-
troduces a special architectural block for the task. The
model does not use any side information.

DFE [21]. Deep Fundamental matrix estimation uses differ-
entiable iterative re-weighted least squares for the epipolar
geometry estimation and the model predicts weights. It uses
the following side information in addition to the point coor-
dinates: difference in scale and orientation of the SIFT fea-

tures, SNN ratio score, absolute descriptor difference score.
Different from the rest of models, DFE was trained on Tanks
and Temples dataset, which is smaller and less diverse in
terms of camera poses than YCC100M dataset.

OANet [28]. The OANet algorithm introduced several ar-
chitectural blocks for the correspondence filtering estima-
tion. It also uses the SNN ratio value and mutual nearest
neighbor check as a side information.

Neural guiding [4]. Neural-guided RANSAC paper uses
a CNe-like architecture, but different training objective (re-
inforcement learning) and way of utilizing correspondence
scores — to perform importance sampling in the RANSAC.
Note that we do not use the full NG-RANSAC as proposed
in the paper, because there is no author implementation of
it — only the fundamental and essential matrix estimation.
Instead, we only use the pre-trained model that scores the
correspondences. It uses SNN ratio as a side information.

CLNet [29]. CLNet introduces algorithmic and architec-
tural advancement to first remove gross outliers but iterative
pruning and only then look for the inlier candidates. No side
information is used.

AdaLAM [5]. AdaLAM is handcrafted correspondence fil-
tering method based on local affine transform estimation
and scale/orientation consistency check.

3. Uncertainty of Keypoints

The evaluation aims to determine bias and variance of
angular, scale, and positional transformations of detected
correspondences of SIFT keypoints {C;}X ;. Such statis-
tics calculated on the same dataset allow comparison of dif-
ferent implementations of SIFT detectors. Moreover, we
can compare the uncertainty of keypoints orientation, scale,
and positions for any detector if such measurements are pro-
vided. We followed [ 1] to derive an affine transformation (4
DoF) A; € R**2 in the vicinity of the keypoint pair from
the reference homography H;. The following sections dis-
cuss the evaluation of the positional differences, the deter-
mination of the reference scale ratios 7; and of the reference
rotations ¢; and the transformation errors in detail. All the
evaluations are measured on the OpenCV implementation
of the SIFT detector.

3.1. The positional transformation uncertainty

The symmetric positional residual of each keypoint pair
depends on the mean reprojection error

o = (%~ A + s — HIDB)/S (1)

The histogram of residuals €, of 6.1M keypoint pairs
is in Figure 1. Furthermore, the authors W. Forstner and
B. P. Worbel [13] show that the standard deviation of the
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Figure 1. The residuals €;, of 6.1M keypoint pairs. The right
histogram shows the logarithmic scale of the occurrence to visual-
ize the distribution of the residuals. Measured standard deviation
62 ~ 0.67 pixels. The STD is a factor two larger, than expected,
which might result from accepting small outliers.
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Figure 2. The standard deviation of ¢, for individual scale s;,s;
combinations. We can see the dependence of reprojection accu-
racy on the scale of the related keypoints.

keypoint depends on the detector scale (see [13] p.681, [27]
Eq.(15)). Therefore, it is reasonable to assume that the po-
sitional transformation error ¢, also depends on keypoint
scales s;, s;. We clustered the symmetric positional resid-
uals w.r.t. related s;, s; scales and measured the standard
deviation for individual bins, see Figure 2.

3.2. The scale transformation uncertainty

The scale transformation uncertainty is evaluated using
the ratios r; = s./s; (not to be confused with the redun-
dancy numbers in the main paper) with the scales (s;, s;)
from the SIFT keypoints. The scale transformation accu-
racy is based on the ratio Ar := r;/7;, where the ground
truth scale ratio is derived from A via

F= A, @)

For the cases with the affinity matrix having a condition
number > 1.5, the shears are assumed to have a too large
impact on the scales. We only analyze cases with small
scale ratios, i.e., assume values 7; € [0.5,2]. This inter-
val contains 99.62% keypoint pairs. Further, the weighted
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Figure 3. The histogram of the scale transformation ratio Ar; and
the weighted log-ratio p; on 5.6M keypoint pairs.

1eHistogram of the detector angular transformation Histogram of the detector angular transformation
14

08

Occurrence
Occurrence

-150 -100 -50 0 50 100 150
The detector angular transformation a

-150 -100 -50 0 50 100 150
The detector angular transformation a

Figure 4. The histogram of the detector angular transformation c;
for 6.1M of keypoint pairs. The right histogram shows logarithmic
scale of the occurrence to visualize the number of samples across
the complete interval [—180, 180) degrees.

log-ratio p; = log(Ar;)/7; is calculated using the filtered
Ar; related to the ground truth 7;. The scale statistics of the
remaining 5.6M keypoint pairs are shown in Figure 3.

3.3. The angular transformation uncertainty

The histogram of angular transformation o; = ¢ — ¢;
for all keypoint pairs is visualized in Figure 4. The uncer-
tainty of this transformation can be calculated by: (1) com-
paring direction vectors d(¢);) with the transformed direc-
tion d(¢;) into the coordinates of d(¢}) or (2) deriving a
local rotation from the reference homography and compar-
ing it to the keypoint angular transformation.

3.3.1 Comparing direction vectors

The directional vector d; = [cos(¢;) sin(¢;)]7] realizing
the first keypoint orientation can be transformed into the
second image by the multiplication with the local approxi-
mation of affinity transformation (4DoF)

d; = A.d;. 3)

The multiplication with the local affinity A; € R2*2 does
not include the projective part. The angle in the interval
[—7, 7] can be obtained by

Adgiree, = Z(d},d;) = atan2(|[d}, d;]|,d T d;). (@)

This is a reasonable measure for evaluating the quality of
the directions since — assuming no outliers — the expected
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Figure 5. The histogram of angular transformation error A« on
top of . The transformation was (1.) measured as the angle be-
tween directional vectors, Acvgirect €q. (4) , (2.) subtracting the
reference angular transformation decomposed by SVD, Aagyp
eq. (10), and (3.) subtracting the ground truth angular transfor-
mation obtained from the exponential analysis, Acajogm €q. (16).
We assumed 4.3M correspondences with cond(gi) < 1.2. The
standard deviation is 6, & 7.9° is approximately two times the
rounding error.

value of this angular difference is zero,' E(Aqireq,) = 0.
Fig. 5 shows the histogram of the Acuirect; from (4).

3.3.2 Partitioning of an affinity

We assume }Z € R?*2 matrix locally approximate the ho-
mography H; € R3*3. The goal of comparing SIFT di-
rections could be to determine the rotation component R
of the affinity A; and compare it to the angle between the
directions of corresponding keypoints.

We address three alternatives for determining the rota-
tional component of A:

1. a QR-decomposition,
2. a SVD-decomposition, and
3. an exponential decomposition.
Rotation from QR-decomposition of an affinity A. As-

suming the affinity is a concatenation of a shear matrix S
and a subsequent rotation with R

A =RS ®)
the classical QR-decomposition is defined as
R..:=R with [R,S]=qr(A). (6)
In case the affinity is defined by the reverse sequence, i.e.
A =SR @)
the QR decomposition of the transposed needs to be taken
R, :=RT with [R,S]=gqr(AT). (8)

If there are no shears, i.e. the shear matrix is a scaled unit
matrix, the two rotations Ry, 4 and Rqr AT are the same, oth-
erwise they differ.

I'Stochastical variables are underscored

Rotation from SVD-decomposition of A. An alternative
way to derive the rotation component uses the matrix expo-
nential. Let us assume, the affinity is decomposable as two
rotations sandwiching a individual scaling

A =UDV'" with D—[%l ;] )
2

where the shears are represented by the rotation V and the
ratio dy /ds. Then the SVD yields the rotation

Raaa :=UV' with [U,A,V]=svd(A). (10

Transposing A does not change the rotation. The resulting
rotation only is identical to those of the QR-decomposition
if the affinity is a scaled rotation.

Rotation from an exponential decomposition The affin-

ity A can be written as an exponential of a matrix B
A =¢P (11)

If the matrix B is zero, i.e. B = 0, the affinity is a unit
transformation. We now can decompose the exponent addi-
tively in the following form

B=> pB;

with the four basic 2 x 2 matrices

(12)

B, — Ll) (1) , B :“ _01] (13)
B, :[g o [3 01]. (14

Hence

A = eP1Bi+p2Ba+psBs+paBa (15)

If we take each of the summands individually, the four pa-
rameters refer to (1) scaling with log p1, (2) rotation by po
[rad], (4) 1st shear, namely opposite scaling of axes, and (4)
2nd shear, namely opposite rotation of axes. The rotation is
given by the well known relation

R = exp(p2B2) . (16)
Furthermore, for the first shear we explicitely have
exp (|0 P (17)
ps O

[ e~Pa/2 | gpa/2

ep4/2 — efp4/2
efp4/2 — efp4/2 ( )

e Pa/2 | gpa/2

qa=eP4/?

q1—1/qa
qa+1/q4

qs+1/q4

. 19
g1 —1/q4 (19




This representation is highly symmetric. The additive terms
are invariant w.r.t. the sequence of the terms. Moreover, the
scaled rotation is independent on the existence of shears.

However, since the exponent of two matrices only is the
product of the two matrices if they commute, i.e.

exp(A + B) = exp(A)exp(B) onlyif AB=BA,
(20)
the interpretation of the elements in the exponent is not in-
dependent of the existence of the other elements. Only a
common scaling can be exchanged with the other compo-
nents, as is known from scaled rotation.
Now, we can define the rotational component using (16)

deriving py from
pe = (B(2,1) — B(1,2))/2 with B =1log(A) (21)

where log(A) is the matrix logarithm of A.
Therefore we are able to identify the existence of shears,
namely we have no shears if

d? = |[ps,pa]l =p3 +pi =0 (22)

Since a scale rotation has condition number cond(sR) = 1,
also the condition number can be used to identify the lack
of shears, namely if cond(A) = 1. For not too large shears
the the condition number and the degree of shears d? are
approximately the same:

d? ~ cond(A). (23)

4. Effect of Weighting and Estimation Type
4.1. Outline of the analysis
We use two sets of sample data to answer two questions:

1. What loss in accuracy is to be expected when using an
algebraic estimation vs. a ML-estimation?

2. What effect on the accuracy does a scale dependent
weighting have onto the results of an ML-estimation?
(see [13], Sect. 15.4.1.3)

The first set A was chosen, such that (1) the number of cor-
respondences is small in order to allow for non-uniform dis-
tribution of points and (2) the shears to be large, the planes
are not fronto-parallel in order to have the homographies
largely deviate from a scaled rotation. The second set B is
the same as been used for the investigation into the uncer-
tainty of the SIFT detector.

4.2. Algebraic and ML minimization

We apply two estimation methods, each yielding covari-
ance matrices for the homography parameters based on the
constraints using the observations, containing the homoge-
neous coordinates of the keypoint pairs 1; := [x;,x}]7 with

the covariance matrix 3;,;, and the unknown parameters
0 :=vecH and y; = E(l;)

0=gi(0,y:) =E(x) x (HE(x;)) (24
which linearized has the form
gi(0,yi) = 8i(6°,y)) + AiA0 + B Ay; =0. (25)
with the Jacobians

and BT = %?f 7 (26)
(2

g
00

A=

yielding the complete observation vector, constraints, and
complete Jacobians

i.e. using the block diagonal matrix Diag(-) with the B! as
entries. We obtain the following covariance matrices for the
homography parameters.

1. The classical algebraic method minimizing the alge-
braic error

Q™(9) = g"(0,)g(6.1), 27)
yields the linear relation from (25)
AO = —(ATA)TATBTAL, (28)

see [13], eq. (4.518), from which we obtain the covari-
ance matrix

T00 = (ATA)PATBTEBA(ATA)T . (29)

Observe, we only would obtain the covariance matrix
(ATA)~! if the covariance matrix BT X, B of the
constraints AA@ would be the unit matrix, see (25),
which generally does not hold.

2. The ML-estimation, taking the uncertainty of the
points into account, minimizes

QM (0) =viE; v (30)

withv = y —1= (y° + Ay) —1, under the constraints
(25), which include the unknown parameters 6, and
yields the linear relation

AG = -300AT(BTEB)'BTAL, (31
see [13], eq. (4.447) with the covariance matrix
T = (AT(BTZ;B) TA)*T. (32)

If we assume BT3;B = I, which is what algebraic
minimization does, eq. (31) reduces to obtain (28).



In both cases we do not make the procedural details explicit,
which are caused by the redundant representation of the ho-
mography and the homogeneous coordinates: Actually, the
covariance matrix 3, has rank 8, since the homography
only has 8 d.o.f., similarly, the covariance matrix of a homo-
geneous vector x representing a 2D point, is rank 2. In both
cases, we employ a minimal representation in the tangent
space defined by the constraints ||H||> = 1 and |x|2 = 1.
Details for an ML-estimation of a homography are given
in [13], Sect. 10.6.3.

4.3. Scale dependent weighting

We use two different weighting schemes for the ML-
estimation

1. Equal weights for all points
wi(i) = we(i') = 1. (33)

2. Choosing the weights as a function of the scales of the
I keypoints, namely
2 2
T and w, (i") =

52(1) $2(i1)

with the geometric mean of all scales

1/(2)
m = (H S; H si/> . 35

The denominator is meant to have the average variance
1, to be comparable to (33), though the results do not
depend on this common scaling.

ws (i) =

(34)

For the ML-estimates, in addition to the covariance
matrices 3;; we also obtain the estimated variance
factor )
[78 - %
R
which depends on the weighted sum 2 of the squared
residuals, i.e. the reprojection errors and the redun-
dancy R = 2I — 8 of the estimation. It tells by which
factor we need to multiply the assumed covariance ma-
trix in order to obtain an unbiased covariance matrix,
assuming the given covariance matrix provides the cor-
rect ratio of the uncertainties between the observations:

(36)

aposteriori ___ 2 a priori
St = gy (37)

4.4. Accuracy Evaluation criteria

We use the following criteria to determine the loss in
accuracy, i.e. an increase of the standard deviations T4,
when comparing the covariance matrix X to a reference co-
variance matrix 3, namely the mean loss

e = \/t1(Bgp 25 1) /8 (38)

and the maximum loss
_ -1
I = 4/ max A(E@@Eéé ), (39)

see [12]. In case the two matrices are diagonal matrices
with the variances, we obtain the average and the maximum
ratio of the standard deviations.

5. Geometry and Statistics for Sect. 5
5.1. On the estimate ¢, for o;

‘We show, that

o = /(% —#

is a meaningful estimate for the standard deviation o; of all
coordinates uij and u;j of the given points x; = (1, U;2)
and x; = (ul;,ul,). Hence, we assumeD(e;) = E(e;e] ) =
D(e}) = E(e}€’ T) = 0215, which holds for the errors e; =
u, — E(u,) and €; = u} — E(u}). Linearizing x; — H;(x})
leads to e; — A;(e}), and similarly for the second term.
Thus, the RMSE, i.e. the expession under the squareroot

in (40) is linearized to
Aie)l3 +lei — AT (e)l3 @D

We now determine the expectation E(£2;) and obtain

x5+ |x; = H 7 (x:)B)/8 (40)

Qi: |e,~—

E(Q,) = E((e;—Ai(e})"(e; — Aile))) (42

2

+el — A7 (e) (e — AT (i) (43)
= E(efe +e/ AT A, (44)
+e Z’Te' +elA;TA; e) (45)

With tr((UV) = tr(VU), thus a'Sa = tr(a’Sa) =
tr(Saa') we then obtain

EQ) = E(efe;+e/ ATA] (46)
te;/ el +el A7TAS e) 7
= E (tr(e e]) + (AT A ele,") (48)

+tr(ele;’ ) +t(A;TA e, eT) (49)

= u(B(ee])) + r(ATAE(ele,T))  (50)
+tr(E(ele;,'")) + tr(A; T AT E(ese] J)51)
= tr(I)o? +tr(A]A;)o? (52)
+tr(I)o? + tr(A; TA; Ho? (53)

= (4+u(ATA) +tr(A7TATY))o?. (54
With the eigenvalues A; 2(A] A;) we now obtain

E(Q,) =4+ M+ +1/0 +1/X)0? > 802 (55)



since z + 1/x = (1 — z)?/x +2 > 2 for x > 0. Hence,
if Ay = Ao = 1, thus for a pure rotation, the value ei is
an unbiased estimator for o2. Dividing the RMSE (2 by NG
therefore leads to a conservative estimate of the standard
deviation o;.

5.2. Affinity and Slope of Plane

We give a relation between the condition number and
the slope of a plane observed by an image pair in normal
position.

The image of a sloped plane leads to scale differences s
and shears a due to the tilts Z, and Z,, of the plane along
and across the base line. They have the form

A, — | tFs H and Aa:[(l) ‘”] (56)

0 1

The combined effect is the affinity

Asa = ALLAQ = (57)

0 1

1+s a]

Condition Number for Affinity except Scaled Rotation.
The condition number of this affinity, is given by

V41 2+t
:1+( (1+s)+ +)t with % =a® + s

21+ )

Cc

(58)
For small s and ¢ it can be approximated by

crl4+t=14++Va2+s2 (59)

neglecting higher order terms. A condition number ¢ = 1.5
corresponds to ¢ = /2 /3.

Affine Parameters and Slope of Scene Plane. Assume
the stereo image pair in normal position with rotation R =
I, basis b = [1,0,0]T, and focal length f = 1 with coordi-
nate system in the first camera observing a sloped plane at
[0,0, Z]"

. 07 0Z
(60)

or with homogeneous plane coordinates
A=[Zx.Zyv,-1.Z]" =", Z]".  (6])

The homography from x’ to x” is given by x”” = Hx' by

Zx Zy _ 1
Z(]+1

b T Zo Zo
H=14+ -2 _ 0 1 0 (62)
Zy
0 0 1
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Figure 6. The distribution of the points for the 10 cases, see Tab. 1

This is an affinity with a Jacobian independent of the posi-
tion in the image, namely

ox" 14 4x 2y
A_ = = Zo Zo . 63
ox’ ( 0 1 63)

Hence, we have the scale difference and the shear
and a=—. (64)

If the scale difference and the shear are s = a = 1/3, the
slope of the plane is atan(\@/?)) = 25.24° and the con-
dition number is ¢ = 1.5, which we use as threshold for
approximate scale rotations.

6. Results
6.1. Data set A

For the 10 cases of data set A the results are collected in
Table 1. Fig. 6 shows the point distribution of the 10 cases.

Discussion. The table allows the following conclusions:

* The prior scale dependent standard deviations lies in
a range between 0.24 pixel and 6.11 pixel. Since the
redundancy in all cases is small, these values are quite
uncertain. However, their ratios, which only depend on
the scales of the points, are as uncertain as the scales
are. The ratios vary between 4 in case 3, and 23 in case
5.

e Starting from an uncertainty of 1 pixel, the estimated
(square rooted) variance factors & indicate that on an



max(oy)

case I min(c,) max(c,) g oo(w=1) oo(w(s)) [AGML- [AGML 1 e
[px] [px] [px] [px]

1 2 3 5 6 7 8 9 10

1 18 0.28 2.65 10 0.340 0.377 1.005 1.047 1.105 1.350

2 12 0.32 2.52 8 0.170 0.179 1.052 1318 1.223 1.569
3 13 0.48 2.08 4 0.133 0.129 1.050 1.273 1.076 1.251
4 14 0.29 4.66 16 0.266 0.172 1105 1418 2343 4.098
5 13 0.26 6.11 23 0.228 0276 1.043 1.218 2206 4.157
6 10 0.27 2.14 8 0.063 0.060 1.037 1.163 1.126 1.348
7 24 0.26 2.59 10 0.252 0.287 1.002 1.009 1.131 1.280
8 12 0.24 5.20 22 0.165 0.242 1.023 1.087 2.119 2.989
9 16 0.29 5.62 20 0.261 0.285 1.102 1.331 1976 3.382
10 14 0.24 5.36 22 0.203 0296 1.054 1.264 1.860 2.972
mean 0.29 3.89 14 0.208 0.230 1.047 1213 1.616 2.440
max 24 0.48 6.11 23 0.340 0.377 1.105 1418 2343 4.157

Table 1. Data set A. Comparing the accuracy of different homography estimates. Columns: (1) Number I of point pairs, (2—4) minimal and
maximal standard deviations min (o) and max (o) of weighted points and their ratio, (5-6) estimated variance factors for unweighted

JALGIML

and weighted points, (7-8) mean and maximal losses when comparing the algebraic with the ML-estimate using equal weights, /;..." and

JALGIML
max

average the keypoint coordinates are much better than
1 pixel, approximately by a factor 4 to 5.

* The loss in accuracy when using the classical algebraic
method for homography estimation compared to the
achievable accuracy using a ML-estimation is shown
in columns 8 and 9. The mean loss mostly is below
10%, which appears acceptable. However, the maxi-
mum loss is about 42 % (case 4).

* The loss in accuracy when using equally weighted co-
ordinates instead of taking the (assumed) scale depen-
dency into account is shown in columns 10 and 11.
While the mean loss lies between 8% in case 3 and a
factor 2.3 in case 4, the maximum loss reaches a factor
4.2 in case 5. The variation of the standard deviations
(column 5) is approximately coherent with the loss in
accuracy.

6.2. Data set B

Data set B consists of 969 homographies with alltogether
22 489 correspondences. We first provide the result of the
first 30 cases in Tab. 2 together with the mean and max-
imum values for each criterion. The results confirm the
findings of data set A, of course leading to more extreme
ranges/maximum values.

Analysing the complete data set B with 969 cases yields
the results shown in the histograms of Fig 7 and 8. The
maximum ratios of the scale dependent standard deviations

, and (9-10) mean and maximal losses when comparing the unweighted and the weighted ML-estimate, I.%, and I!I*, see Fig. 6

Residuals/RMSEs, #=969

N - mean =23.2

ratio «_ , mean =16.65
P x

nn{w=1], mean =0.37
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Figure 7. Data set B with 969 cases. Histograms of number of
correspondences, ratio of scale dependent standard deviations of
coordinates, and estimated (square rooted) variance factor 6¢

on an average are 15.5, which appears to be quite large,
however, confirming the results shown in Tab. 2. The mean
variance factor is 2 = (0.37 [px])?, being consistent with
earlier investigations.

Finally, we determined the average residuals for each
case using the following symmetric root mean square error

RMSE =

2

I
1
o7 D It = )P o [ — R ()
=1

(65)



max(oy)

cse T omin(e) max(o) Ot o(w=1) ao(w(e) LRSI
[px] [px] [px] [px]
1 2 3 4 5 6 7 8 9 10
1 39 0.34 2.18 6 0.216 0209 1.050 1.192 1.119 1.303
2 44 0.31 6.96 23 0.341 0358 1.042 1.131 2511 4.451
3 34 0.37 5.07 14 0.337 0.302 1.146 1.619 1.688 2.267
4 33 0.17 1.82 10 0.238 0.287 1.080 1.510 1.054 1.111
5 17 0.16 4.83 31 0.395 0.460 1.038 1.090 2.112 3.086
6 31 0.40 9.13 23 0.701 0.781 1.169 1918 2.084 4.254
7 21 0.39 2.63 7 0.415 0474 1.112 1598 1.254 1.770
8 22 0.45 2.60 6 0.255 0.270 1.061 1.223 1.202 1.458
9 16 0.38 7.71 20 0.367 0494 1.049 1.138 2.274 3.921
10 37 0.34 3.46 10 0.178 0.197 1.052 1276 1392 1.770
11 14 0.33 3.54 11 0.097 0.117 1.045 1308 1.062 1.214
12 30 0.51 1.91 4 0.158 0.161 1.061 1224 1.087 1.209
13 36 0.24 8.76 37 0.334 0.325 1.007 1.030 3.255 5.093
14 26 0.36 4.14 12 0.302 0296 1.016 1.052 1.828 2.487
15 42 0.19 14.79 77 0.542 0.676 1.022 1.082 4.118 7.477
16 17 0.37 2.65 7 0.234 0276  1.031 1.117 1289 1.711
17 22 0.20 1.88 9 0.276 0318 1.075 1476 1.099 1.246
18 16 0.23 2.75 12 0.567 0.576 1.005 1.017 1.429 2.252
19 56 0.28 4.50 16 0.478 0.719 1.079 1300 1.927 2.484
20 48 0.28 3.08 11 0.368 0.463 1.063 1.232 1.884 2.105
21 12 0.51 2.93 6 0.117 0.150 1.015 1.072 1.242 2.197
22 60 0.19 2.09 11 0.851 0908 1.105 1.655 1.085 1.194
23 18 0.26 1.68 6 0.392 0.464 1.004 1.030 1.150 1.453
24 30 0.33 8.16 25 0.405 0.373 1.103 1.368 2.483 4903
25 10 0.32 4.99 16 0.398 0391 1.011 1.054 1.182 1.924
26 14 0.43 7.54 18 0.303 0.368 1.009 1.054 1.526 3.012
27 17 0.17 2.58 15 0.160 0.200 1.058 1.285 1.263 1.593
28 13 0.24 5.89 25 0.292 0.331 1.027 1.175 1.621 2.723
29 11 0.26 5.37 20 0.548 0.580 1.003 1.020 1.380 1.989
30 20 0.28 9.41 34 0.700 0980 1.030 1.126 2.474 4.064
case I min(o,) max(oy) m oo(w=1) oo(w(s)) [oLGM. JrGML I Il
[px] [px] [px] [px]
mean 27 0.31 4.83 17 0.366 0417 1.052 1246 1.702 2.591
max 60 0.51 14.79 77 0.851 0980 1.169 1918 4.118 7.477

Table 2. Data set B, cases 1 — 30. Comparing the accuracy of different homography estimates. Columns: (1) Number I of point pairs,
(2-4) minimal and maximal standard deviations min(c,) and max(o,) of weighted points and their ratio, (5-6) estimated variance
factors for unweighted and weighted points, (7-8) mean and maximal losses when comparing the algebraic with the ML-estimate using
equal weights, [555M- and [25¢M- and (9-10) mean and maximal losses when comparing the unweighted and the weighted ML-estimate,

1s s
lmean and lmax



Losses in accuracy, #=969
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Figure 8. Data set B with 969 cases. Histograms of mean and
maximum losses due to using an approximate/algebraic estimation
method, and due to using equal weighting instead of scale depen-
dent weighting

being the quadratic mean of the ¢; in (40).
We compared the four homographies

1. the reference (reference),
2. estimated by the algebraic minimization (alg),

3. estimated by the unweighted ML-estimation (ML 1),
and

4. estimated by the scale weighted ML-estimation
(ML s).

The results are shown in the leff column of Fig. 9. Ob-
viously all estimates lead to smaller residuals. As can be
seen, the unweighted ML-estimation leads to smaller resid-
uals, than the weighted ML-estimate (row 3: 0.45 [px] vs
row 4: 0.56 [px]). This seems to be surprising, since one
would expect the weighted ML-solution leads to better re-
sults. However, the result is consistent with theory, since the
RMSE does not use any weighting, hence the unweighted
ML-estimate needs to minimize the unweighted RMSE.

If we, therefore, analyze the weighted residuals, using a
weighted root mean square error

Soi g willx = H(x) 2 + Jxi — H(x))2)

RMSE,, = =,
’ 8 Zf:l wi
(66)
with )
i = , 67
w ) (67)

we obtain the histograms in the right column of Fig. 9.
Now, as to be expected, the weighted residuals of the
weighted ML-estimate are minimal (row 4: 0.4 [px]), con-
sistent with the theoretical expectation. Also observe, all
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Figure 9. The residuals of the correspondences for the (columns)
reference homography, the estimated homographies using the al-
gebraic, the unweighted ML and the scale-weighted ML estima-
tion. Left column: equally weighted residuals/RMSE, eq. (65).
Right column: scale-weighted residuals/RMSE,,, eq. (66).

weighted residuals are smaller than the unweighted residu-
als, indicating the need to weight the coordinates used for
estimating the homographies.
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