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This work introduces an angular adaptive margin loss
(RMLVQA) to mitigate the language bias problem in VQA,
ensuring stable performance in both in-domain and out-of-
domain test data. The adaptive margins are determined in
two ways: 1) From the frequency of answers in the training
data, 2) From model confidence for each sample, obtained
parallely during training. As demonstrated in the main pa-
per, our method achieves the state-of-the-art scores on the
benchmark VQA-CP v2 test data [1], while maintaining
stable performance on the in-domain VQA v2 validation
set [3] – making our proposed approach the most robust
among all non-augmentation based methods. In this sup-
plementary material, we present the details of the training
procedure, followed by an analysis of the hyperparameters.
Further, we combine our method with another existing mar-
gin loss based method AdaVQA [8] to show the flexibility
of our method with respect to the underlying margin loss.
We also show detailed analysis on the effects of changing
the dataset as well as the base architecture. Finally, we con-
clude with more qualitative examples and an analysis on fair
evaluation of our model, as suggested by Teney et al. [16].

A. Experimental Details

A.1. General Implementation Details

In this subsection we present some of the details of the
base model that we used for our method RMLVQA. For
all our experiments, we use UpDn [2] as the base net-
work. Following previous works [4, 11, 13, 17, 19], we
use a Faster RCNN model [14] pretrained by Anderson
et al. [2] to extract the top 36 visual object feature vec-
tors, each of dimension 2048. All the questions are to-
kenized into tokens of length 14. Each question word is
encoded by Glove vectors [12] of dimension 300. These
embeddings are passed on to a single layer GRU [5] to ob-
tain the final question feature vector, which is of dimen-
sion 1024. We perform our experiments on a NVIDIA

GeForce RTX 2080 Ti GPU. All our implementations are
in PyTorch. The datasets VQA-CP v1 and v2 can be down-
loaded from https://computing.ece.vt.edu/

˜aish/vqacp/, VQA v2 [7] can be downloaded from
https://visualqa.org/download.html, and
GQA-OOD [10] can be downloaded from https://cs.
stanford.edu/people/dorarad/gqa/index.
html.

A.2. Implementation Details of RMLVQA (for
VQA-CP v2)

We train RMLVQA-Base (i.e. the vanilla angular margin
loss with only the frequency-based margins) and RMLVQA
(our final method) for 30 epochs, with a learning rate of
0.001. The batch size is kept as 512, and Adamax is used for
optimization. We list the hyperparameters and their values
used by our models below:

• Entropy threshold: 4.5 (defined in Section G).
• Scaling parameter s: 16.
• Standard deviation for the randomization of margins,
σ: 0.1

• Temperature τ used for generating the instance-based
margins and ensemling the logit heads during infer-
ence: 0.2

• Ensemble weight α: 0.5

During the first 15 epochs of training, we use the ran-
domized frequency based margins only (Recall mran from
main paper). Since the instance-level margins are learnt
from model confidence, we emperically find it to be more
useful to use them after the 15th epoch. Therefore, from
epoch 0 − 14, we set β = 1 and from epochs 15 − 29, it
is set to be 0.9, where β is the weight used to combine the
frequency based margins with the instance-based margins.
We analyse the accuracy of VQA-CP v2 for various values
of σ, τ and s, as shown in Fig. 1, and choose the final values
with the help of these plots.
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Figure 1. Hyperparameter Analysis. In this figure we present the variation of accuracies of VQA-CP v2 test set for given choices of
hyperparameters: a) randomization standard deviation σ, b) temperature τ , c) scaling parameter s.

Figure 2. Question-type wise Analysis. In this figure we show
model performance gap for each model component, for 6 ran-
domly chosen question types with respect to RMLVQA-Base.

A.3. Question-type wise Analysis

VQA-CP v2 has 65 question types. We use the question
type information for the calculation of the frequency-based
margins, as shown in Eq. 5 and 6 in the main paper. How-
ever, this information is not used in the bias-injecting com-
ponent or the learnable margin calculation. The SupCon
loss only uses the ground truth answers as supervision.

To demonstrate the effectiveness of our model, we show
the performance gap of each model component for 6 ran-
domly chosen question types in Fig. 2, with respect to the
vanilla RMLVQA-Base.

A.4. Role of SupCon Loss in RMLVQA

In order to concretely understand the role of the SupCon
loss, we add it to the baseline (i.e. the base UpDn architec-
ture trained by CE loss). We find that it decreases baseline
accuracy by 0.3%. This happens as it is calculated based
on answers and the dataset is infact biased on the question
types. Tables 3 (main paper), 1 and 2 show that this loss
aids our model in both ID and OOD cases, irrespective
of the underlying margin loss. We hypothesize that while
the margin loss creates discriminative features for frequent
and rare answers within a question type, the SupCon loss

Table 1. Ablations. In this table we show another view of the
ablations of RMLVQA, evaluated on VQA-CP v2 test & VQA v2
val.

Model VQA-CP v2 Test VQA v2 Val

RMLVQA 60.41 59.99
-Randomization 60.77 58.08
-Bias Injection 59.16 59.61
-Learnable Margin 59.55 60.93
-SupCon Loss 59.87 59.60
-Backprop 58.80 59.67

keeps similar answers together, creating subclusters inside
a question type in the feature space. This aids the margin
loss to further separate frequent and rare answers. This
is validated by adding it with RMLVQA-base (the vanilla
margin loss), which leads to an increase in accuracy by 2%
on VQA-CP v2.

A.5. Further Studies on Ablations

In Sec 4.2 in the main paper, we show how the individ-
ual model components help the final performance of RM-
LVQA in an additive manner. Here, we remove one com-
ponent from the main model, and show the effect of this
removal in Table 1 on both VQA-CP v2 and VQA v2. This
gives us further insights about the use of each of them for
id and ood performance. We note that the bias-injecting
component and the SupCon loss aid the model for both the
datasets. While randomization of the frequency-based mar-
gins helps the model generalize to id data, the learnable
margins boost ood performance. Overall, our final model
is robust, with equivalent performance on id and ood data.



Table 2. Ablations on AdaVQA. In this table we show the role
that is played by each component of RMLVQA when the underly-
ing margin loss is AdaVQA, evaluated on VQA-CP v2 test data.

Model Y/N Num Others Overall

AdaVQA 70.83 49.00 46.29 54.02
+ Randomization 73.17 53.94 46.04 55.78
+Bias injection 83.58 41.70 47.32 57.30
+ Learnable Margin 85.40 42.36 47.52 57.94
+ SupCon 86.92 40.98 47.77 58.45

B. Applying Our Method on AdaVQA

In this section, we demonstrate the flexibility of our
method with respect to the underlying margin loss. While
we use a margin loss with angular margin penalties in the
main paper, AdaVQA [8] – the only margin loss based
method addressing the language bias problem in VQA –
uses a cosine margin penalty. We add each component
of our method RMLVQA to AdaVQA and show the effec-
tiveness of each in Table 2. We call the final model with
AdaVQA as the underlying margin loss (after adding all
components of RMLVQA to AdaVQA) AdaVQARMLVQA.
It is specifially to be noted that for all ablations on
AdaVQARMLVQA, we set the scaling parameter s = 16 even
though Guo et al. [8] set it to be 32, as we observe that it
generalizes better to the VQA-v2 validation set with the for-
mer value. We show that similar to the original RMLVQA,
(as shown in Table 3 in the main paper), each component
of AdaVQARMLVQA aids the cosine margin loss. The fi-
nal accuracy is 58.45% for VQA-CP v2 test data, which
is 4.43% higher than AdaVQA, owing to the addition of the
Gaussian randomization, bias-injecting module, learnable
margins, the supervised contrastive loss and the inference
stage ensembling (which is done for every ablation after
the introduction of the bias-injecting component). We fur-
ther show a comparison between the original RMLVQA and
AdaVQARMLVQA in Table 3, where show the accuracy val-
ues for both VQA-CP v2 test and VQA v2 validation sets –
we observe the effectiveness of the angular margins, as the
original RMLVQA dominates AdaVQARMLVQA by 1.96%
for the ood data and 0.89% for the id data. However, it is to
be noted that both methods are highly robust, with almost
similar performances in id and ood accuracies. Specifially,
on combining our method with AdaVQA, the id accuracy
increases by 12.12%, which is a considerable gain. This
makes AdaVQA suitable for both id and ood generaliza-
tion, thus solving the primary problem of the method. We
still recommend using the angular margins in the underly-
ing margin loss because of their dominance over the cosine
margins, as evident from Table 3.

C. Performance of RMLVQA on Other
Datasets

C.1. VQA-CP v1

This dataset is a reorganization of the VQA v1 [3] train-
ing and validation splits, created in a similar fashion as
VQA-CP v2. We show the performance of our method in
Table 4. We observe that our ensemble based model (i.e.
RMLVQA) outperforms the vanilla model (i.e. RMLVQA-
Base), similar to VQA-CP v2 and VQA v2, and RMLVQA
achieves state-of-the-art performance with respect to all
augmentation-free methods, with a final overall accuracy of
63.52%. It is to be noted that we keep the hyperparame-
ters similar as those used for VQA-CP v2 due to lack of a
validation set.

C.2. GQA-OOD

This is another popularly used benchmark [10] to eval-
uate a VQA model’s performance on out-of-distribution
(ood) data. Unline VQA-CP v1 & v2, GQA-OOD does not
explicitly carry the question type information, and hence we
cannot estimate the frequency based margins mfreq directly
in this dataset. Instead, we calculate them without any ques-
tion type information in the following way:

m̄freq[i] =
ni + ϵ∑|A|
j=1 nj + ϵ

(1)

mfreq[i] = 1− m̄freq[i] (2)

where m̄freq[i] measures the probability of occurrence of
answer ai in the entire training data. ni is the frequency
of answer ai in the training set and ϵ is a hyperparameter
for avoiding computational overflow. mfreq[i] is the adap-
tive margin for answer ai ∈ A corresponding to the entire
dataset. Thus, our algorithm no longer has any assumption
on the bias present in the dataset. We demonstrate the re-
sults in Table 5, where we show that the vanilla RMLVQA-
Base outperforms the baseline BUTD [2] by 1.8%, and
our proposed model surpasses both BUTD and the vanilla
model by 2.67% and 0.86% respectively. Thus, our method
successfully generalizes to this dataset without accessing
knowledge of the question types. We also note that our
model performs well on the tail classes alongside the head
classes as compared to the other methods listed in Table 5.
With the help of the provided validation set, we choose the
hyperparameter values to be the following: σ = 0.0001,
τ = 2.0, s = 16, epochs=10. The weighting parameter
β used to combine the frequency based margins with the
instance-based margins is set to 1.0 till the 6th epoch, and
0.9 from epoch 7. [R1]



Table 3. Accuracy comparisons between the angular and the cosine margin losses on the VQA-CP v2 test and VQA v2 validation sets
with respect to different answer types. We observe that the angular margins outperform the cosine ones on both id and ood data, in their
vanilla form and in the final form.

Model Y/N-CP Num-CP Others-CP Overall-CP Y/N Numbers Others Overall

AdaVQA 70.83 49.00 46.29 54.02 47.78 34.13 51.14 46.98
AdaVQARMLVQA 86.92 40.98 47.77 58.45 75.10 37.72 53.04 59.10
RMLVQA-Base 79.78 49.62 48.49 57.24 51.99 31.15 50.94 49.72
RMLVQA 89.98 45.96 48.74 60.41 76.68 37.54 53.26 59.99

Table 4. Accuracy comparisons with the state-of-the-art meth-
ods on the VQA-CP v1 dataset with respect to different answer
categories. The best performance in each cateogory is highlighted
in bold. * denotes numbers shown by Guo et al. [8]

Model Y/N Numbers Others Overall

SAN [18] 35.34 11.34 24.7 26.88
GVQA [1] 64.72 11.87 24.86 39.23
UpDn [2]* 43.76 12.49 42.57 38.02
S-MRL [4] 41.96 12.54 41.35 37.13

AdvReg [13] 74.16 12.44 25.32 43.43
RUBi [4] 75.00 13.3 30.49 46.08
LMH* [6] 76.61 29.05 43.38 54.76

RMLVQA-Base 90.31 40.07 46.32 62.71
RMLVQA 91.24 38.55 45.52 63.52

Table 5. Accuracy comparisons with the state-of-the-art meth-
ods on GQA-OOD dataset with respect to head, tail and overall
answers. The best performance in each cateogory is highlighted in
bold.

Model Acc-All Acc-Tail Acc-Head

BUTD [2] 46.4 42.1 49.1
RUBi+QB 46.7 42.1 49.4
RUBi [4] 38.8 35.7 40.8
LM [6] 34.5 32.2 35.9
BP [6] 33.1 30.8 34.5
RMLVQA-Base 48.21 42.43 51.76
RMLVQA 49.07 44.5 51.88

D. Effect of Using Different Baselines

All our experiments are generally done with UpDn [2]
as the base network. In this section, we demonstrate the
performance of our model on other baselines like SAN
[18], S-MRL [4] and LXMERT [15]. We show in Ta-
ble 6 that our proposed method outperforms the respec-
tive baseline for each case. For LXMERT, we refer Guo
et al. [9] for the overall accuracy. The results show that our

Table 6. Performance of our model on three different network
architectures, evaluated on VQA-CP v2 test data.

Base Y/N Num Other All

SAN 35.34 11.34 24.7 26.88
SAN+RMLVQA 88.56 42.53 46.10 58.02

S-MRL 42.85 12.81 43.20 38.46
S-MRL+RMLVQA 90.02 47.69 47.15 58.45

LXMERT - - - 58.07
LXMERT+RMLVQA 95.40 70.68 51.68 67.24

method is independent of the underlying base network. It
is to be noted that LXMERT is a popular vision-language
pretrained model, frequently used for several multimodal
downstream tasks. We demonstrate that our method is able
to improve the performance of LXMERT by 9.17%.

E. More Qualitative Results
We present some qualitative results in Fig. 3 with re-

spect to RMLVQA on VQA-CP v2, to show the effective-
ness of the bias-injecting component in our model. For ex-
ample, in Fig. 3(a), we see that the vanilla model predicts
“bus” for a “yes/no” type question, whereas the random-
ized margin trained model predicts a wrong answer, but the
answer is relevant to the question type of the given ques-
tion. Fig. 3(a),(b),(c) show the effectiveness of the addition
of the bias-injecting component, wherein it is able to out-
put relevant and correct answers for each of the samples. In
Fig. 3(d) however, we see that all the model components an-
swer “giraffe” even though the question is of “yes/no” type.
Further qualitative examples are shown to demonstrate the
effectiveness of the instance-based margins in Fig. 4. For
each question shown in this figure, the correct answer is
a frequently available class in the training set. However,
the baseline still outputs wrong answers for each of them,
whereas our method effectively corrects the errors made by
the baseline. We believe that this happens as the learnable
margin component ensures more margin penalties for such



Algorithm 1 Train
Input: Training set divided into B mini-batches along with
the frequency based margins, model M to train
Output: Trained model

1: M.train().
2: for b in B do
3: for (v, q, a, mb

freq) in b do
4: f , fb, x = M(v, q)
5: mb

ran = N (mb
freq, σ)

6: mb
ins = softmax(fb/τ)

7: mb
comb = combine(mb

freq , mb
ins)

8: L = LAngular(mcomb) + Ls(fb, a) +
Lsup−con(x, a)

9: L.backward()
10: end for
11: end for
12: return M

frequent but hard samples.

Fig. 5 shows further examples which demonstrate the
incremental changes in performance on the VQA-CP test
data, after addition of the individual components of the
model, i.e. 1) RMLVQA-Base, 2) Rand (RMLVQA-Base
+ Randomization of margins), 3) BI (Rand + the Bias-
injecting component), 4) LM (BI + instance-level margins).

F. Psuedo Code of Our Model

In this section, we present the pseudo codes of our en-
tire algorithm. In Algorithm 1 we show how our model is
trained. For each minibatch b consisting of some image
v, question q, answer a and the frequency-based margins
mb

freq (computed for the question type of q), we pass the
image and the question to the model M, which returns the
primary logits f , the logits from the bias-injecting compo-
nent fb, and the multimodal feature x (lines 2-4). We com-
pute the randomized and instance-based margins in lines 3
and 4, and combine the two in line 7 using the procedure
mentioned in Subsection 3.2 in the main paper. Finally, we
compute the loss function using the three losses as men-
tioned in Section 3 of the main paper, and backpropagate
through it to update the model (lines 8-9).

Algorithm 2 shows how the trained model is used for
prediction on a trained/validation data, following the infer-
ence strategy mentioned in Section 3 of the main paper. Re-
call that α refers to the ensemble weight, p̂ refers to the pre-
diction probabilities from the primary classifier c, and p̂b
refers to the prediction probabilities from the bias-injecting
component cb.

Algorithm 2 Evaluate
Input: Test/Validation set divided into B mini-batches
along with the frequency based margins, trained model M

1: M.eval().
2: for b in B do
3: for (v, q, a, mb

freq) in b do
4: f , fb, x = M(v, q)
5: pred = α.p̂ + (1− α).p̂b
6: end for
7: end for
8: return M

G. Entropy Threshold for Setting Margins
In VQA-CP, not all question types suffer from the lan-

guage bias equally. For such question types, adaptive mar-
gins are not required. It suffices to use a constant margin
for these question types, whereas for others, adaptive mar-
gins need to be used. Inspired by AdaVQA, [8], entropy is
used to distinguish which question types in the training set
exhibit the language bias more than others. For example, let
qtk be a certain question type. Its entropy is calculated as
following:

eqtk = −
|A|∑
i=1

m̄k
freq[i] log2 m̄

k
freq[i]

A higher value of entropy suggests a more uniform distri-
bution whereas a lower value points at non-uniformity. This
means that the question types with higher entropy do not
exhibit language biases. Therefore, for all questions in the
training data that belong to a certain question type whose
entropy is higher than a threshold, we set the margin values
as constant (more specifically, 1). For others, we calculate
the margins in the same way as shown in Subsection 3.2 of
the main paper.

H. Ensuring a Fair Evaluation.
We follow the recommendations by Teney et al. [16] for

fair handling of the VQA-CP dataset:

• We randomly extract 8000 samples from VQA-CP v2
training data to evaluate how the same trained model
performs on an id validation data and an ood test
set. In Table 8, we compare the performances of
our method with respect to RandImg [16], AdaVQA
and RMLVQA-Base. We observe that while both RM-
LVQA and AdaVQARMLVQA achieve competitive per-
formance on the id validation set as compared to
RandImg, they surpass the latter on VQA-CP test
(5.04% and 2.5% respectively) and VQA v2 valida-
tion sets (2.75% and 1.86% respectively). More im-



Q: Are all these people waiting 
to cross the street?
RMLVQA-Base: bus
Randomization: yes
BI: no
GT: no

Q: What is the name of this 
sales area?
RMLVQA-Base: produce
Randomization: produce
BI: market
GT: market

Q: Are all of these fruits grown 
on the same kind of tree?
RMLVQA-Base: no
Randomization: apple & banana
BI: no
GT: no

Q: Are all animals of the same 
breed?
RMLVQA-Base: giraffe
Randomization: giraffe
BI: giraffe
GT: yes

(a) (b) (c) (d)

Figure 3. Effectiveness of the bias-injecting component. In this figure we present examples from the VQA-CP v2 test data, where
RMLVQA-Base and RMLVQA-Base + Gaussian Randomization both predict irrelevant answers and the addition of the bias-injecting
component (BI) corrects them for most of the cases. BI: RMLVQA-Base + Gaussian Randomization + Bias-injecting component.

Q: What color is the person on 

the elephant in the back 


wearing?

Q: How many ski boards are in 

the picture?

Q: Is this sandwich cut?

Baseline: Black
RMLVQA: Red

Baseline: 6
RMLVQA: 5

RMLVQA: Yes
Baseline: No

Q: What is the tabletop made 

of next to the wall?

RMLVQA: Wood
Baseline: Glass

Figure 4. Effectiveness of the learnt instance-based margins. In this figure we present examples from the VQA-CP v2 test data, where
the baseline UpDn fails to predict answers which are frequent. This is corrected by our proposed model by flexibly changing margins for
easy and difficult samples in the training set.

portantly, RMLVQA outperforms its vanilla version by
12.96%, while AdaVQARMLVQA outperforms AdaVQA
by 16.73% on the id validation set. This shows how
our final model overcomes the problem of overfitting
to the VQA-CP test distribution, and becomes more
robust. We believe that it is unsuitable to select the
ensemble weight α by looking at the id validation and
particularly test accuracies. Hence, we set α = 0.5
to obtain our final results for both the margin losses
as mentioned in the main paper. However, if some
knowledge of the test distribution is available, one can
vary α such that the performance is better on one of
the datasets as shown in Table 2 in the main paper. We
report the accuracies obtained by training the model on
the entire training data in Table 1 in the main paper for

a fair comparison with other methods.

• We also focus on the other type questions as they are
much less likely to be answered correctly with “a naive
or malfunctioning method”. For both RMLVQA and
AdaVQARMLVQA, we observe that the other type ac-
curacies are comparable with all state-of-the-art meth-
ods, surpassing that of RandImg (45.99%).

• All experiments in Table 1 (main paper) are averaged
over 5 seeds, ensuring that the accuracy of our model
is not spurious.

In Table 7 (where we show the variation in accuracies for
varying α for the in-domain VQA-CP v2 validation set,
VQA-CP v2 test set, and the VQA v2 validation set), we



How many people are in 
the picture?
GT: 15
RMLVQA-Base: 16
Rand: 16
BI: 12
LM: 15

What sort of dog would 
complete this picture?
GT: dalmatian
RMLVQA-Base: lab
Rand: lab
BI: no dog
LM: dalmatian

What is the man doing?
GT: walking
RMLVQA-Base: standing
Rand: standing
BI: standing
LM: walking

Is this a plate or a bowl?
GT: plate
RMLVQA-Base: bowl
Rand: bowl
BI: plate
LM: plate

Is that chocolate or fudge?
GT: chocolate
RMLVQA-Base: ice cream
Rand: cake
BI: chocolate
LM: chocolate

What shoes color are the 
same?
GT: yellow
RMLVQA-Base: white
Rand: yellow
BI: yellow
LM: yellow

What kind of animal is 
shown?
GT: eagle
RMLVQA-Base: bird
Rand: bird
BI: bird
LM: bird

What does the elephant 
have on his face?
GT: paint
RMLVQA-Base: trunk
Rand: trunk
BI: trunk
LM: trunk

Figure 5. Examples of samples from VQA-CP v2 test data. In this figure we present examples from the VQA-CP test data, showing the
performance of each model component of RMLVQA on these examples. Correct answers are marked in blue, wrong answers are marked in
red. Rand: RMLVQA-Base + Gaussian Randomization, BI: Rand + Bias-injecting component, LM: BI + instance-level margins.

Table 7. Role of α in the inference stage of RMLVQA.

α VQA-CP v2 Test VQA-CP v2 in-dom Val VQA-v2 Val

1.0 60.54 51.95 58.16
0.8 60.50 52.66 58.83
0.6 60.33 53.58 59.57
0.5 60.16 54.18 59.99
0.4 59.87 54.90 60.46
0.2 57.46 57.48 61.26
0.0 39.48 66.37 61.54

observe that the id validation accuracy of VQA-CP is pro-
portional to that of VQA v2, suggesting a correspondence
in the performances of both. We also show the performance
of our model on the GQA-OOD dataset [10] in subsection
C.2, where the margins are calculated without knowledge
of the question type.

Table 8. Comparison of different models on the VQA-CP v2
in-domain validation set.

Model VQA-CP val VQA-CP test VQA-v2 val

UpDn 65.36 41.74 63.48
RandImg 54.24 55.37 57.24
AdaVQA 36.66 53.59 47.64
RMLVQA-Base 41.22 57.11 49.72
AdaVQARMLVQA 53.39 57.87 59.10
RMLVQA 54.18 60.16 59.99
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