
A. Additional Task Details
The full reward function of the Rearrange task is described

in Equation (1).

rt=10Isuccess+5Ipick+�obj
arm+�goal

obj �0.001Ct (1)

Where:

• Isuccess is the indicator for task success.

• Ipick is the indicator if the agent just picked up the object.

• �obj
arm is the change in Euclidean distance between

the end-effector (arm) and the target object (obj). If
dt is the distance between the two at timestep t, then
�obj

arm=dt�1�dt).

• �goal
obj is the change in Euclidean distance between the

object (obj) and the goal position (goal).

• Ct Is the squared difference in joint action values between
the current and previous time step. If akt is the action for
timestep t for moving joint k then Ct=

P
k(a

k
t �akt�1)

2

The reward signal for the mobile pick is identical, but the
task ends in a success if the robot picks the correct object
(Isuccess=Ipick).

The action space of the monolithic policy consist of 11
actions:

• 7 continuous actions controlling the change to the joints
angles. These actions are normalized between �1 and 1
with the minimum and maximum value corresponding to
the maximum change to the joint angles allowed in each
direction per step.

• 1 continuous action between �1 and 1 corresponding
to the robot moving forward. An action with value of 1
corresponds to the robot moving forward by 10cm and �1
to the robot moving backward by 10cm in the simulation.

• 1 continuous action between �1 and 1 corresponding to
the robot rotating. An action with value of 1 corresponds
to the robot rotating in clockwise by 5� and �1 to the
robot rotating counter-clockwise by 5�.

• 1 discrete action with 2 options corresponding to the robot
attempting to grasp or release an object. If the value is 0,
and the robot is holding an object, the robot will attempt
to release it. If the value is 1 and the robot is not holding
an object, the robot will attempt to grasp.

• 1 discrete action with 2 options corresponding to the robot
attempting to terminate the episode. If the value is 0 the
robot will continue the task. If the value is 1, the robot
will signal that the task is completed.

B. Method Details
More details about the method architecture here.
Our Hyperparameters are described in Table 3.

Hyperparameter Value

start learning rate 3.5⇥10�4

end learning rate 0
learning rate schedule linear

entropy coefficient 1⇥10�3

clip gradient norm 2.0
time horizon 64

number of epochs per updates 1
number of mini batches per updates 2
RGB and Depth image resolution 128⇥128

image encoder ResNet18
normalized advantage true

Table 3. Hyperparameters used for DD-PPO training in Galactic
To calculate the entropy of this action space for entropy reg-

ularization in DD-PPO, we add the entropy of the discrete and
continuous actions distributions together without any scaling.

The SimpleCNN model we use consists of 3 convolution
layers followed by a fully connected layer. The kernel sizes for
the three convolution layers are 8⇥8, 4⇥4 and 3⇥3, the strides
are 4⇥4, 2⇥2 and 1⇥1 and there is no dilation nor padding.
This is the same SimpleCNN visual encoder used in Habitat
2.0. The size of the models used are described in Table 4.

Model Total number of parameters

SimpleCNN 4,046,999
ResNet9 4,338,007
ResNet18 5,906,647

Table 4. Model sizes for the different visual encoders used. This
includes the visual encoder, the actor, and the critic.

C. Further Habitat 2.0 Results
First, we analyze the poor performance of the policy purely

trained in Habitat 2.0, which achieves no success in the Table 2.
Figure 7a shows the reward learning curve during training.
This learning curve demonstrates that even after 200M steps of
training, the reward is still increasing, which provides evidence
for the necessity of Galactic to scale training. In this training
time, the agent reliably learns to pick the object around 80% of
the time as shown by the training plot in Figure 7b comparing
the fraction of the time the robot picked the object within an
episode versus the number of training steps.

Next, we analyze the source of errors in the zero-shot transfer
from Galactic to Habitat 2.0. We show the drop in performance
is not due to the dynamic arm control by comparing to
transferring to Habitat 2.0 with a kinematic arm controller
instead of a dynamics-based torque controller. The agent with



(a) Reward

(b) Picked object ratio

Figure 7. Learning curves for the policy trained purely in Habitat 2.0.
Figure 7a shows the episode reward does not saturate even after 200M
training steps. Figure 7b shows that even though the agent is never
successful, it still learns to pick the object.

the kinematic arm controller achieves a 29.7% success rate on
the “Eval” dataset, barely any better than the 26.4% success
rate the dynamics-based torque controller achieves.

D. Additional Task visuals
In this section, we visualize observations rendered using the

Galactic simulator. Figure 8 are examples of 128 ⇥ 128 RGB
images used for training. Figure 9 are examples of 128 ⇥ 128
depth images used for training. We also visualize observations
rendered using the Habitat 2.0 simulator also at 128⇥128 in
Figure 10 and Figure 11.

E. Training for 15 Billion steps
To show the usefulness of training for several billions of

steps, we trained the Rearrange task defined in Section 4 for
15 billion steps. Training and validation success rates are still

Figure 8. Samples of RGB observations collected in Galactic.

Figure 9. Samples of Depth observations collected in Galactic.

Figure 10. Samples of RGB observations collected in Habitat 2.0.

improving, showing that training still hasn’t converged, even
after 15 billion steps.



Figure 11. Samples of Depth observations collected in Habitat 2.0.

Figure 12. Training and evaluation curves for a 15 billion steps
training run. Each checkpoint is evaluated on 100 training or validation
episodes.

Visual Encoder ResNet18 SimpleCNN
Number of Envs 128 512
PyTorch Inference 7.52 8.80
Render Setup 0.77 1.47
Step Post-processing* 1.84 2.05
Step Physics* 1.78 3.76
GPU Rendering 2.27 9.68
Additional CPU 0.74 1.00
Total 11.30 ms 20.95 ms

Table 5. Timing breakdown of a single batch rollout step, for two
configurations in milliseconds. * Post-processing and Physics are
interleaved with GPU rendering and PyTorch inference and don’t
contribute to total rollout step time. See also Figure 1. 1x Tesla V100,
10x Intel Xeon Gold 6230 CPU @ 2.10GHz, 128x128 RGBD sensors.

F. Performance Timings

G. Additional Collision-Detection Details
In this section, we’ll expand on Section 3.2, in par-

ticular, we’ll discuss our collision representations and
collision-detection queries.

Visual Encoder ResNet18 SimpleCNN
Number of Envs 128 512
Compute Rollouts 726 1289
Update Agent 1381 856
Total 2204 ms 2215 ms
Training SPS 3716 SPS 14791 SPS

Table 6. Timing breakdown of a single train update for two config-
urations in milliseconds. 1x Tesla V100, 10x Intel Xeon Gold 6230
CPU @ 2.10GHz, 128x128 RGBD sensors, 64 batch rollout steps.

Galactic scenes include a Fetch robot [43], movable
YCB objects [4], and 105 static (non-movable) ReplicaCAD
scenes [55]. Note that scenes in the ReplicaCAD dataset include
some interactive furniture (e.g. openable cabinet drawers and
doors), but we don’t simulate these in Galactic as they aren’t
required for the Rearrange Easy benchmark.

As discussed in Section 3.2, our approximate kinematic sim
must perform collision queries between the robot (including
grasped object, if any) and the environment (resting movable
objects and the static scene). We represent each articulated link
of the robot with a set of spheres (green in Figure 3). These
are authored manually, with the goal to approximate the shape
of the Fetch robot with a minimal number of spheres. We also
represent each grasped object with a set of spheres (blue). These
are generated offline using a space-filling heuristic. Rather
than supporting arbitrary sphere radius, we limit ourselves to
a sphere-radius “working set” of{1.5 cm, 5 cm, 12 cm}. This
limitation is important as we’ll see shortly.

We approximate a ReplicaCAD scene as a voxel-like
structure called a column grid (gray in Figure 3). A column grid
is generated offline for a particular scene and a particular sphere
radius from our working set, so we generate three column grids
per scene. A column grid is a dense 2D array of columns in
the XZ (ground) plane, with 3-centimeter spacing. For each
column, we represent vertical free space as a list of layers. For
example, a column in an open area of the room would contain
just one layer, storing two floating-point height values roughly
corresponding to the height of the floor and the height of the
ceiling. A column in the vicinity of a table, meanwhile, would
contain two layers: one spanning from the floor to the underside
of the table, and another spanning from the table surface to the
ceiling. Finally, the stored height values don’t actually represent
the surface heights themselves, but rather the height of the
query sphere (of known radius) in contact with the surface. For
ReplicaCAD scenes, the maximum number of layers for any
column is approximately 10 and corresponds to columns in the
vicinity of a particular bookshelf with many shelves.

A column grid is generated offline using the ReplicaCAD
scene’s source triangle mesh and Habitat 2.0’s sphere-query
functionality. We load the scene in Habitat 2.0 and use the
scene extents to derive the column grid’s XZ (ground-plane)
extents. We iterate over this region using our chosen 3-cm



spacing. For each column, we perform a brute-force search of
the vertical region at the column’s XZ position, using a series of
sphere-overlap and vertical sphere-casts to find the free spans.

At runtime, to detect collisions between the robot (including
grasped object, if any) and the static scene, we implement
a fast sphere-versus-column-grid query. First, we select the
appropriate column grid corresponding to the query sphere’s
radius. Second, we retrieve the nearest column corresponding
to the sphere’s XZ position. Finally, we linearly search the
column’s layers to determine whether the query sphere’s Y
position is in free versus obstructed space. This linear search
is accelerated using caching: we start the search from the same
layer index found in recent searches. This leverages spatial and
temporal coherency, for example, consider the robot reaching
under a table: if one sphere from the robot arm’s link is found
to be between the floor and the underside of a table, it’s likely
that other spheres from that same link or other queries from
succeeding timesteps will also lie in that vertical layer.

Whereas a grasped movable object is represented with a set
of spheres (blue in Figure 3), a resting movable object is ap-
proximated as an oriented box (orange). This is computed from
the YCB object’s triangle mesh in a preprocess. At runtime, to
detect collisions between the robot (including grasped object, if
any) and the resting movable objects, we perform sphere-versus-
box queries. There are generally 30 resting movable objects in
the environment (1 target object and 29 distractor objects) and
we need to avoid performing all 30 sphere-versus-box queries.
So, we use a “regular grid” acceleration structure to quickly
retrieve a list of nearby resting objects.

Resting movable objects are inserted into a regular grid at
episode initialization. This is a dense 2D array spanning the
XZ (ground) plane, with each cell storing a list of objects that
overlap it. Objects will generally overlap multiple cells and thus
be present in the object lists of multiple cells. When an object is
grasped by the robot, it is removed from all relevant cells in the
regular grid, and if the object is later dropped, it is re-inserted
into the regular grid at its new resting position.

Let’s consider how to find the list of nearby resting
objects for a given query sphere. The regular grid spacing is
chosen such that cells are at least 4⇥ the largest radius in our
sphere-radius working set (12 cm). A query sphere may overlap
up to four adjacent cells in the regular grid, e.g. the sphere is
centered near the shared edge of two cells or the shared corner
of four cells. A naive approach here would be to merge and de-
duplicate the object lists of the four cells. We avoid this expense
and instead maintain four separate regular grids, all spanning
the entire scene XZ extent, with carefully-chosen varying X and
Z offsets for the cell boundaries. In this way, any query sphere
is guaranteed to lie fully inside a single cell of one of these grids
(not spanning a cell edge or corner). Thus, our list of nearby
resting objects is simply the list stored in this cell; we don’t
have to merge or de-duplicate multiple lists. Note this approach
of four somewhat-redundant regular grids comes at the expense

of extra memory and added insertion/removal compute time.

H. Simulator Flexibility to new Assets
Galactic can work with various assets (robots, scenes and

objects) from different sources. We use a mostly-automated
pipeline that includes optimizing assets for the batch renderer
and generating collision geometry (see Appendix G). In Fig. 13
we added Stretch and Spot robots loaded in a scene from the
MP3D dataset [41] with new objects.

Figure 13. Galactic with an MP3D scene, Google Scanned Objects [13],
Stretch robot (left), Stretch debug viz (center), and Spot robot (right).

I. Description of Heuristics
I.1. Sliding Heuristic

We implement the robot sliding heuristic as the following
steps: (1) start from a candidate pose, (2) if the pose penetrates
the scene, compute a jitter direction in the ground plane (3)
jitter the robot base in the horizontal plane. Repeat from step
1 until a penetration-free pose is found, up to 3 times. If this
fails, the robot does not move on that step.

I.2. Object Placing Heuristic
The object placement heuristic is as follows: (1) start from

a candidate pose, (2) if the pose penetrates the scene, compute
a jitter direction in the ground plane, with some randomness, (3)
jitter the dropped object and re-cast down to a support surface.
Repeat from step 1 until a penetration-free pose is found, up to
6 times. If this fails, we restore the dropped object to its resting
position prior to grasp. This approximates the dropped object
bouncing or rolling away. Snap-to-surface is an instantaneous
operation that resolves within one physics step; objects do not
fall or settle over time.


	. Introduction
	. Related Work
	. Galactic System
	. Batching
	. Approximate Kinematic Simulation

	. Experiment Setup: Object Rearrangement
	. Task Description
	. Approach: End-to-End RL

	. Results
	. Throughput and Scaling
	. Sim-to-Sim Results
	. Analyzing Rearrangement Settings in Galactic
	. Speeding Up Mobile Pick

	. Conclusion
	. Additional Task Details
	. Method Details
	. Further Habitat 2.0 Results
	. Additional Task visuals
	. Training for 15 Billion steps
	. Performance Timings
	. Additional Collision-Detection Details
	. Simulator Flexibility to new Assets
	. Description of Heuristics
	. Sliding Heuristic
	. Object Placing Heuristic


