
/48 /40 /30 /24 /20 /16 /12 /10 /8
Patch-size the FlexiViT is evaluated at

40%

45%

50%

Im
ag

eN
et2

1k
 p

re
cis

io
n@

1 
(v

al)

PI-resize
Vanilla
Untied
Untied, =init
Normalize
Token-LN
Image-LN

Figure 14. Options for dealing with patch-embeddings. Su-
pervised training from-scratch on ImageNet-21k. Vanilla (bilin-
ear) is the simplest method and works well. PI-resize further im-
proves the large-patch case and provides other advantages (see
text). Untied means learning separate patch-embedding kernels
for each size, and does not work too well. Normalize, Token-LN,
and Image-LN all but require modifications to the model making
it incompatible with standard ViT.

Besides providing more details and results on various
sections as mentioned in the main paper, we also pro-
vide full numerical (tabular) results of all figures in Ap-
pendix R in order to facilitate reproduction/comparison in
future work.

Finally, more details about the alternative ways of flexi-
bility discussed in Section 7 are provided in Appendix O.

A. More details on flexible patch-sizes
In this section, we further elaborate on many details of

flexible patch-sizes. We provide results for alternative ways
of dealing with flexible patch-sizes when one does not care
about preserving model architecture in Appendix A.1. We
provide a detailed derivation of PI-resize in Appendix A.2,
and show some PI-resize matrices in Appendix A.3. We fur-
ther show some visualizations of patch-embedding weights,
both raw and resized, in Appendix A.4

A.1. Alternatives for dealing with flexible patch-size

Besides bilinear resizing (called Vanilla) or PI-resizing
the patch-embedding weights to deal with variable patch-
sizes, there are a few other alternatives which we discuss
and compare here.

Untied weights for each size, i.e. having separate trainable
parameter buffers for each patch-size.

Untied, =init is the same as above, but initializing all patch
embedding weights to the same (PI-resized) values as a ref-
erence initialization. In this setting, the model is still com-
patible with standard ViT models at initialization time, how-

ever, the parameters can, and do, diverge during training,
resulting in a non-standard ViT architecture.

Normalize simply l2-normalizes the tokens computed by
the patch-embedding individually to unit-norm. This solves
any norm-related issues in a simple, parameter-free way, but
is incompatible with pre-trained standard ViT models.

Token-LN and Image-LN add a LayerNorm [2] right after
the patch-embedding and differ only in which axis they per-
form the normalization. Again, this solves the norm-related
issues, but does add learnable parameters and is incompati-
ble with pre-trained standard ViT models.

A comparison of all these variants is performed in the
label-supervised training setup on ImageNet-21k follow-
ing [51], but training for 90 epochs. The result, presented in
Figure 14, indicates that plain resizing and PI-resizing are
among the best solutions, but have the added benefit of re-
sulting in standard ViT models. Furthermore, not visible in
this figure, both Untied variants displayed slightly unstable
training curves in the first half of training, while all other
variants train smoothly.

A.2. PI-resize derivation

We can rewrite the objective function in Eq. (2) as fol-
lows:

Ex∼X
[
(〈x, ω〉 − 〈Bx, ω̂〉)2

]
=

Ex∼X
[
(xT (ω −BT ω̂))2

]
=

Ex∼X
[
((ω −BT ω̂)Tx)(xT (ω −BT ω̂))

]
=

(ω −BT ω̂)TEx∼X
[
xxT

]
(ω −BT ω̂) =

‖ω −BT ω̂‖2Σ,

(6)

where ‖v‖2Σ = vT Σv and Σ = Ex∼Xxx
T is the (uncen-

tered) covariance matrix of X . In case when X = N (0, I),
we recover the standard euclidean norm ‖ω −BT ω̂‖2.

Finally, we note that the pseudoinverse matrix recovers a
least squares solution to a linear system of equations:

(BT )+ω ∈ arg min
ω̂
‖ω −BT ω̂‖2. (7)

We can also derive an analytic solution for an arbi-
trary Σ = Ex∼Xxx

T . Note that ‖v‖2Σ = vT Σv =

(
√

Σv)T
√

Σv = ‖
√

Σv‖2. Then, we have

‖ω −BT ω̂‖2Σ = ‖
√

Σω −
√

ΣBT ω̂‖2. (8)

The optimal solution is then given by

(
√

ΣBT )+
√

Σω ∈ arg min
ω̂
‖ω −BT ω̂‖2. (9)

A.3. Visualization of some PI-resize matrices

We visualize an upscaling and a downscaling matrix for
both bilinear and PI-resize operations for a visual compari-
son in Figure 15.
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Figure 15. Visualization of resize matrices. Each row corre-
sponds to the weights that are used in the computation of one out-
put pixel. Off-diagonals correspond to pixels below/above the cur-
rent one. We can see that PI-resize does include negative weights,
has a larger receptive field, and uses overall larger weights than
bilinear resizing.

A.4. Visualization of patch-embedding weights

PCA of patch embeddings (see [16]) in Figs. 32 to 36.

B. The “underlying” parameter shapes
FlexiViT does introduce two new hyper-parameters

which were not present in the original ViT architecture:
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(b) Underlying patch-size shape
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Figure 16. Ablation of a few unimportant hyperparameters, since changing their value shows no noteworthy difference in the result. (a)
Sampling distribution of patch sizes. Uniform is preferable for its simplicity, but we use “Triangular” (more weight on mid-sized patches,
less weight on extremely large or small ones) sometimes for legacy reasons. (b) Varying the shape of the underlying patch embedding
parameter in the full FlexiViT training setup. (c) Varying the shape of the underlying position embeddings in a smaller supervised training
of a ViT-S/16 baseline following [4].

the size of the underlying patch-embedding weights and
position-embeddings (i.e. learned params, before resize).

However, both of these parameters have (maybe surpris-
ingly) little influence on the final performance of the model,
as long as they are in a “reasonable” range. We verified
these in two different settings.

For the patch-size parameter, since it is affected by the re-
size method used, we perform the ablation in the full Flexi-
ViT setup. Figure 16 (b) shows that there is no notable dif-
ference across all evaluation sizes, and hence we stick to the
(initially arbitrary) default of 32 across all experiments.

For the position embedding parameter, we ran an
early experiment with ViT-S/16 trained from scratch on
ImageNet-1k following [4]. Figure 16 (c) shows that in
general, even for plain ViT training, this approach could be
taken and training curves are mostly unaffected by in-graph
bilinear resizing of position embeddings.

C. Distribution of patch-size sampling
During roughly the first half of this project, we sam-

pled patch-size from a distribution which is not uniform,
but samples patch-sizes between 16 and 30 up to three times
more than patch-sizes outside this range. This “triangular”
distribution was based purely on gut-feeling, and once we
verified that it is no better than uniform sampling (the exper-
iment is shown in Figure 16 (a)), we decided to use a uni-
form distribution for simplicity. We further decided to avoid
the costly re-running of all experiments we did so far, and
thus some experiments in the main paper were done with
the “triangular” distribution. However, in all direct com-
parisons presented throughout the paper, the curves being
directly compared always were trained in the exact same
way.
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Figure 17. More transfer results. The legend is the same as in Figure 7. The main take-away is that the results are qualitatively the same
across a wide range of image classification tasks and it is safe to use a pre-trained FlexiViT model in lieu of a ViT model even when one
only uses it at a fixed patch size after transfer.

D. Detais on resource-efficient transfer
For finetuning FlexiViT models on the Imagenet-1k

dataset we generally follow the transfer learning setup
from [16]. We use SGD momentum optimizer, with the ini-
tial learning rate of 0.03 and cosine learning rate decay. We
also reduce the learning rate for the pretrained parameters
by a factor of 10. We optimize for 20000 steps with incep-
tion crop and flip left-right augmentation, using batch size
512 and input image size of 480× 480.

E. Using pre-trained FlexiViT models: more
details and results

In this section, we provide more details and full results
for the scenario described in Section 4: using pre-trained
FlexiViT models.

For more details on flexified training procedures dis-
cussed in Section 5, we redirect to Appendix M for flexi-
fied transfer learning, Appendix G for flexified contrastive
image-text learning (LiT and CLIP), and Appendix N for
flexified open-vocabulary detection (OWL-ViT), including
results on ELEVATER.

E.1. Using FlexiViT models for transfer

For transfer, we follow the simple BiT-HyperRule [27].
In short, we transfer for a relatively brief number of steps
(500 for flowers and pets, 2500 for food101 and sun, and
10 000 for CIFAR), using the SGD optimizer with a mo-
mentum of 0.9, no weight decay, no dropout, and no other
augmentations besides flips and random crops. We ini-
tialize the new classification layer to all-zeros and use a
short learning-rate warmup, both of these having as effect
to better preserve the pre-trained weights. The only setting
which differs from [27] is that we do sweep the learning-rate
across {0.03, 0.01, 0.003, 0.001} for each task individually.
We show results for all 6 datasets we used in Figure 17.

E.2. Using FlexiViT models
in LiT for image-text tasks

We use the same 4B image-text pairs dataset as in [67]
to train the LiT models, and use identical hyper parame-
ters as LiT models. The only difference is to use the Flexi-

ViT model here, instead of a standard ViT model. FlexiViT
models are transferred at a fixed sequence length, i.e. 302 or
162, with 240× 240 image resolution. We report zero-shot
classification results on ImageNet [47], zero-shot image-to-
text / text-to-image retrieval results on MS-COCO [11] and
Flickr30K [43], in Figure 18.

E.3. Using FlexiViT models
in OWL-ViT for zero-shot detection

To evaluate FlexiViT backbones for open-vocabulary de-
tection (Figure 7), we compare OWL-ViTs initialized with
either fixed or flexible LiT-B models. Specifically, the back-
bones start with either a fixed or flexibly pre-trained ViT
image model, which is then then frozen and LiT-tuned [67]
with a text model at a fixed patch size (the same as final
evaluation, i.e. 302 and 162 respectively). OWL-ViTs using
these backbones are then trained at a fixed patch size (302

or 162) at a resolution of 720× 720 on Objects365 [49] and
Visual Genome [30] as in the original paper [38]. We report
mean average precision (AP) on LVIS [20].

E.4. Using FlexiViT models
in UViM for panoptic segmentation

Apart from using FlexiViT model weights for the initial-
ization, we follow the setup of the original UViM setup [28]
as close as possible. In particular, we train the model on
the COCO panoptic dataset [11] and report the standard
PQ metric [26] on the official validation split. We train the
model for 200 epochs, using the custom adafactor optimizer
variant [66] with the base learning rate of 0.001. The learn-
ing rate for the pretrained part of the model is decreased by
a factor of 10. The input image size is 512 × 512. More
details on the training setting can be found in the UViM pa-
per [28] and official repository of the UViM model 5.

E.5. Using FlexiViT models
in Segmenter for semantic segmentation

We follow the experimental setup of Segmenter [52] for
end-to-end finetuning of Vision Transformer with linear de-
coder. For data augmentation during training, we apply ran-

5https://github.com/google-research/big_vision/
tree/main/big_vision/configs/proj/uvim
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Figure 18. Transfer of FlexiViT at a fixed patch size. The LiT-ViT baselines match LiT-FlexiViT on the sequence length it has been
trained for (162 or 302), but performance drops quickly when using a different inference sequence length. We observe that the LiT-FlexiViT
models work well across different inference sequence lengths, even though only a fixed sequence length is used during LiT transfer. This
effect is similar to that described in Section 4.2 and further explored in Figure 19.
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Figure 19. FlexiLiT. We observe consistent but marginal boost when flexifying the LiT training by randomizing patch size during LiT-
tuning. This again shows that the LiT-FlexiViT baseline performs strongly and it allows fast transfer: transferred cheaply using a large
patch size and served at smaller patch sizes for free.
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Figure 20. FlexiCLIP. We observe very similar conclusions as in FlexiViT, that the FlexiCLIP model works well across a large range
of evaluation patch sizes during inference. It is interesting that a single fixed sequence length text tower, is able to produce embeddings
aligning well with a FlexiViT image tower that allows multiple sequence lengths.

dom resizing of the image with a random ratio between 0.5
and 2.0, photometric augmentation and random horizontal
flipping. We randomly crop images to 480× 480 resolution
with padding, therefore preserving aspect ratio. We use the
480× 480 resolution for both Cityscapes and ADE20k. We
train for 127 epochs with minibatch size of 16 (resulting

in 160k iterations on ADE20k). We use the “poly” learn-
ing rate decay schedule and sweep the base learning rate in
{1e − 4, 3e − 4, 8e − 4} for all of our runs. Weight-decay
is kept fixed at 0.01. At evaluation time, we use the sliding-
window with a resolution 480×480 to handle varying image
sizes during inference. Table 3 row 6 in [52] reports 48.06
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Figure 21. A detailed look into the impact of the larger patch size
(size of the markers), schedule, and ramp periods on both compute
and accuracy. See Appendix H for details.

mIoU. Average of 6 runs in our codebase in the same setting
gives 47.6±0.4 mIoU. The results on ADE20k are provided
in Table 7.

F. Full numerical ImageNet-1k-only results

We provide full numerical results of the FlexiViTs
trained purely on ImageNet-1k and presented in Figure 2,
including on additional robustness and OOD test-sets in
Tabs. 1 to 4.

G. FlexiLiT and FlexiCLIP results

FlexiLiT follows exactly the same setup as described in
Section E.2, but randomizes patch sizes during LiT training.
We show more FlexiLiT results in Figure 19.

For FlexiCLIP, we simply replace the pre-trained and
frozen backbone in FlexiLiT with a random initialized and
unfrozen backbone, which corresponds to the uu setting
in [67] and is equivalent to CLIP [44]. Figure 20 shows
the same conclusions in this setting. It is reassuring that
the patch size randomization does not hinder learning both
image and text representations from scratch simultaneously.

H. Accelerate pre-training

As discussed in Section 5.4, one can use FlexiViT’s
method of varying the patch size and resizing the embed-
ding weights to pretrain ViTs faster. To do that, we specify a
curriculum: a sequence (pk)Kk=1 of probability distributions
over the patch sizes along with a mapping c : N → [K]
that identifies which distribution pk to use at training step
t. In this section, we use the sequence of patch sizes:
(48, 40, 30, 24, 16) to demonstrate the potential savings in
compute.

0% 50% 75% 85% 100%
Training Time

p1

p2
0% 40% 100%

Figure 22. This figure illustrates how the distribution of patch sizes
changes when accelerating pretraining (see Section 5.4) and Ap-
pendix H. Here, the first 75% of training steps use the larger patch
size p1 while the remaining 25% are used for the desired/target
patch size. The ramp period in this figure is 40%.

We set 16 × 16 to be the desired/target patch size dur-
ing evaluation. Hence, we compare a curriculum-based ap-
proach of pretraining ViTs (denoted FasterViT) with the
standard ViT/B/16 architecture in which the patch size is
fixed to 16×16 throughout training. Except for the variable
patch sizes and the embedding layers, both architecture are
otherwise identical.

We use a simple curriculum in this evaluation. Specif-
ically, we have one large patch size (e.g. 48 × 48), which
we denote by p0 and the desired patch size 16 × 16, which
we denote by p1. We initially use the larger patch size be-
fore swtiching to the smaller patch size using FlexiViT’s
PI-resize. We experiment with three different schedules:
(50%, 75%, 90%), where schedule = 75% means that 75%
of the training time uses the larger patch size alone. Instead
of switching immediately between patch sizes, we also in-
clude an optional ramp period as illustrated in Figure 22. A
ramp period of, say, 40% means that 40% of the time allo-
cated to the smaller patch size is used to transition gradually
between the two distributions. We experiment with three
ramp periods: (0%, 50%, 100%). We run each experiment
independently and plot the resulting compute and accuracy
in Figure 12(x). As shown in the figure, FasterViT achieves
the same level of accuracy as standard ViTs but with less
compute, although the improvement in not quite significant.

In Figure 21, we provide a detailed view into the im-
pact of the three hyperparameters: patch size, schedule,
and ramp period. Not surprisingly, increasing the fraction
of time allocated to the larger patch size (e.g. by setting
schedule = 90%), improves compute at the expense of ac-
curacy.

I. Further analysis of cosine similarities be-
tween token representations across scales

In Section 6, we measure cosine similarity between the
representation of a seed token at one scale and representa-
tions of other tokens at other scales, demonstrating that the
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Figure 23. Supplemental analysis of similarities of token rep-
resentations across scales. Each row shows the cosine similarity
between a seed token at the center of the feature map at one scale
and tokens at different scales, for a single block. In the top group
of plots, the seeds are taken from FlexiViT-B/48; in the middle,
from FlexiViT-B/16; and at the bottom, from FlexiViT-B/8.

most similar tokens at other scales are those that represent
the same spatial location. in Figure 23, we provide addi-
tional results for seed tokens at other grid sizes and from
additional blocks. Results are consistent with those in the
main text.

J. Ensembling FlexiViT predictions across
scales

We ensemble FlexiViT models by averaging models’
logits.6 When ensembling all models, we attain 51.7% pre-
cision@1 on our ImageNet-21K validation set, which is
slightly worse than the accuracy achieved at the largest grid
size/smallest patch size (52.0%).

We further explore ensembles of pairs of models in Fig-
ure 25. Agreement between models evaluated at large patch
sizes is relatively low, with models evaluated at the largest
two patch sizes (/48 and /40) agreeing on only 67.4% of
examples (Figure 25 middle). Nonetheless, ensembling
these models provides no accuracy improvement over sim-
ply using FlexiViT-B/40; both strategies achieve 45.8%
ImageNet-21K precision@1 (Figure 25 left).

When comparing the computational cost of ensembles
of FlexiViT predictions across scales to applying Flexi-
ViT at a single scale, a single scale is nearly always bet-
ter (Figure 25 right). The only configuration where the ac-
curacy of a two-scale ensemble exceeds the accuracy of a
single scale with the same computational footprint is the

6We have also explored ensembling based on averaging output proba-
bilities. We find that results are nearly identical, but on average slightly
worse.
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Figure 24. Shape and texture bias of FlexiViT. Lines reflect val-
ues for FlexiViT evaluated at different scales; stars reflect values
for baseline ViT models trained at a single scale. Shape and tex-
ture accuracy are the top-1 accuracy of the model’s prediction with
respect to the shape and texture labels. Shape bias is the percent-
age of images that a classifier classifies by shape, provided that it
correctly classifies them by either shape or texture.
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Figure 25. Ensemble accuracy and agreement of FlexiViT-B evaluated at pairs of scales. Left: Accuracy of ensembles between scales.
Middle: Agreement of the top-1 predicted classes across scales. Right: Accuracy of single-scale configurations and two-scale ensembles
versus computational cost. Although agreement is relatively low at small patch sizes, there is little benefit to ensembling.

ensemble of FlexiViT-B/10 and /12, which together have
a similar computational cost to FlexiViT-B/8 (/10 + /12:
186.8 GFLOPs; /8: 184.5 GFLOPs). The ensemble attains
marginally higher accuracy (52.1% vs. 52.0%), but this im-
provement is unlikely to be statistically significant nor prac-
tically meaningful.

K. Shape and texture bias of FlexiViT
When confronted with images with conflicting shape and

texture, ImageNet-trained models tend to produce labels
that match their textures, whereas humans instead tend to
assign labels that match their shapes [18]. We evaluated
FlexiViT using the same dataset as [18], which was gen-
erated using the style transfer. In the dataset constructed
by [18], images have both shape and texture labels. We
define the shape accuracy as the percentage of images for
which the top-1 prediction matches the shape label, and
texture accuracy as the percentage of images for which the
top-1 prediction matches the texture label. As in [18], we
define shape bias by taking the ratio of the number of im-
ages classified according to their shape label to the number
of images classified correctly according to either the shape
or texture label and converting this ratio to a percentage.
In other words, shape bias the ratio of shape accuracy to
the sum of shape and texture accuracy ×100%. To evalu-
ate ImageNet-21K models on the dataset of [18], we use the
mapping from WordNet IDs to the dataset classes provided
by [18]. We take the top-1 class among the ImageNet-21K
classes for which a mapping exists.

In Figure 24, we show that larger patch sizes lead to
greater shape bias compared to smaller patch sizes. How-
ever, larger patch sizes have greater shape bias primarily
because their texture accuracy is lower, rather than be-
cause their shape accuracy is higher. The shape biases of
FlexiViT-B/16 and FlexiViT-B/30 are similar to the shape
biases of ViT-B/16 and ViT-B/30 models trained at a single
scale (stars).

L. Attention relevances
We provide the attention relevance maps [9] for the same

image as shown in Figure 13 in the main paper, but for all
three classes present in the image, in Figure 27.

We further provide the attention relevance maps for a
random selection of 10 royalty-free images obtained from
unsplash.com for the class that was predicted by all
models in Figure 31 at the end of the Appendix.

M. Flexifying transfer-learning
When flexifying transfer-learning, we run the exact same

setup as when transferring pre-trained FlexiViT models, de-
scribed in Section E.1, except that we now randomize the
patch size during transfer too.

This minor change shows good synergy when combined
with using a pre-trained FlexiViT model (green bars), and
even enables flexifying plain ViT models during transfer to
some degree (orange and olive bars).

N. Flexifying open-vocabulary detection
(OWL-ViT)

For flexifying OWL-ViT (Section 5.3), we use LiT-uu
backbones [67], i.e. CLIP-style models in which the image
and text encoders are contrastively pre-trained together (as
in the OWL-ViT paper [38]). We flexify detection training
as described in Algorithm 1 and use resolution 720 × 720.
For flexible detection training, we use patch sizes from 482

to 122, i.e. omitting 102 and 82, which would use excessive
memory at the higher resolution. Other training settings are
as in the OWL-ViT paper [38]. We find that flexifying both
the image-text pre-training and the detection training (Fig-
ure 11, pale green line) works slightly better than flexifying
just the detection training.

For evaluating on the ELEVATER [34] set of datasets,
we use the model for which both image-text pre-training
and detection training were flexified (Figure 30).
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Figure 26. More transfer results. The legend is the same as in Figure 9. The main take-away is that the results are qualitatively the same
across a wide range of image classification tasks.
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Figure 27. Attention relevance maps of same example as in Fig-
ure 13, with respect to three different objects present in the image
(“caffe au lait”, “knife” and “fork”).

O. Details on flexible depth, stride alternatives

Common setup The setup largely follows that introduced
in Section 3.5: distilling the ViT-B/8 model from [51] while
simultaneously using it for initialization of the student. Dis-
tillation is performed on ImageNet-21k, the labels are ig-
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Figure 28. Fig 2 using GFLOPs.

nored and the KL-divergence between student and teacher
is the only loss, following [5]. Training is performed for 90
epochs with uniform sampling of patch sizes.

Flexible stride We train a FlexiViT model variant, where
we flexibly change window stride when extracting image
patches, but keep the patch size fixed at 32 × 32. In order
to perfectly match default grid sizes, and perfectly cover
the whole image and avoid padding, we perform minimally
required image resize. For example, to get grid size 8 × 8
we resize the image to size 242×242 (from 240×240) and
apply stride 30, or to get grid size 24 × 24 we resize the
image to size 239× 239 and apply stride 9.

Flexible depth For every batch, we sample a depth d uni-
formly from {3, 5, 9, 12} and perform a forward pass up to
layer d. We then apply the classification head, which is
shared across all depths, to the class token of layer d and
compute the loss. We also explored sampling a depth per-
example, but this led to unstable training except when sam-
pling d from all layers {3, 4, . . . , 12}. Finally, we also tried
using a head per depth as well as a class token per depth,
which did not lead to any significant improvement.

P. Figure 2 with GFLOPs
Following the Efficiency Misnomer [15], we also pro-

vide a copy of Figure 2 using GFLOPs as the x-axis instead
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Figure 29. Patch-size extrapolation. We evaluate the model
trained on the green patch-sizes at patch-sizes outside the range
that was seen during training, and plot these in pink. The per-
formance slowly deteriorating means that the model is not able
to extrapolate beyond patchsizes or sequence lengths seen during
training.

of inference time as Figure 28. This confirms that FLOPs
do not always directly translate to wall-clock time in all sit-
uations.

Q. Extrapolating patch-size
We take the model from the main paper’s Section 3.3

and run inference at even smaller patchsizes, see Figure 29.
We observe that performance slowly starts to deteriorate.
This means that the model does not learn to generalize to
patch-sizes or sequence lengths beyond those seen during
the training. Note that we do not claim extrapolation capa-
bilities, but rather that training many patchsizes into a single
model works without loss of quality.

R. Full tabular results
We provide Tabs. 1 to 13 which contain the numerical

results from all plots from the main paper.

S. Configuration file for Fig 2
Algorithm S shows the big vision7 config for train-

ing the FlexiViT models from Figure 2.

7https://github.com/google-research/big_vision
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Figure 30. Inference-time tuning of patch size can improve performance. A single OWL-FlexiViT-B model is evaluated at two different
patch sizes (302 and 162) on the 35 different detection tasks of the ELEVATER benchmark. [34]. Tasks are are ordered by the performance
difference between patch size 302 and 162 on the validation set; the y-axis shows performance on the test set. The optimal patch size
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Figure 31. Attention relevance (as in [9]) can significantly change at different patch sizes for both ViT and FlexiViT.



Figure 32. First 80 PCA components of the raw underlying 32x32
patch embedding weights of FlexiViT.

Figure 33. First 80 PCA com-
ponents of the patch embedding
weights from Figure 32 bilin-
early resized to 8x8.

Figure 34. First 80 PCA com-
ponents of the patch embed-
ding weights from Figure 32 PI-
resized to 8x8.

Figure 35. First 80 PCA components of the patch embedding
weights from Figure 32 bilinearly resized to 48x48.

Figure 36. First 80 PCA components of the patch embedding
weights from Figure 32 PI-resized to 48x48.



1 def get_config(arg=None):
2 """Config for training FlexiViT on ImageNet1k.

"""
3 c = bvcc.parse_arg(arg, variant='B')
4 c.total_epochs = 90
5 c.num_classes = 1000
6 c.loss = 'softmax_xent'
7

8 c.input = {}
9 c.input.data = dict(

10 name='imagenet2012',
11 split='train[:99%]',
12 )
13 c.input.batch_size = 1024
14 c.input.shuffle_buffer_size = 250_000
15

16 c.log_training_steps = 50
17 c.ckpt_steps = 1000
18

19 # Model section
20 c.student_name = 'proj.flexi.vit'
21 c.student_init = f'deit_3_{c.variant}_384_1k'
22 c.student = dict(variant=c.variant,
23 pool_type='tok',
24 patch_size=(16, 16))
25

26 c.teachers = ['prof']
27 c.prof_name = 'vit'
28 c.prof_init = f'deit_3_{c.variant}_384_1k'
29 c.prof = dict(variant=c.variant,
30 pool_type='tok',
31 patch_size=(16, 16))
32

33 pp_label = (
34 '|onehot(1000, key="{lbl}", key_result="

labels")'
35 '|keep("image", "prof", "labels")')
36 c.input.pp = (
37 'decode|inception_crop|flip_lr'
38 '|copy("image", "prof")'
39 '|resize(240)'
40 '|vgg_value_range'
41 '|resize(384, key="prof")'
42 '|vgg_value_range(key="prof")'
43 + pp_label.format(lbl='label'))
44 pp_eval_both = (
45 'decode|copy("image", "prof")|'
46 f'|resize({240//7*8})'
47 '|central_crop(240)'
48 '|vgg_value_range'
49 f'|resize({384//7*8}, key="prof")'
50 '|central_crop(384, key="prof")'
51 '|vgg_value_range(key="prof")|')
52 pp_eval_student = (
53 'decode'
54 f'|resize({240//7*8})|central_crop({240})'
55 '|value_range(-1, 1)')
56 pp_eval_prof = (
57 'decode'
58 f'|resize({384//7*8})|central_crop(384)'
59 '|vgg_value_range(outkey="prof")')
60

61 # Distillation settings
62 c.mixup = dict(p=1.0, n=2)
63 c.distance = 'kl'
64 c.distance_kw = dict(t=1.0)
65

66 # Optimizer section
67 c.grad_clip_norm = 1.0
68 c.optax_name = 'scale_by_adam'
69 c.optax = dict(mu_dtype='bfloat16')
70

71 c.lr = 1e-4
72 c.wd = 1e-5
73 c.schedule = dict(
74 warmup_steps=5000,
75 decay_type='cosine')
76

77 # Define the flexible model params:
78 c.flexi = dict()
79 c.flexi.seqhw = dict(
80 # The settings to sample from.
81 # Corresponding patch-sizes at 240px:
82 # 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
83 v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
84 # The probs/weights of them (uniform):
85 p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
86 )
87

88 ####
89 # All the rest is just evaluations.
90 minitrain = 'train[:2%]'
91 minival = 'train[99%:]'
92

93 def get_eval(s, split, dataset='imagenet2012'):
94 return dict(
95 type='classification',
96 pred=f'student_seqhw={s}',
97 data=dict(name=dataset, split=split),
98 pp_fn=(pp_eval_student +
99 pp_label.format(lbl='label')),

100 loss_name='sigmoid_xent',
101 log_percent=0.05,
102 cache_final=False,
103 )
104

105 c.evals = {}
106 for s in c.flexi.seqhw.v:
107 c.evals[f'student_minitrain_{s:02d}'] = \
108 get_eval(s, minitrain)
109 c.evals[f'student_minival_{s:02d}'] = \
110 get_eval(s, minival)
111 c.evals[f'student_val_{s:02d}'] = \
112 get_eval(s, 'validation')
113 c.evals[f'student_v2_{s:02d}'] = \
114 get_eval(s, 'test', 'imagenet_v2')
115 c.evals[f'student_a_{s:02d}'] = \
116 get_eval(s, 'test', 'imagenet_a')
117 c.evals[f'student_r_{s:02d}'] = \
118 get_eval(s, 'test', 'imagenet_r')
119 c.evals[f'student_real_{s:02d}'] = \
120 get_eval(s, 'validation',
121 'imagenet2012_real')
122 c.evals[f'student_real_{s:02d}'].pp_fn = (
123 pp_eval_student +
124 pp_label.format(lbl='real_label'))
125

126 # A bunch more evals here ...
127

128 return c



Table 1. Scores for 1200ep ImageNet-1k-only runs from Figure 2.

Model Eps PS Val ReaL v2 -A -R

FlexiViT-S 1200 48² 69.6 76.1 55.5 3.3 24.1
FlexiViT-S 1200 40² 73.7 80.2 60.3 4.7 26.4
FlexiViT-S 1200 30² 78.1 84.3 65.1 7.4 29.2
FlexiViT-S 1200 24² 80.5 86.3 68.4 9.4 30.5
FlexiViT-S 1200 20² 81.6 87.2 70.3 12.2 31.8
FlexiViT-S 1200 16² 82.5 87.9 71.7 15.0 31.4
FlexiViT-S 1200 15² 82.7 88.1 71.8 15.7 32.9
FlexiViT-S 1200 12² 83.2 88.4 72.7 17.8 32.9
FlexiViT-S 1200 10² 83.2 88.4 72.9 19.4 33.0
FlexiViT-S 1200 8² 83.3 88.5 72.9 19.3 32.6

FlexiViT-B 1200 48² 75.0 80.5 61.1 5.7 28.1
FlexiViT-B 1200 40² 78.0 83.3 64.7 7.5 30.0
FlexiViT-B 1200 30² 81.6 86.5 69.7 11.4 33.0
FlexiViT-B 1200 24² 83.2 87.7 71.7 15.5 34.5
FlexiViT-B 1200 20² 84.0 88.4 73.0 18.4 35.6
FlexiViT-B 1200 16² 84.7 88.8 74.0 21.7 35.8
FlexiViT-B 1200 15² 84.7 88.8 74.3 22.7 36.7
FlexiViT-B 1200 12² 84.9 89.1 74.8 25.3 37.1
FlexiViT-B 1200 10² 85.2 89.2 75.0 26.7 37.2
FlexiViT-B 1200 8² 85.1 89.2 74.9 27.1 37.2

FlexiViT-L 1200 48² 77.8 83.3 63.9 7.1 30.0
FlexiViT-L 1200 40² 80.4 85.6 67.2 9.9 32.7
FlexiViT-L 1200 30² 83.2 87.9 70.8 14.8 35.9
FlexiViT-L 1200 24² 84.5 88.8 73.6 19.9 38.1
FlexiViT-L 1200 20² 85.1 89.4 74.9 23.5 39.4
FlexiViT-L 1200 16² 85.7 89.7 76.0 28.6 39.6
FlexiViT-L 1200 15² 85.8 89.9 76.0 29.1 40.6
FlexiViT-L 1200 12² 86.0 90.0 76.5 32.0 40.8
FlexiViT-L 1200 10² 86.0 90.0 76.8 33.6 40.9
FlexiViT-L 1200 8² 86.1 90.0 76.7 34.1 41.2

Table 2. Scores for 600ep ImageNet-1k-only runs from Figure 2.

Model Eps PS Val ReaL v2 -A -R

FlexiViT-S 600 48² 68.6 75.1 54.2 3.2 23.9
FlexiViT-S 600 40² 72.7 79.4 59.3 4.4 26.3
FlexiViT-S 600 30² 77.6 83.8 64.6 6.9 29.0
FlexiViT-S 600 24² 80.2 86.0 67.8 9.2 30.4
FlexiViT-S 600 20² 81.4 87.0 69.9 11.5 31.5
FlexiViT-S 600 16² 82.3 87.7 71.2 14.2 31.2
FlexiViT-S 600 15² 82.5 87.9 71.5 15.1 32.7
FlexiViT-S 600 12² 83.1 88.3 72.5 17.5 32.7
FlexiViT-S 600 10² 83.3 88.5 72.7 19.5 32.7
FlexiViT-S 600 8² 83.3 88.5 72.8 19.4 32.4

FlexiViT-B 600 48² 74.1 80.0 60.2 5.3 27.7
FlexiViT-B 600 40² 77.5 83.0 64.4 7.5 30.0
FlexiViT-B 600 30² 81.1 86.1 68.9 11.2 32.7
FlexiViT-B 600 24² 82.9 87.5 71.6 15.0 34.2
FlexiViT-B 600 20² 83.9 88.2 72.6 17.5 35.4
FlexiViT-B 600 16² 84.6 88.7 73.9 22.1 35.7
FlexiViT-B 600 15² 84.7 88.8 73.9 22.6 36.6
FlexiViT-B 600 12² 84.9 89.0 74.7 25.4 36.9
FlexiViT-B 600 10² 85.1 89.2 74.8 26.9 37.2
FlexiViT-B 600 8² 85.0 89.2 74.8 27.0 36.9

FlexiViT-L 600 48² 77.1 82.6 62.7 7.2 30.1
FlexiViT-L 600 40² 80.1 85.2 66.6 9.4 32.6
FlexiViT-L 600 30² 83.0 87.7 71.0 14.6 36.0
FlexiViT-L 600 24² 84.4 88.8 73.4 19.3 38.1
FlexiViT-L 600 20² 85.1 89.4 74.7 22.5 39.3
FlexiViT-L 600 16² 85.6 89.7 76.0 27.7 39.7
FlexiViT-L 600 15² 85.7 89.8 75.9 28.3 40.8
FlexiViT-L 600 12² 85.9 89.9 76.4 31.0 41.0
FlexiViT-L 600 10² 86.1 90.0 76.6 32.8 41.1
FlexiViT-L 600 8² 86.1 90.0 76.6 33.2 41.3



Table 3. Scores for 300ep ImageNet-1k-only runs from Figure 2.

Model Eps PS Val ReaL v2 -A -R

FlexiViT-S 300 48² 67.4 74.0 53.2 2.8 23.5
FlexiViT-S 300 40² 71.9 78.6 58.2 3.9 26.0
FlexiViT-S 300 30² 77.2 83.5 64.2 6.5 29.0
FlexiViT-S 300 24² 79.7 85.6 67.6 8.8 30.2
FlexiViT-S 300 20² 81.1 86.7 69.6 11.1 31.4
FlexiViT-S 300 16² 82.1 87.6 71.1 13.9 31.1
FlexiViT-S 300 15² 82.4 87.9 71.3 14.9 32.7
FlexiViT-S 300 12² 83.0 88.2 72.3 17.6 32.5
FlexiViT-S 300 10² 83.2 88.3 72.9 19.3 32.4
FlexiViT-S 300 8² 83.2 88.3 73.0 19.4 32.2

FlexiViT-B 300 48² 73.4 79.3 59.7 4.9 27.4
FlexiViT-B 300 40² 77.0 82.6 63.7 7.0 29.6
FlexiViT-B 300 30² 80.6 85.8 68.4 10.4 32.7
FlexiViT-B 300 24² 82.6 87.3 71.2 14.6 34.1
FlexiViT-B 300 20² 83.6 88.1 72.5 17.3 35.1
FlexiViT-B 300 16² 84.5 88.6 73.8 21.8 35.4
FlexiViT-B 300 15² 84.6 88.7 73.9 22.5 36.5
FlexiViT-B 300 12² 84.9 89.0 74.6 25.5 36.9
FlexiViT-B 300 10² 85.0 89.1 74.8 27.3 37.0
FlexiViT-B 300 8² 85.1 89.1 75.0 27.1 36.9

FlexiViT-L 300 48² 76.3 81.8 62.4 6.5 30.2
FlexiViT-L 300 40² 79.5 84.7 66.4 9.0 32.6
FlexiViT-L 300 30² 82.4 87.3 70.5 13.7 35.9
FlexiViT-L 300 24² 84.0 88.5 72.8 18.0 37.7
FlexiViT-L 300 20² 84.8 89.1 74.3 21.7 39.2
FlexiViT-L 300 16² 85.4 89.6 75.7 26.7 39.4
FlexiViT-L 300 15² 85.5 89.7 75.8 28.1 40.6
FlexiViT-L 300 12² 85.8 89.9 76.4 30.9 40.8
FlexiViT-L 300 10² 85.9 89.9 76.8 32.7 41.0
FlexiViT-L 300 8² 85.9 90.0 76.7 33.4 41.2

Table 4. Scores for 90ep ImageNet-1k-only runs from Figure 2.

Model Eps PS Val ReaL v2 -A -R

FlexiViT-S 90 48² 65.9 72.5 51.9 2.9 23.2
FlexiViT-S 90 40² 70.6 77.3 56.9 3.5 26.0
FlexiViT-S 90 30² 76.4 82.9 62.9 5.9 29.3
FlexiViT-S 90 24² 79.2 85.3 66.8 7.8 30.6
FlexiViT-S 90 20² 80.7 86.5 69.0 10.6 31.5
FlexiViT-S 90 16² 82.0 87.5 70.9 13.9 31.7
FlexiViT-S 90 15² 82.2 87.7 71.1 14.4 32.7
FlexiViT-S 90 12² 82.8 88.1 72.0 17.3 32.5
FlexiViT-S 90 10² 83.0 88.2 72.7 19.0 32.4
FlexiViT-S 90 8² 83.0 88.3 72.7 19.4 32.2

FlexiViT-B 90 48² 71.9 77.8 58.0 4.6 26.9
FlexiViT-B 90 40² 75.9 81.6 62.2 6.1 29.3
FlexiViT-B 90 30² 80.2 85.3 67.3 9.5 32.3
FlexiViT-B 90 24² 82.2 87.0 70.2 13.1 34.1
FlexiViT-B 90 20² 83.3 87.8 71.9 16.5 35.1
FlexiViT-B 90 16² 84.1 88.4 73.2 21.3 35.2
FlexiViT-B 90 15² 84.3 88.5 73.9 21.8 36.4
FlexiViT-B 90 12² 84.8 88.8 74.4 25.2 36.8
FlexiViT-B 90 10² 85.0 89.0 74.5 27.3 36.9
FlexiViT-B 90 8² 84.9 89.0 74.7 27.7 36.6

FlexiViT-L 90 48² 74.3 80.0 60.2 5.6 29.4
FlexiViT-L 90 40² 77.7 83.2 64.5 7.7 32.2
FlexiViT-L 90 30² 81.7 86.7 69.4 12.1 35.3
FlexiViT-L 90 24² 83.4 88.0 72.4 17.1 37.3
FlexiViT-L 90 20² 84.4 88.8 73.9 20.9 38.9
FlexiViT-L 90 16² 85.1 89.3 75.4 26.5 39.4
FlexiViT-L 90 15² 85.3 89.5 75.6 27.2 40.3
FlexiViT-L 90 12² 85.6 89.7 76.3 31.2 40.5
FlexiViT-L 90 10² 85.7 89.8 76.7 33.1 40.7
FlexiViT-L 90 8² 85.8 89.9 76.6 33.7 40.6



Table 5. Numerical data for Figure 3.

Model /48 /40 /30 /24 /20 /16 /15 /12 /10 /8

Flexi 39.5 43.2 46.6 48.4 49.0 49.7 49.8 50.2 50.3 50.2
B/16 0.0 0.1 2.4 21.6 41.7 50.5 50.4 47.9 43.3 30.5
B/30 14.0 30.2 47.1 45.9 42.5 35.9 33.3 21.0 11.9 2.9

Table 6. Numerical data for Figure 5.

/5 /6 /8 /10 /12 /15 /16 /20 /24 /30

Top-1 accuracy

T-
in

it 90 40.8 43.8 47.9 49.4 50.5 51.3 51.4 51.9 51.9 52.0
300 43.1 45.9 48.7 50.3 51.1 51.6 51.6 51.9 52.0 52.0
1000 44.1 46.6 49.2 50.6 51.2 51.9 51.8 52.1 52.3 52.2

R-init 41.5 44.2 47.0 48.5 48.9 49.6 49.8 50.0 50.1 50.0
None 40.6 43.4 46.6 48.1 48.9 49.7 49.7 50.0 50.2 50.1
Teacher 52.2

Top-1 agreement

T-
in

it 90 56.0 61.9 69.5 74.7 78.1 81.1 81.8 83.8 84.5 84.4
300 59.6 65.7 73.0 77.3 80.1 82.8 82.9 84.2 84.5 84.5
1000 62.0 67.5 74.4 78.6 81.3 83.4 83.7 84.6 85.2 85.0

R-init 56.4 60.7 66.2 69.0 70.7 72.1 72.4 72.8 73.1 73.1

CKA similarity

T-
in

it 90 .65 .69 .76 .80 .84 .86 .87 .88 .89 .89
300 .68 .72 .78 .82 .85 .86 .87 .87 .88 .87
1000 .68 .72 .78 .81 .83 .85 .85 .86 .86 .86

R-init .41 .43 .45 .47 .48 .49 .50 .50 .50 .50

Table 7. Numerical data for Figure 7.

Method /30→ /30 F→ /30 /16→ /16 F→ /16

Clf SUN397 79.1 79.7 82.3 82.5
Clf Food101 90.4 90.8 93.7 94.1
Clf Pets 93.6 93.6 94.9 94.9
Clf Flowers102 99.4 99.4 99.6 99.6
Clf CIFAR-10 98.8 99.0 99.1 99.1
Clf CIFAR-100 92.3 91.9 93.2 93.3
UViM coco PQ 24.8 24.1 30.5 34.3
OWL-ViT lvis AP 18.8 18.4 22.7 23.4
LiT i2t coco 42.2 41.6 44.4 45.8
Seg (lin) City mIoU 61.0 61.1 69.3 70.0
Seg (lin) ADE mIoU 43.1 43.5 46.1 47.5
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Table 8. Numerical data for Figure 8.

/40 /30 /24 /20 /15 /12 /10 /8

ViT-B/30 transferred at /30
78.3 82.4 83.0 82.7 80.4 75.1 66.7 58.6

FlexiViT-B transferred at /30
78.0 81.8 83.4 84.3 85.0 85.2 85.3 84.9

FlexiViT-B transferred at /16
77.0 81.2 83.2 84.5 85.5 85.9 86.0 85.7

FlexiViT-B transferred at /8
76.2 80.6 82.8 84.1 85.3 85.8 86.1 86.4

Table 9. Numerical data for Figure 9.

Model Transfer SUN Food Pet Flow C10 C100

Evaluated at /30

ViT-B/30 /30 79.7 90.8 93.6 99.4 99.0 91.9
ViT-B/30 Flexi 79.3 90.8 93.3 99.4 99.0 91.9
ViT-B/16 Flexi 77.7 89.0 92.3 99.2 98.8 91.8
FlexiViT-B Flexi 79.3 90.3 93.9 99.4 98.9 92.3

Evaluated at /16

ViT-B/16 /16 82.3 93.7 94.9 99.6 99.1 93.2
ViT-B/30 Flexi 81.6 93.0 93.8 99.5 98.7 91.3
ViT-B/16 Flexi 82.1 93.6 94.9 99.5 99.1 92.8
FlexiViT-B Flexi 82.8 93.8 94.8 99.6 99.1 93.0

Evaluated at /8

ViT-B/30 Flexi 80.9 92.7 92.2 98.8 97.8 89.0
ViT-B/16 Flexi 82.4 94.0 95.0 99.6 98.7 91.6
FlexiViT-B Flexi 83.2 94.7 94.9 99.6 98.9 92.8

Table 10. Numerical data for Figure 10.

Base LiT /48 /30 /24 /16 /12 /10 /8

ViT-B/30 /30 46.7 65.2 65.2 64.5 30.9 10.3 3.2
ViT-B/16 /16 3.2 42.7 60.2 71.9 61.6 45.7 57.8
FlexiViT-B /30 49.0 59.8 67.0 72.5 72.6 74.7 74.1
FlexiViT-B /16 48.2 62.6 66.6 73.3 73.1 74.5 75.0
FlexiViT-B Flexi 51.0 62.5 69.2 73.4 74.5 75.5 75.1

Table 11. Numerical data for Figure 11.

Base OWL /48 /40 /30 /24 /20 /16 /12

LiT-B/30 /30 6.2 10.8 20.6 15.6 7.8 1.7 0.3
LiT-B/30 /16 0.1 0.5 4.1 9.5 16.7 26.8 15.0
LiT-B/30 Flexi 15.7 17.8 21.2 23.0 24.2 25.6 26.0
FlexiLiT-B Flexi 16.0 18.5 21.5 23.5 24.9 26.7 27.1



Table 12. Numerical data for Figure 4.

Resize /2 /4 /6 /8 /10 /12 /14 /16 /18 /20 /22 /24 /26 /28 /30 /32

PI 10.3 44.5 48.9 52.4 52.4 52.4 52.4 52.3 52.3 52.4 52.3 52.4 52.3 52.3 52.4 52.4
Area 24.5 42.6 46.1 52.4 47.7 48.3 48.6 48.1 48.7 48.4 48.5 48.7 48.5 48.5 48.6 48.4
Norm 10.8 40.7 46.4 52.4 45.6 44.1 42.0 39.4 37.1 33.4 29.8 26.1 22.0 18.1 14.8 11.9
Vanilla 25.5 41.6 45.6 52.4 42.5 37.2 25.5 12.8 5.4 1.9 0.6 0.2 0.1 0.0 0.0 0.0

Table 13. Numerical data for Figure ??.

Setting Params GFLOPs Speed Prec

Patch FlexiViT-B

Eval at patch /30 87.5M 15.7 2745 47.9
Eval at patch /24 87.5M 20.6 2022 49.4
Eval at patch /20 87.5M 27.7 1135 50.5
Eval at patch /16 87.5M 41.9 806 51.3
Eval at patch /15 87.5M 47.6 595 51.4
Eval at patch /12 87.5M 75.3 362 51.9
Eval at patch /10 87.5M 111.5 246 51.9
Eval at patch /8 87.5M 184.5 128 52.0

Stride FlexiViT-B/32

Eval at stride 30 87.8M 11.7 2317 47.5
Eval at stride 23 87.8M 18.2 1768 49.3
Eval at stride 19 87.8M 26.3 1041 50.3
Eval at stride 15 87.8M 41.7 750 51.0
Eval at stride 14 87.8M 47.6 563 51.2
Eval at stride 11 87.8M 76.4 347 51.5
Eval at stride 9 87.8M 113.7 235 51.6
Eval at stride 7 87.8M 188.4 124 51.7

Depth FlexiViT-B/8

Eval at depth 3 22.1M 46.3 403 35.2
Eval at depth 6 43.4M 92.2 216 44.8
Eval at depth 9 64.6M 138.2 147 48.7
Eval at depth 12 85.9M 184.2 112 51.0
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