Person Image Synthesis via Denoising Diffusion Model
(Supplementary Material)

Ankan Kumar Bhunia1 Salman Khan1,2 Hisham Cholakkal1 Rao Muhammad Anwer1,4
Jorma Laaksonen4 Mubarak Shah5 Fahad Shabbaz Khan1,3
1Mohamed bin Zayed University of AI, UAE 2Australian National University, Australia
3Linköping University, Sweden 4Aalto University, Finland 5University of Central Florida, USA

In this supplementary material, we present additional qualitative results of our proposed PIDM.

1. Additional Qualitative Results

In Fig. 5-7, we present a comprehensive visual comparison of our method with other state-of-the-art frameworks on DeepFashion dataset. We compare our method with ADGAN \cite{1}, PISE \cite{5}, GFLA \cite{4}, DPTN \cite{6}, CASD \cite{7} and NTED \cite{2}. In comparison to the existing methods, our proposed PIDM accurately retains the appearance of the source while also producing images that are more natural and sharper. Moreover, even if the target pose is complex, our method can still generate it precisely.

Fig. 1 shows qualitative results of synthesizing person images at arbitrary poses using our proposed PIDM. For each source image, we generate 8 samples of the same person in various poses. Our proposed PIDM accurately retains the appearance of the source while also generating consis-
Figure 2. We visualize the gradual transfer of appearance at selected timesteps from $t = T$ to $t = 1$.

Figure 3. Qualitative analysis of multiscale fusion with texture diffusion blocks. The introduction of multiscale fusion significantly enhances the effectiveness of appearance transfer.

Fig. 3 shows that multiscale fusion aids in generating photo-realistic images, in which the output image style tightly aligns with the source image appearance. Fig. 2 illustrates a visualization of the gradual transfer of appearance at different timesteps. In particular, we visualize the prediction of x_0 at selected timesteps from $t = T$ to $t = 1$. The visualization demonstrates the importance of gradually transferring the source appearance to generate the final output image. We verify the robustness of our approach by testing it on images collected from a fashion e-commerce site. Fig. 4 presents a few generated samples that demonstrate the generalization capability of PIDM in-the-wild scenarios.

References

Figure 5. Additional qualitative comparisons with several state-of-the-art models such as ADGAN [1], PISE [5], GFLA [4], DPTN [6], CASD [8], NTED [3] and Ours on the DeepFashion dataset.
Figure 6. Additional qualitative comparisons with several state-of-the-art models such as ADGAN [1], PISE [5], GFLA [4], DPTN [6], CASD [8], NTED [3] and Ours on the DeepFashion dataset.
Figure 7. Additional qualitative comparisons with several state-of-the-art models such as ADGAN [1], PISE [5], GFLA [4], DPTN [6], CASD [8], NTED [3] and Ours on the DeepFashion dataset.