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Source image Generated images with random poses using our PIDM
Figure 1. Results of synthesizing person images at arbitrary poses using our proposed PIDM. The left column contains the source images.

In this supplementary material, we present additional
qualitative results of our proposed PIDM.

1. Additional Qualitative Results
In Fig. 5-7, we present a comprehensive visual compar-

ison of our method with other state-of-the-art frameworks
on DeepFashion dataset. We compare our method with
ADGAN [1], PISE [5], GFLA [4], DPTN [6], CASD [7]
and NTED [2]. In comparison to the existing methods, our

proposed PIDM accurately retains the appearance of the
source while also producing images that are more natural
and sharper. Moreover, even if the target pose is complex,
our method can still generate it precisely.

Fig. 1 shows qualitative results of synthesizing person
images at arbitrary poses using our proposed PIDM. For
each source image, we generate 8 samples of the same per-
son in various poses. Our proposed PIDM accurately retains
the appearance of the source while also generating consis-
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Figure 2. We visualize the gradual transfer of appearance at selected timesteps from t = T to t = 1.
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Figure 3. Qualitative analysis of multiscale fusion with texture dif-
fusion blocks. The introduction of multiscale fusion significantly
enhances the effectiveness of appearance transfer.

tent patterns across different poses.
Fig. 3 shows that multiscale fusion aids in generating

photo-realistic images, in which the output image style
tightly aligns with the source image appearance. Fig. 2 il-
lustrates a visualization of the gradual transfer of appear-
ance at different timesteps. In particular, we visualize the
prediction of x0 at selected timesteps from t = T to t = 1.
The visualization demonstrates the importance of gradually
transferring the source appearance to generate the final out-
put image. We verify the robustness of our approach by test-
ing it on images collected from a fashion e-commerce site.
Fig. 4 presents a few generated samples that demonstrate the
generalization capability of PIDM in-the-wild scenarios.
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Figure 4. Qualitative analysis of PIDM in-the-wild setting. We
demonstrate the robustness of our approach by testing it on im-
ages collected from a fashion e-commerce site. Given a source
image (shown in the left column), PIDM attempts to synthesize
the person image in five different poses.
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Figure 5. Additional qualitative comparisons with several state-of-the-art models such as ADGAN [1], PISE [5], GFLA [4], DPTN [6],
CASD [8], NTED [3] and Ours on the DeepFashion dataset.



Figure 6. Additional qualitative comparisons with several state-of-the-art models such as ADGAN [1], PISE [5], GFLA [4], DPTN [6],
CASD [8], NTED [3] and Ours on the DeepFashion dataset.



Figure 7. Additional qualitative comparisons with several state-of-the-art models such as ADGAN [1], PISE [5], GFLA [4], DPTN [6],
CASD [8], NTED [3] and Ours on the DeepFashion dataset.


