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A. Sketch Vector Normalisation

Firstly, denoting sketch-vectors as a sequence of five-element vectors with off-set values over absolute coordinate is com-
mon in sketch/handwriting literature [1, 4, 7]. It mainly models the free-flow nature of drawing via GMM [6]. Regressing
to absolute coordinates otherwise, results in mean output [2] without any instance-specific variation. Secondly, offset makes
sketch invariant to drawing-position in a sketch-canvas (Fig. 2). Keeping rest of the design same, replacing GMM-based
loss by standard l1 loss based absolute coordinate regression, reduces max Fβ value on ECSSD dataset to 0.652 from 0.781
(ours), thus validating the need of off-set and GMM-based design. Furthermore, sketch-vector-length varies across sam-
ples in a batch, a specific pen-state for end-of-drawing is needed to mask out loss computation from zero-appended tails of
sketch-vector.

B. Multi-scale 2D Attention Module

(i) J is an intermediate tensor, which is aware of three factors: (a) local and (b) neighbourhood information, of B, and (c)
previous state of auto-regressive decoder for sequential modelling. Later, J ∈ RH

32×
W
32×d helps compute the attention-map

α. (ii) B(i, j) signifies the 1 × 1 convolution applied at every (i, j) spatial position for local-information modelling. (iii)
The first two terms are tensors of size RH

32×
W
32×d and Wsst−1 is a vector of size Rd which is broadcasted (standard PyTorch

convention) to the required spatial size for addition. (iv) Eq. 1 is employed using 1 × 1 convolution with kernel Wa, where
softmax is applied across the spatial size, gt ∈ Rd. (v) Output of the last three max-pooling layers of VGG-16 are used for
multi-scale feature aggregation which have a spatial down-scaling factor of 8, 16, 32, respectively. (vi) During single-scale
ablative setup, we only use the output feature-map of the last pooling layer F l.

C. Scribbles vs Sketch

Despite taking more time, sketches hold way more structural and semantic cues than the much sparser and zero-semantics
scribbles [9]. Also, temporal aspect of sketches may initiate future works on relative saliency of objects at scene level.

D. Advantage of Sequential Stroke Modelling

Firstly, as free-hand sketches are not edge-aligned with its paired photo, there is no direct way to post-process the sketch-
coordinate to get aligned key-points attending the silhouettes/corners of the object. However, following [8], we design a
baseline as: Apply a spatial attention module on backbone-extracted feature-map followed by global-average pooling and
a fully-connected layer to directly predict the T = 100 (fixed via RDP algorithm) absolute coordinates, assuming that the
network will attend salient regions via spatial attention. Here max Fβ on ECSSD dataset falls to 0.692. Importantly, we can
not use off-set based representation here as by definition it relies on sequential modelling explicitly. Therefore, we adopted
sequential stroke modelling with ‘look-back mechanism’ via multi-scale 2D-attention for our saliency framework.

(i) Moreover, our 1-layer LSTM based auto-regressive network is quite standard for works [1,3,4,7] like image captioning,
handwriting/sketch generation, text recognition, and simple to optimise. (ii) Removing pen-state prediction hurts accuracy
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(max Fβ : 0.741) as the model gets confused for large-jumps at stroke-transitions via off-set-based modelling. (iii) Further-
more, this temporal aspect of sketch may potentially convey relative saliency (sorted by stroke order) – an interesting topic
for future study.

E. Correlating stroke-prediction and saliency-map quality
We used photo-to-sketch generation as an auxiliary task to solve the saliency detection problem, where performance of the

latter is crucial but not the former. Moreover we found that, while avg. Fmax
β for samples whose sketch-generation metric,

log-loss, (mean of Eq. 6 in nats [5] is lower (better) than −1100, comes to 0.824, the same for samples with log-loss higher
(worse) than −1000 drops to 0.736, thus justifying the correlation quantitatively.
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