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A. Implementation Details
The following sections include more details about the

datasets we use, our training procedure and evaluation met-
rics.

A.1. Dataset

We select sequences containing dramatic camera mo-
tions from ScanNet [1] and Tanks and Tamples [3] for
training and evaluation. Tab. 1 lists details about these se-
quences, where Max rotation denotes the maximum rela-
tive rotation angle between any two frames in a sequence.
The sampled images are further split into training and test
sets. Starting from the 5th image, we sample every 8th im-
age in a sequence as a test image. However, this leads to a
change in the sampling rate in the temporal domain among
training images. We found that the rotation errors are often
higher than average at these positions where the sampling
rate changes. In order to study the effect of the sampling
rate changes, for scene Family in Tanks and Temples [3],
we sample every other image as test images, i.e. training on
images with odd frame ids and testing on images with even
frame ids.

A.2. Training Details

During training, we sample 1024 pixels/rays for an im-
age and we sample 128 points along each ray for our ap-
proaches and all baselines. For all approaches, we use the
same pre-defined sampling range (i.e., near and far) and
sample uniformly between this range. During refinement,
the learning rate of NeRF model decays every 10 epochs
with 0.9954, and the learning rate for the camera poses de-
cays every 100 epochs with 0.9. Note that we only use RGB
loss during refinement and depth distortion parameters are
no longer optimised. As the scene scales can be arbitrary,
the optimised scale parameter of the depth map during train-
ing is also arbitrary. To avoid scale collapsing (all scales re-
duced to 0.0) during training, we manually set the scale of
the depth map for the last frame to 1.0. We also use the nor-

Scenes Type Seq. length Frame rate Max. rotation (deg)

Sc
an

N
et 0079 00 indoor 90 30 54.4

0418 00 indoor 80 30 27.5
0301 00 indoor 100 30 43.7
0431 00 indoor 100 30 45.8

Ta
nk

s
an

d
Te

m
pl

es

Church indoor 400 30 37.3
Barn outdoor 150 10 47.5

Museum indoor 100 10 76.2
Family outdoor 200 30 35.4
Horse outdoor 120 20 39.0

Ballroom indoor 150 20 30.3
Francis outdoor 150 10 47.5
Ignatius outdoor 120 20 26.0

Table 1. Details of selected sequences. We downsample several
videos to a lower frame rate. FPS denote frame per second. Max
rotation denotes the maximum relative rotation angle between any
two frames in a sequence. We show our method can handle dra-
matic camera motion (large maximum rotation angle) whereas pre-
vious methods can only handle forward-facing scenes.

malised point clouds when computing the inter-frame point
cloud loss.

A.3. Test-time Optimisation

During the evaluation for novel view synthesis, fol-
lowing our baselines NeRFmm [8], BARF [4] and SC-
NeRF [2], we run a test-time optimisation to align the cam-
era poses of the test set by minimising the photometric error
on the synthesised images, while keeping the trained NeRF
model froze. Although all these baseline methods have their
own way to align camera poses (discussed below), all of
them fail to align camera poses in complex camera trajecto-
ries in ScanNet and Tanks and Temples.

To fairly evaluate all methods in challenging camera tra-
jectories, we propose to align test camera poses by first ini-
tialising from learned poses of adjacent training images, fol-
lowed by a test-time optimisation. We shorthand this align-
ment as Neighbour + opt. In practice, we find this ini-
tialisation is robust and provides the best alignment for all
approaches. All results in our main paper are evaluated in
this way.
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Sim(3) + no opt. Identity + opt. Sim(3) + opt. (4) Neighbour + opt
PSNR↑ SSIM ↑ LPIPS ↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Ours 17.24 0.62 0.58 13.38 0.39 0.70 32.47 0.84 0.41 32.47 0.84 0.41
BARF 14.68 0.55 0.66 19.56 0.65 0.57 17.82 0.60 0.61 32.31 0.83 0.43
NeRFmm 11.28 0.40 0.80 30.59 0.81 0.49 12.46 0.43 0.80 30.59 0.81 0.49
SC-NeRF 10.68 0.38 0.80 22.39 0.71 0.55 11.25 0.40 0.80 31.33 0.82 0.46

Table 2. Comparison of various pose alignment methods during test-time optimisation (ScanNet 0079 00).

The following paragraphs outline previous alignment
methods, and we show a comparison for all method with
a ScanNet scene in Tab. 2.

Identity + opt. BARF [4] uses test-time optimisation
to identify poses for the test frames, where all poses are
initialised with identity matrices. This initialisation works
well for simple forward-facing scenes, but not for complex
trajectories. The optimisation is sensitive to the learning
rate, and can easily fall into local minima when the target
pose is far from the identity initialisation.

Sim(3) + opt. In NeRFmm [8], the poses are first ini-
tialised using Sim(3) alignment with an ATE toolbox [10].
Then, an additional test-time optimisation is used to further
adjust the test poses. This initialisation works well when the
learned poses can be aligned precisely to COLMAP poses
(Ours in Tab. 2). However, incorrect pose estimations can
affect the Sim(3) alignment.

Sim(3) + no opt. In SC-NeRF [2], the test poses are
identified using a Sim(3) alignment between COLMAP
poses and the learned poses. And no test-time optimisation
is used. However, the results are biased toward COLMAP
estimations, and misalignment can affect the view synthesis
quality significantly.

A.4. Evaluation Metrics

Novel View Synthesis. We use Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity Index Measure (SSIM) [7]
and Learned Perceptual Image Patch Similarity (LPIPS) [9]
to measure the novel view synthesis quality. For LPIPS, we
use a VGG architecture [6].

Depth. The error metrics we use for depth evaluation in-
clude Abs Rel, Sq Rel, RMSE, RMSE log, δ1, δ2 and δ3.
The definitions are as follows:

• Abs Rel: 1
|V|

∑
d∈V ∥d− dgt∥/dgt;

• Sq Rel: 1
|V|

∑
d∈V ∥d− dgt∥22/dgt;

• RMSE:
√

1
|V|

∑
d∈V ∥d− dgt∥22;

• RMSE log:
√

1
|V|

∑
d∈V ∥ log d− log dgt∥22;

• δi: % of y s.t. max( d
dgt

,
dgt

d ) = δ < i;

where d is the estimated depth, dgt is the ground truth depth,
and V is the collection of all valid pixels on a depth map.

scenes Ours NeRFmm
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR SSIM LPIPS

Fern 23.01 0.71 0.38 20.58 0.59 0.50
Flower 29.39 0.86 0.19 27.02 0.76 0.32
Fortress 29.38 0.80 0.28 24.94 0.57 0.57
Horns 25.24 0.73 0.37 23.67 0.66 0.48
Leaves 19.85 0.60 0.40 19.46 0.55 0.46
Orchids 19.51 0.56 0.43 16.77 0.40 0.55
Room 28.54 0.89 0.28 26.14 0.84 0.39
Trex 25.82 0.84 0.29 24.13 0.77 0.39
mean 25.09 0.75 0.33 22.84 0.64 0.46

Table 3. Novel view synthesis results on LLFF-NeRF dataset.

scenes Ours NeRFmm
RPEt ↓ RPEr ↓ ATE↓ RPEt RPEr ATE

Fern 0.252 0.993 0.003 0.706 1.816 0.007
Flower 0.035 0.096 0.001 0.086 0.418 0.001
Fortress 0.081 0.296 0.001 0.233 0.739 0.004
Horns 0.217 0.452 0.004 0.321 0.850 0.008
Leaves 0.218 0.143 0.002 0.138 0.051 0.001
Orchids 0.203 0.383 0.003 0.686 2.030 0.010
Room 0.244 0.936 0.004 0.670 1.664 0.011
Trex 0.219 0.319 0.004 0.542 0.775 0.009
mean 0.184 0.452 0.003 0.423 1.043 0.006

Table 4. Pose accuracy on LLFF-NeRF dataset.

B. Additional Results
LLFF-NeRF Dataset. We compare our approach against
NeRFmm on the LLFF-NeRF dataset [5] in terms of novel
view synthesis quality (Tab. 3) and pose accuracy (Tab. 4).
We show better performances than NeRFmm in both pose
accuracy and synthesis quality. We use the normalized de-
vice coordinate (NDC) for both approaches.

Depth Estimation. We show detailed depth evaluation re-
sults for ScanNet scenes in Tabs. 5 to 8. Our depth estima-
tion accuracy outperforms other baselines by a large margin.

0079 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
Ours 0.099 0.047 0.335 0.128 0.904 0.995 1.000
BARF 0.208 0.165 0.588 0.263 0.639 0.896 0.983
NeRFmm 0.494 1.049 1.419 0.534 0.378 0.567 0.765
SC-NeRF 0.360 0.450 0.902 0.396 0.407 0.730 0.908
DPT 0.149 0.095 0.456 0.173 0.818 0.978 0.999

Table 5. Depth map evaluation on ScanNet 0079 00.

Pose Estimation. We visualise additional results for pose
estimation on Tanks and Temples (Fig. 3) and ScanNet



0418 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
Ours 0.152 0.137 0.645 0.185 0.738 0.988 0.997
BARF 0.718 1.715 1.563 0.630 0.205 0.569 0.769
NeRFmm 0.907 3.650 2.176 0.769 0.240 0.456 0.621
SC-NeRF 0.319 0.441 0.898 0.377 0.456 0.792 0.930
DPT 0.190 0.187 0.745 0.211 0.719 0.965 0.997

Table 6. Depth map evaluation on ScanNet 0418 00.

0301 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
Ours 0.185 0.252 0.711 0.233 0.792 0.918 0.958
BARF 0.179 0.146 0.502 0.268 0.736 0.883 0.938
NeRFmm 0.444 0.830 1.239 0.481 0.397 0.680 0.845
SC-NeRF 0.383 0.378 0.810 0.452 0.360 0.663 0.846
DPT 0.317 0.568 1.133 0.350 0.597 0.821 0.914

Table 7. Depth map evaluation on ScanNet 0301 00.

0431 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
Ours 0.127 0.111 0.579 0.160 0.877 0.978 0.994
BARF 0.398 0.710 1.307 0.444 0.381 0.655 0.847
NeRFmm 0.514 1.354 1.855 0.562 0.250 0.539 0.742
SC-NeRF 0.608 1.300 1.706 0.677 0.225 0.446 0.645
DPT 0.132 0.135 0.670 0.171 0.855 0.973 0.991

Table 8. Depth map evaluation on ScanNet 0431 00.

(Fig. 4).

More Visualisations. We present additional qualitative
results for novel view synthesis and depth estimation on
Tanks and Temples (Fig. 1) and ScanNet (Fig. 2).
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(a) BARF (b) NeRFmm (c) SC-NeRF (d) Ours (e) Ground Truth

Figure 1. Qualitative results of novel view synthesis and depth prediction on Tanks and Temples. We visualise the synthesised images
and the rendered depth maps (top left of each image) for all methods. NoPe-NeRF is able to recover details for both colour and geometry.



(a) BARF (b) NeRFmm (c) SC-NeRF (d) Ours (e) Ground Truth

Figure 2. Qualitative results of novel view synthesis and depth prediction on ScanNet. We visualise the synthesised images and the
rendered depth maps (top left of each image) for all methods. NoPe-NeRF is able to recover details for both colour and geometry.
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(a) BARF (b) NeRFmm (d) Ours(c) SC-NeRF

Figure 3. Pose Estimation Comparison on Tanks and Temples. We visualise the trajectory (3D plot) and relative rotation errors RPEr

(bottom colour bar) of each method on Ballroom and Museum. The colour bar on the right shows the relative scaling of colour.



(a) BARF (b) NeRFmm (d) Ours(c) SC-NeRF
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Figure 4. Pose Estimation Comparison on ScanNet. We visualise the trajectory (3D plot) and relative rotation errors RPEr (bottom
colour bar) of each method on Ballroom and Museum. The colour bar on the right shows the relative scaling of colour.
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