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A. Virtual evidence

Posterior inference in a Bayesian network entails inferring the values of a set of unknown variables given a set of known
variables as evidence. This inference with certain evidence is straightforward (see Sect 2.1 of [4]) whereas inference with
uncertain evidence requires a cascaded inference strategy (see Sect 2.2 of [4]). If a random categorical variable X consists of
n categories {x1, T2, ...z, }, then the uncertain evidence of that node can be specified as likelihood ratios L, : Ly, : ... : Ly, .
In order to perform inference with this type of uncertainty, we can insert a virtual evidence node Z as a child of the evidence
node X and instantiate that node as true. Hence, we achieve the following

P(Z =1lx1) : P(Z =1|z)... : P(Z=1zp) =Ly, : Lyy:...: Ly, (13)

An illustration of virtual evidence is shown in Figure 7.
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Figure 7. Virtual evidence node Z as a child of the evidence node X.

Now, the observation probability of evidence node X can be achieved from an independent measurement device and we
denote this as P,,s(X). According to Theorem 5 in [1], we can convert this observation probability to likelihood ratios of
the virtual node as follows

Pobs(xl) . Pobs($2) . . Pobs(xn)

P(Z =1lx1) : P(Z = 1|zg)... : P(Z = 1|zp,) = P | Py T Plaw)

(14)

where P(X) is the marginal probability of node X . In our case, we model the triplets with three random categorical variables
S, R, and O, and obtain the observation probabilities of these variables from a trained deep learning-based measurement
model 6,,,. Hence, we can write



Pro, (s1)  Pre,(sn)

P(Ze=1|s1) : ..t P(Ze = 1]3,) =

2a) , Pranls
P(Zo=1]01) : .. : P(Zy = 1]0n) = PI]’;’E';S“) s Pf]fg;io)") (15)
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B. Special cases of MAP inference

In this section, we describe some special cases of MAP inference. For increased readability, we rewrite the MAP inference
equation here

S*,R",0" = arg max P(S,R,0|Zs =1,Z,=1,Z, = 1)
5,R,0

Pro,, (R) (16)
Prael p(ris. 0)

1. FREQ baseline [8], subject and object is known: In this scenario, we predict the relationship label of a triplet only
from its known subject (S = S;) and object label (O = O,). Hence, we can write

Pro,,(S) = 1{5=5,}

= arg max Pr,,(5)Pre,,(0)

(17
Pr,,(0) = 110-0,}
Since there is no image measurement for the relationship label, the MAP Eqn. (16) becomes
R* = argmax P(R|S = 54,0 = O,)
i (18)

= argmax P(R|S,,Oy)

This is essentially the FREQ baseline proposed by [&].

2. Synthetic relationship, subject, and object is known: The within-triplet Bayesian network is a generative model for
subject, object, and relationship. Hence, we can generate synthetic samples of relationship I, given subject and
object as following

Rgyn ~ P(R|Sy,0) 19)

3. Uncertain evidence for relationship, subject, and object is known: In presence of the uncertainty associated only
with the relationship label from measurement model 6,,,, the MAP decision becomes

R = argm}gxP(R\ZT =1,5=25,,0=0)

Pro,.(R) (20)
TR)P(R\S& o

This is essentially the PredCls setting [7], where we infer the relationship given the categories and bounding boxes of
the subject and object of a triplet. Visualization is provided in Figure 8.

= arg max
& R

4. No Bayesian network, only evidence uncertainties: In this case, we infer each component of a triplet independently
from its measurement uncertainty. Hence, the MAP decision becomes as follows

S* = arg max Pry, (S)
0" = argmax Prp,,(0) 1)
R* = arg max Pryg, (R)

This is essentially predicting the labels of a triplet from the probabilities that the classification head of the SOTA deep
learning-based methods produce.

From the discussion above, we can conclude that the MAP inference in Eqn. (16) is the most general framework and all the
other cases can be considered as special cases.
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Figure 8. (a) Uncertain evidence of a triplet from VCTree [6] in PredCls setting has the highest support for a majority class ‘near’. We
also see competing minority counterparts such as ‘in front of” and ‘behind’; (b) debiasing is increasing the support for minorities. It
also amplifies noise by increasing the support for all classes; (c) restoring within-triplet prior by P(R)|S, O). The noisy responses in all
irrelevant classes are completely removed by the prior. As we observe from (a) to (c), the final MAP inference changes the measured
relationship label from a majority class ‘near’ to a minority class ‘in front of”.

C. Constrained optimization for conflict resolution

In SGCls and SGDet settings, we are required to infer object labels along with relationship labels. Any object entity F;
can reside as subjects or objects in multiple triplets and after MAP inference with Eqn. (16), the inferred values of objects in
different triplets may contain different values. We denote T as the set of triplets where E; acts as the subject and T as the
set of triplets where F; acts as the object -

TP = {t, : t,(5) = Ei}

(22)

TP = {tq:14(0) = E;}
Now, we define an optimization function by summing up all the posterior probabilities of within-triplet Bayesian network
from all triplets in 7;° and in T'C as following

f = Z P(StpvRtvatp‘ZStp = ]‘7ZRtp = ]‘7ZOtp = ]‘) + Z P(Stq;thvth|ZStq = 1aZth = 1’Z0tq = 1)
tpeTiS tquiO

(23)

Evaluating this optimization function for every possible combination of subjects, relationships, and objects in multiple con-
nected triplets is challenging and hence we propose a two-step alternating approach. In the first step, for each entity, we
modify the measurement probabilities of all nodes connected to object entity F; according to the inferred values. In this way,
we essentially reduce all the evidence uncertainty and only keep the uncertainty to object entity F;. The modification can be
written as follows

1,6, (St,) = Prg,,(01,) = Pro, (E;)
Pro,(Ri,) = Lny st ), Wt € TS
Pro,(0,) = Lo, —op y, Yty €TS on
Pry, (St,) = Iig, —siy, Vig €T;
Pro,.(Re,) = Ln, =ty Vig €T

We can simplify the objective function using Eqn. (23) and Eqn. (16) by



f=>" Pro,(S,)P(R=7{|S:,,0=0;,)+ Y Pro,(0,)P(R=r{]|S=s{,0,)

tpeTS ta€TP 25)
= > Pro, (E)P(R=r{|E,O=0;)+ > Pre,(E)P(R=r1{|S=si E)
tpeTf tq€TY
Finally, we can simplify f(.) and infer E; as
18) = Pra (B X P(R=rl|E0 =)
t, €T
+ Y PR=rL|S= sg’q,Ei)> (26)
ta€TP

E} = argmax f(E;)

In the second step, we update the relationship label of each triplet based on the updated subject and object values

R;f = argm}%xP(RﬂZT =1,8=5;,0=0;)

Pro,, (R)) 27

= argmax WP(R]-\S =s5;,0 =0 )

We include a pseudo-code for the constrained optimization in Algorithm 1.

Algorithm 1 Constrained Optimization for conflict resolution

Require: Inferred scene graph g{”f from within triplet inference with potential conflicts in objects, maximum iteration N
G7 6"
n<+1
while n < N do
for each E; € g?—l do > update each object value with constraints
find triplets where E; acts as subject and object by Eqn. (22)
modify uncertain evidence of connected triplets except £; by Eqn. (24)
infer E; by Eqn. (26)
end for
for each R; € (]}“1 do > update each relationship with updated object values
infer R} by Eqn. (27)
end for
Construct new scene graph G7 = {€*, R"}
if G == G7~' then
return G
else
=g
n=n+1
end if
end while
Ensure: Inferred scene graph G7 with no conflict in objects

D. Pseudo-code for sample augmentation

We include a pseudo-code for sample augmentation in Algorithm 2. The concatenation of triplet entities is done by simply
adding the class labels by a ‘space’ to make it a valid sentence that can be fed into a sentence-embedding model to generate
embeddings.



Algorithm 2 Sample augmentation using embedding similarity

Require: Training scene graphs G7, sentence embedding model f(T") for triplet T', distance measure ¢(f(7T.), f(T3)), augmentation
parameter ¢, top- N, object entities N, top- N, relationships A/;..
for each G; € G* do
for each R;(S;,0;) € G; do
if S; € Ne and O; € N, then
if R; € N, then
N¢(S;,R;,0;) < N%(S;,R;,0;) +1
else if R; ¢ N, then
T; + concat(S;, Rj, 0;)
distmin < MINT« concat(s;,R,0;)VReN, (T, Ti)
Trnin < arg minT&concat(Sj \R,0;)VREN,. ¢(T7 Tz)
if distimin < € then
Sj, Rmm, Oj < Trmin
Na(Sj, Roin, O]) — Na(Sj, Riin, OJ) +1
end if
end if
end if
end for
end for
Ensure: Augmented count N*(S, R,O) VS € N.,VR € N;,VO € N.s

E. Computational complexity
In this section, we compute the computational complexities of MAP inference and constrained optimization.
E.1. Complexity for MAP inference

For SGCls and SGDet settings, the MAP inference in Eqn. (16) requires inferring Ny X N, X N, times where Ny, N,.,
and N, denote the number of configurations for subject, relationship, and objects. However, the measured probabilities of
these three quantities Py g, (S), Pre,,(O), and P g, (R) contain many zeros and hence we choose only top K, K,, and

K, values of each triplet measurement. In this way, the computational complexity for top-K triplets in an image becomes
O(K x Ks x K, x K,).

E.2. Complexity for constrained optimization

The object updating for each object F; in Eqn. (26) requires computing probability for /N, object categories and the
relationship updating in Eqn. (27) occurs N, times for each relationship I2;. If the number of objects in an image is N° and
we want to infer top- K relationships, the total complexity becomes O(N° x N, + K x N,.). In the SGClIs setting, we choose
K, = K, = 3 for all baseline models. These values for the SGDet setting are provided in Table 7 for all baseline models.

Baseline Models IMP [7] VCTree [6] MOTIF [8] Unb-MOTIF [8] DLFE-MOTIF [2] BGNN [3]

K., K, 3 3 3 3 1 1
K, 10 10 10 10 50 50
N° 32 32 32 32 80 80

Table 7. K, K, and K, for all baseline models in SGDet setting. We choose lower K and K, when N° = 80.

F. Results and analysis of posterior inference with original and augmented samples

We include a performance with original and augmented samples for all three tasks PredCls, SGCls, and SGDet with Visual
Genome and GQA in Table 8. We report both R@K and mR@K. Baseline SGG models are implemented by the codebase
of [5], [2], and [3]. mR@K improves in all baseline models and R@K decreases in MOTIF, VCTree, BGNN, and DLFE for
VG and in all baseline models for GQA. The decreasing of R@K is significantly less in IMP [7], a relatively older method of



SGG. We find this result as promising since the balance between head and tail classes is better achieved with IMP. Inference
with original samples improves the R@K performance of the debiased predictions from (1) Unb- [5] and (2) DLFE- [2]. We
omitted SGCls performance of BGNN [3] since their trained SGCls checkpoint is not released yet. We also include the full
comparison with the other de-biasing techniques in Table 9. We achieve better performance in all settings except in SGDet
by [2].

Recall and Mean Recall @K

DS Method

PredCls SGCls SGDet
R@20/50/100 mR@20/50/100  R@ 20/50/100 mR@20/50/100  R@20/50/100 mR@20/50/100
IMP® [7] 54.9/61.6/63.6  9.2/11.5/12.4 32.9/36.1/37.1 4.9/5.7/6.0 21.0/28.0/31.3  3.3/4.9/5.8
Inf-IMP (org) 55.2/62.5/64.8 15.4/20.5/22.7 33.7/37.3/38.5  7.3/9.3/10.2 20.6/27.3/30.6  4.8/7.6/9.2
Inf-IMP (aug) 53.2/59.9/ 62.0 18.6/25.1/28.3 32.6/36.0/ 37.1 9.7/ 12.6/ 14.1 20.1/26.5/29.5  5.3/8.6/10.7
MOTIF® [8] 48.9/59.6/64.0  8.4/12.9/15.5 31.2/36.5/38.5 5.5/7.7/8.8 20.7/26.9/30.5  3.9/5.6/6.7
Inf-MOTIF (org) 46.4/ 56.4/ 60.4 13.0/20.1/24.4 29.9/34.8/36.7  8.5/11.9/13.9 19.7/25.6/ 29.1 5.8/8.1/10.0
VG Inf-MOTIF (aug) 42.5/51.5/55.1 15.7/24.7/ 30.7 27.7/32.2/33.8 10.2/14.5/17.4 18.6/24.0/ 27.1 6.6/9.4/11.7
VCTree® [6] 59.1/65.5/ 67.2 12.0/ 15.4/ 16.6 40.4/ 44.2/ 45.1 7.4/9.2/9.8 24.0/29.9/32.6  4.7/6.2/7.0
Inf-VCTree (org) 56.6/ 62.5/ 64.1 17.7/22.7/24.8 39.3/42.9/43.8 10.7/ 13.5/ 14.6 23.4/29.1/31.6  6.3/8.4/9.5
Inf-VCTree (aug) 54.0/59.5/61.0  21.1/28.1/30.7 37.4/40.7/41.6 13.6/17.3/ 194 22.3/27.7/30.1 7.6/10.4/11.9
Unb-MOTIF® [5] 33.4/45.9/51.2 17.9/24.8/ 28.7 20.5/26.3/28.8  9.8/13.2/15.1 11.8/16.3/19.5  6.4/8.7/10.5
Inf-Unb-MOTIF (org) 34.2/47.2/52.8 18.0/ 25.6/ 30.4 21.1/27.4/30.2 10.0/ 13.9/16.3 12.1/17.0/20.7  6.5/9.1/11.1
Inf-Unb-MOTIF (aug) 31.5/42.4/ 46.8 19.2/28.6/ 35.7 19.0/24.1/26.3 10.7/ 15.9/ 18.9 10.9/15.1/18.0  6.6/9.6/ 11.9
DLFE-MOTIF* [2] 45.7/51.6/53.3  22.0/26.9/28.8 25.4/28.8/29.7 12.8/15.6/ 16.4 18.2/24.2/28.0  8.0/10.6/ 12.6
Inf-DLFE-MOTIF (org) 49.4/55.7/57.5  25.4/31.4/33.9 27.8/31.2/32.2 14.3/17.5/ 18.4 20.1/26.5/30.3 9.6/ 12.7/ 14.9
Inf-DLFE-MOTIF (aug)  38.0/43.3/44.8  28.5/35.3/38.2 21.4/24.3/25.1 16.3/ 19.7 /120.7 15.5/20.6/ 23.8 10.6/ 14.1/16.8
BGNN* [3] 50.4/58.2/60.4  24.9/29.5/31.8 -/ - -/ -1- 23.1/30.3/35.0  7.4/10.4/12.3
Inf-BGNN (org) 50.2/57.6/59.8  25.4/30.3/33.1 -/ - -/ -1- 22.1/289/33.4  8.5/12.0/14.5
Inf-BGNN (aug) 48.2/55.4/57.5  26.2/32.2/343 -/ - -/ -1- 20.0/26.2/ 30.1 9.4/ 13.2/ 16.1
IMP® [7] 57.0/ 61.9/ 63.7 11.2/13.0/ 13.7 32.3/34.3/34.8  6.6/7.5/7.80 20.8/25.4/274  4.2/5.8/6.6
Inf-IMP (org) 56.2/62.0/64.2  29.1/35.9/38.3 31.1/33.3/34.1 16.3/19.1/20.3 19.2/23.5/25.6 8.6/ 12.3/ 144
Inf-IMP (aug) 56.0/61.9/64.0  28.5/35.1/37.5 31.0/33.2/34.0 16.2/19.1/20.3 19.2/23.5/25.6  8.5/12.2/14.1
MOTIF® [8] 64.0/ 68.3/ 69.7 17.5/20.7/ 21.6 33.2/34.9/354  9.8/10.9/11.3 23.9/27.8/294  58/7.4/83
Inf-MOTIF (org) 59.0/ 62.9/ 64.1 31.9/37.8/39.8 30.3/31.9/32.4 16.8/19.0/ 19.9 21.9/25.5/26.9 11.6/ 14.4/15.9
GQA  Inf-MOTIF (aug) 59.0/63.0/64.2  32.0/37.9/40.1 30.2/31.8/32.3 16.8/19.1/ 20.0 21.9/25.5/26.9 11.7/14.3/15.8
VCTree® [6] 64.4/ 68.8/70.1 18.8/22.1/23.0 33.2/35.0/35.6  9.2/10.6/ 11.0 23.2/27.2/28.8  5.5/7.0/7.8
Inf-VCTree (org) 59.0/ 62.8/ 64.1 33.7/39.1/41.3 30.5/32.3/32.9 16.6/19.1/19.9 21.3/25.1/26.5 11.0/ 13.6/ 15.1
Inf-VCTree (aug) 59.0/ 62.8/ 64.1 34.1/39.4/41.6 30.5/32.2/32.8 16.6/ 19.2 /20.0 21.3/25.0/26.4 11.0/13.6/ 15.1

Unb-MOTIF® [5]
Inf-Unb-MOTIF (org)
Inf-Unb-MOTIF (aug)

43.2/51.9/55.9
41.4/50.1/53.9
41.4/49.9/ 53.6

19.4/27.8/32.3
23.1/34.9/41.3
22.9/34.5/40.8

21.6/26.1/28.1
20.6/24.9/26.9
20.5/24.8/26.7

10.4/14.1/16.3
11.9/17.3/20.7
11.9/17.2/20.6

13.5/18.2/21.6
12.5/16.8/19.9
12.5/16.8/19.9

7.7/10.8/ 12.9
8.7/12.4/ 14.8
8.7/12.4/ 14.8

Table 8. Recall@K and Mean Recall @K results of inference with the prefix ‘Inf-’. Here, (org) denotes that BN is learned using original
training samples and (aug) denotes that BN is learned using augmented samples. ¢ — released by [5], ¢ — released by respective authors.
Inference with original samples improves the minority classes and augmentation achieves more improvement over those classes.

F.1. Qualitative improvement

In Figure 10, a qualitative representation is shown where we see the tail relationships such as ‘eating’ and ‘growing on’
are improved with BN inference for different baseline models.

F.2. Statistical significance test

We partition the full testing dataset into 264 folds with each fold having 100 images. For each fold, we compute the
mean recall@ 100 in PredCls setting for baseline model [6] and for our proposed model. We perform a one-sided Wilcoxon
rank sum test between these two groups of performance measures and obtain p < 0.05 which denotes that the performance
increase in mean recall of our proposed method is statistically significant.

F.3. Visualization of relationship replacement

In Figure 9, we visualize the statistics of relationship replacement where we observe that through posterior inference the
most frequent class ‘on’ is being replaced by ‘sitting on” in 0.7% cases and by ‘standing on’ in 1.7% cases. Similarly, ‘above’
is being replaced by ‘over’ in 35% cases and ‘has’ is being replaced by ‘with’ in 8.8% cases.
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Figure 9. Relationship replacement of measurement by posterior inference. head relationships such as ‘on’, ‘has’, and ‘near’ are being
replaced by tail ones such as ‘sitting on’, ‘with’, and ‘walking on’.

Recall and Mean Recall @K

PredCls SGCls SGDet
Method R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100
VCTree [0] 655/672 154/166  442/451 92/98 299/326  62/7.0

Unb-VCTree [5] 47.2/51.6  25.4/28.7 254/279  12.2/14.0 19.4/232  9.3/11.1
DLFE-VCTree [2] 51.8/53.5  25.3/27.1 28.0/289  18.2/19.0 22.6/262 11.7/13.6
Inf-VCTree (Ours) 59.5/61.0  28.1/30.7 40.7/41.6  17.3/19.4 27.7/30.1 10.4/11.9

Table 9. Comparison with other de-biasing methods in all settings. Our method achieves significantly higher recall compared to the other
debiased methods in PredCls and SGCls without any re-training.



child hair child hair child hair

o 0% Y R o8 ©
RS .
IMP S / \9;% has & / 93% ‘L has & / % lcoverlng
(] o @ (] o @ (] (] (]
food glass ear food glass ear food glass ear
window truck window truck window truck
MOTIF ® ° ® ® ® ®
l on l on l on l on l on lparked on
@ building © street @ building @ street @ building @ street
be:ch wing beach wing be:ch wi:g
VCTree b ® ® 9.
20 S I CR A
§ %
() ) () ) ) ) (] 9 ()
plant_1 plant 2 bird plant 1 plant 2 bird plant_1 plant_2 bird
Measured Inferred Inferred
(BN with original samples) (BN with augmented samples)
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