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A. Virtual evidence
Posterior inference in a Bayesian network entails inferring the values of a set of unknown variables given a set of known

variables as evidence. This inference with certain evidence is straightforward (see Sect 2.1 of [4]) whereas inference with
uncertain evidence requires a cascaded inference strategy (see Sect 2.2 of [4]). If a random categorical variable X consists of
n categories {x1, x2, ...xn}, then the uncertain evidence of that node can be specified as likelihood ratios Lx1

: Lx2
: ... : Lxn

.
In order to perform inference with this type of uncertainty, we can insert a virtual evidence node Z as a child of the evidence
node X and instantiate that node as true. Hence, we achieve the following

P (Z = 1|x1) : P (Z = 1|x2)... : P (Z = 1|xn) = Lx1
: Lx2

: ... : Lxn (13)

An illustration of virtual evidence is shown in Figure 7.
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Figure 7. Virtual evidence node Z as a child of the evidence node X .

Now, the observation probability of evidence node X can be achieved from an independent measurement device and we
denote this as Pobs(X). According to Theorem 5 in [1], we can convert this observation probability to likelihood ratios of
the virtual node as follows

P (Z = 1|x1) : P (Z = 1|x2)... : P (Z = 1|xn) =
Pobs(x1)

P (x1)
:
Pobs(x2)

P (x2)
: ... :

Pobs(xn)

P (xn)
(14)

where P (X) is the marginal probability of node X . In our case, we model the triplets with three random categorical variables
S,R, and O, and obtain the observation probabilities of these variables from a trained deep learning-based measurement
model θm. Hence, we can write
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P (Zs = 1|s1) : .. : P (Zs = 1|sn) =
PI,θm(s1)

P (s1)
: .. :

PI,θm(sn)

P (sn)

P (Zo = 1|o1) : .. : P (Zo = 1|on) =
PI,θm(o1)

P (o1)
: .. :

PI,θm(on)

P (on)

P (Zr = 1|r1) : .. : P (Zr = 1|rn) =
PI,θm(r1)

P (r1)
: .. :

PI,θm(rn)

P (rn)

(15)

B. Special cases of MAP inference
In this section, we describe some special cases of MAP inference. For increased readability, we rewrite the MAP inference

equation here

S∗, R∗, O∗ = arg max
S,R,O

P (S,R,O|Zs = 1, Zo = 1, Zr = 1)

= arg max
S,R,O

PI,θm(S)PI,θm(O)
PI,θm(R)

P (R)
P (R|S,O)

(16)

1. FREQ baseline [8], subject and object is known: In this scenario, we predict the relationship label of a triplet only
from its known subject (S = Sg) and object label (O = Og). Hence, we can write

PI,θm(S) = 1{S=Sg}

PI,θm(O) = 1{O=Og}
(17)

Since there is no image measurement for the relationship label, the MAP Eqn. (16) becomes

R∗ = argmax
R

P (R|S = Sg, O = Og)

= argmax
R

P (R|Sg, Og)
(18)

This is essentially the FREQ baseline proposed by [8].

2. Synthetic relationship, subject, and object is known: The within-triplet Bayesian network is a generative model for
subject, object, and relationship. Hence, we can generate synthetic samples of relationship Rsyn given subject and
object as following

Rsyn ∼ P (R|Sg, Og) (19)

3. Uncertain evidence for relationship, subject, and object is known: In presence of the uncertainty associated only
with the relationship label from measurement model θm, the MAP decision becomes

R∗ = argmax
R

P (R|Zr = 1, S = Sg, O = Og)

= argmax
R

PI,θm(R)

P (R)
P (R|Sg, Og)

(20)

This is essentially the PredCls setting [7], where we infer the relationship given the categories and bounding boxes of
the subject and object of a triplet. Visualization is provided in Figure 8.

4. No Bayesian network, only evidence uncertainties: In this case, we infer each component of a triplet independently
from its measurement uncertainty. Hence, the MAP decision becomes as follows

S∗ = argmax
S

PI,θm(S)

O∗ = argmax
O

PI,θm(O)

R∗ = argmax
R

PI,θm(R)

(21)

This is essentially predicting the labels of a triplet from the probabilities that the classification head of the SOTA deep
learning-based methods produce.

From the discussion above, we can conclude that the MAP inference in Eqn. (16) is the most general framework and all the
other cases can be considered as special cases.



Figure 8. (a) Uncertain evidence of a triplet from VCTree [6] in PredCls setting has the highest support for a majority class ‘near’. We
also see competing minority counterparts such as ‘in front of’ and ‘behind’; (b) debiasing is increasing the support for minorities. It
also amplifies noise by increasing the support for all classes; (c) restoring within-triplet prior by P (R|S,O). The noisy responses in all
irrelevant classes are completely removed by the prior. As we observe from (a) to (c), the final MAP inference changes the measured
relationship label from a majority class ‘near’ to a minority class ‘in front of’.

C. Constrained optimization for conflict resolution
In SGCls and SGDet settings, we are required to infer object labels along with relationship labels. Any object entity Ei

can reside as subjects or objects in multiple triplets and after MAP inference with Eqn. (16), the inferred values of objects in
different triplets may contain different values. We denote TS

i as the set of triplets where Ei acts as the subject and TO
i as the

set of triplets where Ei acts as the object -

TS
i = {tp : tp(S) = Ei}

TO
i = {tq : tq(O) = Ei}

(22)

Now, we define an optimization function by summing up all the posterior probabilities of within-triplet Bayesian network
from all triplets in TS

i and in TO
i as following

f =
∑

tp∈TS
i

P (Stp , Rtp , Otp |ZStp
= 1, ZRtp

= 1, ZOtp
= 1) +

∑
tq∈TO

i

P (Stq , Rtq , Otq |ZStq
= 1, ZRtq

= 1, ZOtq
= 1)

(23)

Evaluating this optimization function for every possible combination of subjects, relationships, and objects in multiple con-
nected triplets is challenging and hence we propose a two-step alternating approach. In the first step, for each entity, we
modify the measurement probabilities of all nodes connected to object entity Ei according to the inferred values. In this way,
we essentially reduce all the evidence uncertainty and only keep the uncertainty to object entity Ei. The modification can be
written as follows

PI,θm(Stp) = PI,θm(Otq ) = PI,θm(Ei)

PI,θm(Rtp) = 1{Rtp=rItp}
, ∀tp ∈ TS

i

PI,θm(Otp) = 1{Otp=oItp}
, ∀tp ∈ TS

i

PI,θm(Stq ) = 1{Stq=sItq}
, ∀tq ∈ TO

i

PI,θm(Rtq ) = 1{Rtq=rItq}
, ∀tq ∈ TO

i

(24)

We can simplify the objective function using Eqn. (23) and Eqn. (16) by



f =
∑

tp∈TS
i

PI,θm(Stp)P (R = rItp |Stp , O = oItp) +
∑

tq∈TO
i

PI,θm(Otq )P (R = rItq |S = sItq , Otq )

=
∑

tp∈TS
i

PI,θm(Ei)P (R = rItp |Ei, O = oItp) +
∑

tq∈TO
i

PI,θm(Ei)P (R = rItq |S = sItq , Ei)
(25)

Finally, we can simplify f(.) and infer Ei as

f(Ei) = PI,θm(Ei)

( ∑
tp∈TS

i

P (R = rItp |Ei, O = oItp)

+
∑

tq∈TO
i

P (R = rItq |S = sItq , Ei)

)
E∗

i = argmax f(Ei)

(26)

In the second step, we update the relationship label of each triplet based on the updated subject and object values

R∗
j = argmax

R
P (Rj |Zr = 1, S = sj , O = Oj)

= argmax
R

PI,θm(Rj)

P (Rj)
P (Rj |S = sj , O = oj)

(27)

We include a pseudo-code for the constrained optimization in Algorithm 1.

Algorithm 1 Constrained Optimization for conflict resolution

Require: Inferred scene graph GInf
I from within triplet inference with potential conflicts in objects, maximum iteration N

G0I ← GInf
I

n← 1
while n < N do

for each Ei ∈ Gn−1
I do ▷ update each object value with constraints

find triplets where Ei acts as subject and object by Eqn. (22)
modify uncertain evidence of connected triplets except Ei by Eqn. (24)
infer E∗i by Eqn. (26)

end for
for each Rj ∈ Gn−1

I do ▷ update each relationship with updated object values
infer R∗j by Eqn. (27)

end for
Construct new scene graph GnI = {E∗,R∗}
if GnI == Gn−1

I then
return GnI

else
Gn−1
I = GnI

n = n+ 1
end if

end while
Ensure: Inferred scene graph GnI with no conflict in objects

D. Pseudo-code for sample augmentation
We include a pseudo-code for sample augmentation in Algorithm 2. The concatenation of triplet entities is done by simply

adding the class labels by a ‘space’ to make it a valid sentence that can be fed into a sentence-embedding model to generate
embeddings.



Algorithm 2 Sample augmentation using embedding similarity

Require: Training scene graphs GT , sentence embedding model f(T ) for triplet T , distance measure ϕ(f(Ta), f(Tb)), augmentation
parameter ϵ, top-Ne object entitiesNe, top-Nr relationshipsNr .
for each Gi ∈ GT do

for each Rj(Sj , Oj) ∈ Gi do
if Sj ∈ Ne and Oj ∈ Ne then

if Rj ∈ Nr then
Na(Sj , Rj , Oj)← Na(Sj , Rj , Oj) + 1

else if Rj ̸∈ Nr then
Ti ← concat(Sj , Rj , Oj)
distmin ← minT←concat(Sj ,R,Oj)∀R∈Nr ϕ(T, Ti)
Tmin ← argminT←concat(Sj ,R,Oj)∀R∈Nr ϕ(T, Ti)
if distmin < ϵ then

Sj , Rmin, Oj ← Tmin

Na(Sj , Rmin, Oj)← Na(Sj , Rmin, Oj) + 1
end if

end if
end if

end for
end for

Ensure: Augmented count Na(S,R,O) ∀S ∈ Ne, ∀R ∈ Nr, ∀O ∈ Nes

E. Computational complexity
In this section, we compute the computational complexities of MAP inference and constrained optimization.

E.1. Complexity for MAP inference

For SGCls and SGDet settings, the MAP inference in Eqn. (16) requires inferring Ns × No × Nr times where Ns, Nr,
and No denote the number of configurations for subject, relationship, and objects. However, the measured probabilities of
these three quantities PI,θm(S), PI,θm(O), and PI,θm(R) contain many zeros and hence we choose only top Ks,Ko, and
Kr values of each triplet measurement. In this way, the computational complexity for top-K triplets in an image becomes
O(K ×Ks ×Kr ×Ko).

E.2. Complexity for constrained optimization

The object updating for each object Ei in Eqn. (26) requires computing probability for Ne object categories and the
relationship updating in Eqn. (27) occurs Nr times for each relationship Rj . If the number of objects in an image is No and
we want to infer top-K relationships, the total complexity becomes O(No×Ne+K×Nr). In the SGCls setting, we choose
Ks = Ko = 3 for all baseline models. These values for the SGDet setting are provided in Table 7 for all baseline models.

Baseline Models IMP [7] VCTree [6] MOTIF [8] Unb-MOTIF [8] DLFE-MOTIF [2] BGNN [3]

Ks,Ko 3 3 3 3 1 1

Kr 10 10 10 10 50 50

No 32 32 32 32 80 80

Table 7. Ks,Kr, and Ko for all baseline models in SGDet setting. We choose lower Ks and Ko when No = 80.

F. Results and analysis of posterior inference with original and augmented samples
We include a performance with original and augmented samples for all three tasks PredCls, SGCls, and SGDet with Visual

Genome and GQA in Table 8. We report both R@K and mR@K. Baseline SGG models are implemented by the codebase
of [5], [2], and [3]. mR@K improves in all baseline models and R@K decreases in MOTIF, VCTree, BGNN, and DLFE for
VG and in all baseline models for GQA. The decreasing of R@K is significantly less in IMP [7], a relatively older method of



SGG. We find this result as promising since the balance between head and tail classes is better achieved with IMP. Inference
with original samples improves the R@K performance of the debiased predictions from (1) Unb- [5] and (2) DLFE- [2]. We
omitted SGCls performance of BGNN [3] since their trained SGCls checkpoint is not released yet. We also include the full
comparison with the other de-biasing techniques in Table 9. We achieve better performance in all settings except in SGDet
by [2].

DS Method
Recall and Mean Recall @K

PredCls SGCls SGDet

R@20/50/100 mR@20/50/100 R@ 20/50/100 mR@20/50/100 R@20/50/100 mR@20/50/100

VG

IMP⋄ [7] 54.9/ 61.6/ 63.6 9.2/ 11.5/ 12.4 32.9/ 36.1/ 37.1 4.9/ 5.7/ 6.0 21.0/ 28.0/ 31.3 3.3/ 4.9/ 5.8
Inf-IMP (org) 55.2/ 62.5/ 64.8 15.4/ 20.5/ 22.7 33.7/ 37.3/ 38.5 7.3/ 9.3/ 10.2 20.6/ 27.3/ 30.6 4.8/ 7.6/ 9.2
Inf-IMP (aug) 53.2/ 59.9/ 62.0 18.6/ 25.1/ 28.3 32.6/ 36.0/ 37.1 9.7/ 12.6/ 14.1 20.1/ 26.5/ 29.5 5.3/ 8.6/ 10.7

MOTIF⋄ [8] 48.9/ 59.6/ 64.0 8.4/ 12.9/ 15.5 31.2/ 36.5/ 38.5 5.5/ 7.7/ 8.8 20.7/ 26.9/ 30.5 3.9 / 5.6/ 6.7
Inf-MOTIF (org) 46.4/ 56.4/ 60.4 13.0/ 20.1/ 24.4 29.9/ 34.8/ 36.7 8.5/ 11.9/ 13.9 19.7/ 25.6/ 29.1 5.8/ 8.1/ 10.0
Inf-MOTIF (aug) 42.5/ 51.5/ 55.1 15.7/ 24.7/ 30.7 27.7/ 32.2/ 33.8 10.2/ 14.5/ 17.4 18.6/ 24.0/ 27.1 6.6/ 9.4/ 11.7

VCTree⋄ [6] 59.1/ 65.5/ 67.2 12.0/ 15.4/ 16.6 40.4/ 44.2/ 45.1 7.4/ 9.2/ 9.8 24.0/ 29.9/ 32.6 4.7/ 6.2/ 7.0
Inf-VCTree (org) 56.6/ 62.5/ 64.1 17.7/ 22.7/ 24.8 39.3/ 42.9/ 43.8 10.7/ 13.5/ 14.6 23.4/ 29.1/ 31.6 6.3/ 8.4/ 9.5
Inf-VCTree (aug) 54.0/ 59.5/ 61.0 21.1/ 28.1/ 30.7 37.4/ 40.7/ 41.6 13.6/ 17.3/ 19.4 22.3/ 27.7/ 30.1 7.6/ 10.4/ 11.9

Unb-MOTIF⋄ [5] 33.4/ 45.9/ 51.2 17.9/ 24.8/ 28.7 20.5/ 26.3/ 28.8 9.8/ 13.2/ 15.1 11.8/ 16.3/ 19.5 6.4/ 8.7/ 10.5
Inf-Unb-MOTIF (org) 34.2/ 47.2/ 52.8 18.0/ 25.6/ 30.4 21.1/ 27.4/ 30.2 10.0/ 13.9/ 16.3 12.1/ 17.0/ 20.7 6.5/ 9.1/ 11.1
Inf-Unb-MOTIF (aug) 31.5/ 42.4/ 46.8 19.2/ 28.6/ 35.7 19.0/ 24.1/ 26.3 10.7/ 15.9/ 18.9 10.9/ 15.1/ 18.0 6.6/ 9.6/ 11.9

DLFE-MOTIF♦ [2] 45.7/ 51.6/ 53.3 22.0/ 26.9/ 28.8 25.4/ 28.8/ 29.7 12.8/ 15.6/ 16.4 18.2/ 24.2/ 28.0 8.0/ 10.6/ 12.6
Inf-DLFE-MOTIF (org) 49.4/ 55.7/ 57.5 25.4/ 31.4/ 33.9 27.8/ 31.2/ 32.2 14.3/ 17.5/ 18.4 20.1/ 26.5/ 30.3 9.6/ 12.7/ 14.9
Inf-DLFE-MOTIF (aug) 38.0/ 43.3/ 44.8 28.5/ 35.3/ 38.2 21.4/ 24.3/ 25.1 16.3/ 19.7 /20.7 15.5/ 20.6/ 23.8 10.6/ 14.1/ 16.8

BGNN♦ [3] 50.4/ 58.2/ 60.4 24.9/ 29.5/ 31.8 -/ -/ - -/ - /- 23.1/ 30.3/ 35.0 7.4/ 10.4/ 12.3
Inf-BGNN (org) 50.2/ 57.6/ 59.8 25.4/ 30.3/ 33.1 -/ -/ - -/ - /- 22.1/ 28.9/ 33.4 8.5/ 12.0/ 14.5
Inf-BGNN (aug) 48.2/ 55.4/ 57.5 26.2/ 32.2/ 34.3 -/ -/ - -/ - /- 20.0/ 26.2/ 30.1 9.4/ 13.2/ 16.1

GQA

IMP⋄ [7] 57.0/ 61.9/ 63.7 11.2/ 13.0/ 13.7 32.3/ 34.3/ 34.8 6.6/ 7.5/ 7.80 20.8/ 25.4/ 27.4 4.2/ 5.8/ 6.6
Inf-IMP (org) 56.2/ 62.0/ 64.2 29.1/ 35.9/ 38.3 31.1/ 33.3/ 34.1 16.3/ 19.1/ 20.3 19.2/ 23.5/ 25.6 8.6/ 12.3/ 14.4
Inf-IMP (aug) 56.0/ 61.9/ 64.0 28.5/ 35.1/ 37.5 31.0/ 33.2/ 34.0 16.2/ 19.1/ 20.3 19.2/ 23.5/ 25.6 8.5/ 12.2/ 14.1

MOTIF⋄ [8] 64.0/ 68.3/ 69.7 17.5/ 20.7/ 21.6 33.2/ 34.9/ 35.4 9.8/ 10.9/ 11.3 23.9/ 27.8/ 29.4 5.8/ 7.4/ 8.3
Inf-MOTIF (org) 59.0/ 62.9/ 64.1 31.9/ 37.8/ 39.8 30.3/ 31.9/ 32.4 16.8/ 19.0/ 19.9 21.9/ 25.5/ 26.9 11.6/ 14.4/ 15.9
Inf-MOTIF (aug) 59.0/ 63.0/ 64.2 32.0/ 37.9/ 40.1 30.2/ 31.8/ 32.3 16.8/ 19.1/ 20.0 21.9/ 25.5/ 26.9 11.7/ 14.3/ 15.8

VCTree⋄ [6] 64.4/ 68.8/ 70.1 18.8/ 22.1/ 23.0 33.2/ 35.0/ 35.6 9.2/ 10.6/ 11.0 23.2/ 27.2/ 28.8 5.5/ 7.0/ 7.8
Inf-VCTree (org) 59.0/ 62.8/ 64.1 33.7/ 39.1/ 41.3 30.5/ 32.3/ 32.9 16.6/ 19.1/ 19.9 21.3/ 25.1/ 26.5 11.0/ 13.6/ 15.1
Inf-VCTree (aug) 59.0/ 62.8/ 64.1 34.1/ 39.4/ 41.6 30.5/ 32.2/ 32.8 16.6/ 19.2 /20.0 21.3/ 25.0/ 26.4 11.0/ 13.6/ 15.1

Unb-MOTIF⋄ [5] 43.2/ 51.9/ 55.9 19.4/ 27.8/ 32.3 21.6/ 26.1/ 28.1 10.4/ 14.1/ 16.3 13.5/ 18.2/ 21.6 7.7/ 10.8/ 12.9
Inf-Unb-MOTIF (org) 41.4/ 50.1/ 53.9 23.1/ 34.9/ 41.3 20.6/ 24.9/ 26.9 11.9/ 17.3/ 20.7 12.5/ 16.8/ 19.9 8.7/ 12.4/ 14.8
Inf-Unb-MOTIF (aug) 41.4/ 49.9/ 53.6 22.9/ 34.5/ 40.8 20.5/ 24.8/ 26.7 11.9/ 17.2/ 20.6 12.5/ 16.8/ 19.9 8.7/ 12.4/ 14.8

Table 8. Recall@K and Mean Recall@K results of inference with the prefix ‘Inf-’. Here, (org) denotes that BN is learned using original
training samples and (aug) denotes that BN is learned using augmented samples. ⋄ – released by [5], ♦ – released by respective authors.
Inference with original samples improves the minority classes and augmentation achieves more improvement over those classes.

F.1. Qualitative improvement

In Figure 10, a qualitative representation is shown where we see the tail relationships such as ‘eating’ and ‘growing on’
are improved with BN inference for different baseline models.

F.2. Statistical significance test

We partition the full testing dataset into 264 folds with each fold having 100 images. For each fold, we compute the
mean recall@100 in PredCls setting for baseline model [6] and for our proposed model. We perform a one-sided Wilcoxon
rank sum test between these two groups of performance measures and obtain p < 0.05 which denotes that the performance
increase in mean recall of our proposed method is statistically significant.

F.3. Visualization of relationship replacement

In Figure 9, we visualize the statistics of relationship replacement where we observe that through posterior inference the
most frequent class ‘on’ is being replaced by ‘sitting on’ in 0.7% cases and by ‘standing on’ in 1.7% cases. Similarly, ‘above’
is being replaced by ‘over’ in 35% cases and ‘has’ is being replaced by ‘with’ in 8.8% cases.
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Figure 9. Relationship replacement of measurement by posterior inference. head relationships such as ‘on’, ‘has’, and ‘near’ are being
replaced by tail ones such as ‘sitting on’, ‘with’, and ‘walking on’.

Recall and Mean Recall @K

Method
PredCls SGCls SGDet

R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

VCTree [6] 65.5/ 67.2 15.4/ 16.6 44.2/ 45.1 9.2/ 9.8 29.9/ 32.6 6.2/ 7.0

Unb-VCTree [5] 47.2/ 51.6 25.4/ 28.7 25.4/ 27.9 12.2/ 14.0 19.4/ 23.2 9.3/ 11.1

DLFE-VCTree [2] 51.8/ 53.5 25.3/ 27.1 28.0/ 28.9 18.2 /19.0 22.6/ 26.2 11.7/ 13.6

Inf-VCTree (Ours) 59.5/ 61.0 28.1/ 30.7 40.7/ 41.6 17.3/ 19.4 27.7/ 30.1 10.4/ 11.9

Table 9. Comparison with other de-biasing methods in all settings. Our method achieves significantly higher recall compared to the other
debiased methods in PredCls and SGCls without any re-training.
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Figure 10. Improvement of tail relationships for IMP [7], MOTIF [8], and VCTree [6]. We visualize the improvement of inference with
BN learned from both original and augmented samples. This is a PredCls setting where we know the object locations and classes. The red
arrow indicates incorrect relationship and the green arrow indicates correct relationships
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