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This document supplements the main text with (1) More
details about the creation of the dataset. (2) More statistics
about the dataset’s contents. (3) More example images from
the dataset. (4) Experimental results referred to in the main
text. (5) Visual presentation of the qualitative results.

In addition to this document, please see the Supple-
mental Video, where the motions in the dataset are pre-
sented. The video, data, and related materials can be found
athttps://bedlam.is.tue.mpg.de/

BEDLAM: Definition

noun
A scene of uproar and confusion: there was bed-
lam in the courtroom.

The name of the dataset refers to the fact that the synthetic
humans in the dataset are animated independently of each
other and the scene. The resulting motions have a chaotic
feel; please see the video for examples.

1. Dataset creation

Body shape diversity. The AGORA [24] dataset has 111
adult bodies in SMPL-X format [25]. These bodies mostly
correspond to models with low BMI. Why do we use the
bodies from AGORA? To create synthetic clothing we fo-
cused on creating synthetic versions of the clothed scans in
AGORA. That is, we create “digital twins” of the AGORA
scans. Our hope is that having 3D scans paired with sim-
ulated digital clothing will be useful for research on 3D
clothing. Thus our 3D clothing is designed around AGORA
bodies. Note that we do not make use of this property in
BEDLAM but did this to enable future use cases. To in-
crease diversity beyond AGORA, we sample an additional
80 male and 80 female bodies with BMI > 30 from the
CAESAR dataset [30].
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Figure 1. Body diversity in BEDLAM. Top: BMI distribution of
the 271 different body shapes uses in BEDLAM. Bottom: BMI
distribution in all rendered videos; 55009 in total. Blue bars repre-
sent bodies from the AGORA dataset, while orange bars represents
high-BMI bodies from CAESAR dataset. BEDLAM uses both to
cover a wide range of BMIs.

Note that the AGORA and CAESAR bodies are repre-
sented in gendered shape spaces using 10 shape compo-
nents. When we render the images, we use these gendered
bodies. For BEDLAM we use a gender-neutral shape space,
enabling networks to automatically learn the appropriate
body shape within this space, effectively learning to recog-
nize gender. To make the ground truth shapes for BEDLAM
in this gender-neutral space, we fit the gender-neutral model
with 11 SMPL-X shape components to the gendered bodies.
This is trivial since the meshes are in full correspondence.
We use 11 shape components because, in the gender neutral
space, the first component roughly captures the differences
between male and female body shapes. Thus, adding one
extra component means that the SMPL-X ground truth (GT)
approximates the original gendered body shapes. There is
some loss of fidelity but it is minimal; the V2V error be-
tween the rendered bodies and the GT bodies in neutral pose



is 2.4mm.

Ideally, we want a diversity of body shapes, from slim
to obese. Figure | shows the distribution of body BMIs
in the training set. Specifically, we show the distribution
of AGORA and CAESAR bodies, from which we sample.
We also show the final distribution of BMIs in the training
images.

Notice that the AGORA bodies are almost all slim. We
add the CAESAR bodies to increase diversity and enable
the network to predict high-BMI shapes. There is a dip
in the distribution between 25-30 BMI. This happens to be
precisely where the peak of the real population lies. De-
spite this lack of average BMIs, BEDLAM does a good job
of predicting body shape, suggesting that it has learned to
generalize.

Note that is it not clear what the right distribution for
training is — one could mimic the distribution of a specific
population or uniformly sample across BMIs. We plan to
evaluate this and increase the diversity of the dataset; please
check the project page for updates. Future work should also
expand the types of bodies used to include children and peo-
ple with diverse body types (athletes, little people, scoliosis,
amputees, etc.).

Note that draping high-BMI models in clothing is chal-
lenging because the mesh self-intersects, causing failures
of the cloth simulation. Future work could address this by
automatically removing such intersections. Additionally,
there is little motion capture data of obese people. So we
need to retarget AMASS motions [17] to high-BMI sub-
jects. But this is also problematic. Naive retargeting of
motion from low-BMI bodies to high-BMI bodies results
in interpenetration.

Here we use a simple solution to this problem. Given a
motion sequence from AMASS, we first replace the original
body shape with a high-BMI body. Then, we optimize the
pose for each frame to minimize the body-body intersec-
tion using the code provided by TUCH [21]. Although this
resolves interpenetration between body parts, it can create
jittery motion sequences. As a remedy, we then smooth the
jittery motion with a Gaussian kernel. Although this sim-
ple solution does not guarantee a natural motion without
body-body interpenetration, it is sufficient to create a good
amount of valid motion sequences for larger bodies. Future
work should address the capture or retargeting of motion for
high-BMI body shapes.

Skin tone diversity. Our skin tones were provided by
Meshcapade GmbH and are categorized into several ethnic
backgrounds, with skin-tone variety within each category.
To generate BEDLAM subjects, we sample uniformly from
the Meshcapade skins. This means the final renders are
sampled with the following representations
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Figure 2. Clothing deformation is well modeled by physics-based
simulation.

e Asian 24%,
 Hispanic 6%,

¢ Indian 20%,

* Mideast 6%,

¢ South East Asian 10%,
e White 14%.

The same proportions hold in the training, validation and
test sets.

Motion sampling. Due to the imbalanced distribution of
motions in AMASS, we use the motion labels from BA-
BEL [27] to sample the motions for a wide and even cov-
erage of the motion space. After visualizing the motions in
each labelled category, we manually assign the number of
motions sampled from each category. Specifically, we sam-
ple 64 sequences for motions such as “turn”, “cartwheel”,
“bend”, “sit ”, “touch ground”, etc. We sample 4 sequences
from motion labels containing less pose variation, such as
“draw”, “smell”, “lick”, “listen ”, “look”, etc. We do not
sample any sequences from labels indicating static poses,
for example, “stand”, “a pose”, and “t pose”. For the re-
maining motion labels, we sample 16 random sequences
from each. Each sampled motion sequence lasts from 4 to
8 seconds.

Clothing. Our outfits are designed to reflect real-world
clothing complexity. We have layered garments and de-
tailed structures such as pleats and pockets. We also have
open jackets and many wide skirts, which usually have large
deformation under different body motion. These deforma-
tions can only be well modeled with a physics-based simu-
lation. See Fig. 2 for examples.

Putting multiple people in the scene. For each sequence
we randomly select between 1 and 10 subjects. For each
subject a random animation sequence is selected. The
shortest animation sequence determines the image sequence



Figure 3. Examples of animation ground trajectories. Top-view
pelvis trajectories, color coded by subject. These trajectories are
automatically placed so that the bodies do not collide. Here, 15
sample sequences are shown with varying numbers of subjects.

length to ensure that there are no “frozen” body poses. We
then pick a random sub-motion of the desired sequence
length from each body motion in the sequence. Next the
body motions are placed in a desired target area of the scene
at a randomized position with a randomized camera yaw.
To avoid overlapping body motions and collisions with the
3D environment, we use 2D binary ground plane occupancy
masks of the pelvis location for each randomly placed mo-
tion. The order of motion placement is determined by the
ground plane pelvis coverage bounding box. This ensures
that walking motions, which are challenging to place in a
limited space, have the maximum free ground space avail-
able before more constrained motions fill the remaining
space; cf. [1]. Generated root trajectories can be seen in
Fig. 3. This is a simple strategy (cf. [1]) and future work
should explore the generation or placement of motions that
make more sense together and with respect to the scene.
One direction would use MIME [38] to take human motions
and produce 3D scenes that are consistent with them.

Additional limitations: Hair and shadows. Designing
high-quality hair assets requires experienced artists. Here
we used a commercial hair solution based on “hair cards”;
these are simpler than strand-based methods. The downside
is that they require the use of temporal accumulation buffers
in the deferred rendering system. This can introduce ghost-
ing artefacts when rendering fast motions at low frame rates.
We also observed hair shader illumination issues under cer-
tain conditions. When used with the new real-time global
illumination system (Lumen) in Unreal Engine 5 (UES5),
some hairstyles exhibit a strong hue shift. Also, the num-
ber of hair colors that we have is limited. When used in
the HDRI environments, with ray traced HDRI shadows en-
abled, most hairstyles turn black. For this reason we do not
use ray traced HDRI shadows in the HDRI environment ren-

ders, though the 3D scenes do have cast shadows. Adding
ground contact shadows to the HDRI scenes would require
the use of a separate ground shadow caster render pass to
composite the shadow into the image. We have not pursued
this because we plan to upgrade the hair assets to remove
these issues for future releases of the dataset.

Other body models. BEDLAM is designed around
SMPL-X but many methods in the field use SMPL [15].
In particular, most, if not all, current methods that process
video sequences are based on SMPL and not SMPL-X. We
will provide the ground truth in SMPL format as well for
backward compatibility. We also plan to support other body
models like GHUM [36] or SUPR [22] in the future.

Additional ground truth data: Depth maps and seman-
tic segmenation. Since BEDLAM is rendered with UES,
we can render out more than RGB images. In particular, we
render depth maps and segmentation masks as illustrated in
Fig. 4. The segmentation information includes semantic la-
bels for hair, clothing and skin. With these additional forms
of ground truth, BEDLAM can be used to train and eval-
uate methods that regress depth from images, fit bodies to
RGB-D data, perform semantic segmentation, etc.

Assets. We will make available the rendered images and
the SMPL-X ground truth. We also release the 3D clothing
and clothing textures as well as the skin textures. We also
will make available the process to create more data. All
assets used are described in Table 1. The table provides
a “shopping list” to recreate BEDLAM. The only asset that
presents a problem for recreating BEDLAM is the hair since
new licenses of the the hair assets prohibit training of neural
networks (we acquired the data under an older license). This
motivates us to develop new hair assets with an unrestricted
license. More information about how to create new data is
provided on the project website.

2. Comparison to other datasets

Table 2 compares synthetic datasets mentioned in the re-
lated work section of the main paper. Here we only sur-
vey methods that provide images with 3D ground truth; this
excludes datasets focused solely on 3D clothing modeling.
Some of the listed datasets are not public but we include
them anyway and some information is not provided in the
publications (“unk.” in the table).

Methods vary in terms of the number of subjects, from a
handful of bodies to over 1000 in the case of Ultrapose. Ul-
trapose, however, is not guaranteed to have realistic bodies
and the dataset is biased towards mostly thin Asian bodies.
The released dataset also has blurred faces. The number
of frames also varies significantly among datasets. To get a
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Figure 4. Additional ground truth: Depth maps and semantic segmentation masks. The segmentation maps are color coded for each

individual and each material type (hair, clothing, skin).

Asset Type ‘ Name ‘ Source

Body Texture Various Meshcapade GmbH, https://meshcapade.com

Hair Prime Hairstyles Reallusion, https://www.reallusion.com/ContentStore/Character-Creator/Pack/Prime-hairstyles/
Hair Trendy Hairstyles for Men Vol. 1 Reallusion, https://www.reallusion.com/ContentStore/Pack/universal-hairstyles-vol-1

Hair Trendy Hairstyles for Men Vol. 2 Reallusion, https://www.reallusion.com/ContentStore/Pack/universal-hairstyles-vol-2

Environment - HDRI | Various free HDRIs
Environment - 3D ArchViz User Interface 3
Environment - 3D Big Office

Environment - 3D High School Basketball Gym
Environment - 3D Sports Stadium

Environment - 3D

Poly Haven, CCO 1.0 Universal Public Domain Dedication, https://polyhaven.com/hdris
https://www.unrealengine.com/marketplace/en-US/product/archviz-user-interface-3
https://www.unrealengine.com/marketplace/en-US/product/big-office
https://www.unrealengine.com/marketplace/en-US/product/high-school-basketball-gym-day-night-afternoon-midnight-lighting
https://www.unrealengine.com/marketplace/en-US/product/sports-stadium

Suburb Neighborhood House Pack | https://www.unrealengine.com/marketplace/en-US/product/suburb-neighborhood-house-pack-modular

Table 1. Third-party assets used for rendering BEDLAM. All 3D environments are from the Unreal Marketplace.

sense of the diversity of images, one must multiply the num-
ber of frames by the average number of subjects per image
(Sub/image).

The methods vary in how images are generated. The
majority composite a rendered 3D body onto an image
background. This has limited realism. Human3.6M has
mixed reality data in which simple graphics characters
are inserted into real scenes using structure from motion.
Mixed/composite methods capture images of real people
with a green screen in a multi-camera setup. They can then
get pseudo-ground tuth and composite the original images
on new backgrounds. In the table, “rendered” means that
the synthetic body is rendered in a scene (HDRI panorama
or 3D model) with reasonable lighting. These are the most
realistic methods.

Clothing in previous datasets takes several forms. The
simplest is a texture map on the SMPL body surface (like
in SURREAL [34]). Some methods capture real clothing or
use scans of real clothing. Another class of methods uses
commercial “rigged” models with rigged clothing. This
type of clothing lacks the realism of physics simulation.
Most methods that do physics simulation use a very limited
number of garments (often as few as 2) due to the complex-
ity and cost.

It is hard to get good, comparable, data about motion di-
versity in these datasets. Here we list numbers of motions
gleaned from the papers but these are quite approximate.
Some of the low numbers describe classes of motions that
may be repeated with some unknown number of variations.
At the same time, some of the larger numbers may lack di-

vesity. With BEDLAM, we are careful to sample a diverse
set of motions.

For comparison with real-image datasets, 3DPW con-
tains 60 sequences captured with a moving camera, with
roughly 51K frames, and 7 subjects in a total of 18 cloth-
ing styles. With roughly 2 subjects per frame, this gives
around 100K unique bounding boxes. Human3.6M train-
ing data has 1,464,216 frames captured by 4 static cameras
at 50 fps, which means there are 366K unique articulated
poses. If one reduces the frame rate to 30 fps, that gives
roughly 220K bounding boxes of 5 subjects performing 15
different types of motions. We observe that the total num-
ber of frames is less important than the diversity of those
frames in terms of scene, body, pose, lighting, and clothing.

3. Implementation Details

BEDLAM-CLIFF-X. Since most HPS methods output
SMPL bodies, we focus on that in the main paper and de-
scribe the SMPL-X methods here. Specifically, we use
BEDLAM hand poses to train a full body network called
BEDLAM-CLIFF-X. For this, we train a separate hand net-
work on hand crops from BEDLAM with an HMR architec-
ture but replace SMPL with the MANO hand [3 1], which is
compatible with SMPL-X. We merge the body pose out-
put 6, € R?2%3 from BEDLAM-CLIFF (see Sec. 4.1 of
the main paper) and hand pose output ), € R6*3 from
the hand network to get the full body pose with articulated
hands 6, € R?5*3. The face parameters, 04y, Ojcye and
Oreye are kept as neutral. Since both BEDLAM-CLIFF and
the hand network output different wrist poses, we cannot



Dataset ‘ #Sub ‘ #Frames ‘ Image Subj/image | Clothing ‘ Motion ‘ Ground truth
3D HUMANS-Train [7] 19 50K composite 1 captured >15 SMPL
SURREAL [34] 145 | =~=6.5M composite 1 texture > 2000 SMPL
Human3.6M [§] few 7.5K mixed reality 1 rigged unk. 3D joints
MPI-INF-3DHP-Train [ 18] 8 | >1.3M | mixed/composite | 1 real 8+ 3D joints
MuCo-3DHP [19] 8 | ~400K | mixed/composite | 1-4 real 8 3D joints
Danécek et al. [5] 10 unk. rendered (simple) | 1 physics 20 min unk.
Liang and Lin [12] 100 128K composite 1 physics 5 seqs SMPL
BCNet (a) [9] 285 13K composite 1 rigged unk. SMPL
BCNet (b) [9] 3048 17K composite 1 static physics 55 SMPL
Liuetal. [14] unk. 3M composite 1 physics 5k SMPL
Ultrapose [37] >1000 | ~500K composite 1 physics n/a dense points
3DPeople [26] 80 | ~2.5M composite 1 rigged 70 3D joints
HSPACE [1] 100 IM rendered 5 avg. rigged (100) 100 GHUM
GTA-Human [3] >600 | ~1.4M game 1 rigged 20K SMPL
AGORA [24] >350 ~18K rendered 5-15 scans n/a | SMPL-X, SMPL
BEDLAM (ours) | 217 | 380K |  rendered | 1-10 | physics (110) | 2311 | SMPL-X

Table 2. Comparison of synthetic human datasets that provide images with 3D human pose annotations. See text.

merge them directly. Hence, we train a small regressor R
to combine them.

Specifically, we define the body pose 6, = {éb, Octbows
0%, } and and hand pose 0, = {0% ... Otingers}, where

wrist

0, € R20%3 represents the first 20 pose parameters of
SMPL-X. Ry, takes global average pooled features as well
as 0, and 0, from the BEDLAM-CLIFF and hand networks,
and outputs afb = {éb’ Helbow + Aelbow’ ezjm‘st"'Awrist’
Ofingers }. Basically, Ry learns an update of the elbow
and wrist pose from the body network using information
from both the body and hand network. Since we learn only
an update on the wrist pose generated by the body network,
this prevents the unnatural bending of the wrists. Similar
to BEDLAM-CLIFF, to train BEDLAM-CLIFF-X, we use
a combination of MSE loss on model parameters, projected
keypoints, 3D joints, and an L1 loss on 3D vertices. All
other details can be found the code (see project page).

Data augmentation. A lot of data augmentation is in-
cluded during training, including random crops, scale, dif-
ferent kinds of blur and image compression, brightness and
contrast modification, noise addition, gamma, hue and satu-
ration modification, conversion to grayscale, and downscal-
ing using [2].

4. Supplemental experiments
4.1. Ablation of training data and backbones

Table 3 expands on Table 3 from the main paper, pro-
viding the full set of dataset ablation experiments. The key
takeaways are: (1) training with a backbone pretrained on
the 2D pose-estimation task on COCO produces the best
results, (2) training from scratch on BEDLAM does not

Method | Dataset | Backbone | Crops % | PA-MPJPE | MPJPE | PVE

HMR B+A scratch 100 67.9 108.8 129.0
HMR B+A ImageNet 100 57.3 91.7 108.8
HMR B+A COCO 100 47.6 79.0 93.1
CLIFF B+A scratch 100 61.7 96.5 115.0
CLIFF B+A ImageNet 100 51.8 82.1 96.9
CLIFF B+A COoCo 100 474 73.0 86.6
HMR B COCO 5 55.8 86.9 104.3
HMR B Coco 10 55.5 85.7 102.9
HMR B COCO 25 539 83.9 100.4
HMR B COCO 50 53.8 81.1 973
HMR B+A COoCco 100 47.6 79.0 93.1
CLIFF B COCO 5 54.0 80.8 96.8
CLIFF B Coco 10 53.8 79.9 95.7
CLIFF B CoCco 25 522 71.7 93.6
CLIFF B COCO 50 51.0 76.3 91.1
CLIFF B+A COoCco 100 474 73.0 86.6
HMR A COCO 100 583 94.9 109.0
HMR B COCO 100 512 80.6 96.1
HMR B+A Coco 100 47.6 79.0 93.1
CLIFF A COCO 100 54.0 88.0 101.8
CLIFF B COCO 100 50.5 76.1 90.6
CLIFF B+A COCO 100 474 73.0 86.6

Table 3. Ablation experiments on 3DPW. B denotes BEDLAM
and A denotes AGORA. Crops % only applies to BEDLAM.

work as well as either pre-training on ImageNet or COCO,
(3) training only on BEDLAM is better than training only
on AGORA, (4) training on BEDLAM+AGORA is consis-
tently better than using either alone (note that both are syn-
thetic), (5) one can get by with using a fraction of BEDLAM
(50% or even 25% gives good performance), but training
error continues to decrease up to 100%. All of this suggest
that there is still room for improvement in the synthetic data
in terms of variety.

4.2. Ablation on losses

To understand which loss terms are important, we per-
form an ablation study on standard losses used in training



HPS methods including Lgwpr, ngd, Lj2d» Ly3d, Lyog. In-
dividual losses are described here and the ablation on them
is reported in Table 4.

LsweL = |0 — 0 + 1|3 — B]|

Liza=|J - J|
Ljsa =7 — j
Lyza = ”]} - V”

Luyga = [|o = ]|

Z denotes the ground truth for the corresponding variable x
and ||| is the type of loss that can be L1 or L2. For shape
we always use L1 norm. 7, V, 3 and 6 denote the 3D joints,
3D vertices, shape and pose parameters of SMPL-X model
respectively. j and v denote the 2D joints and vertices pro-
jected into the full image using the predicted camera param-
eters similar to [11]. 6 is predicted in a 6D rotation repre-
sentation form [40] and converted to a 3D axis-angle repre-
sentation when passed to SMPL-X model. Since we set the
hand poses to neutral in BEDLAM-CLIFF, we use only the
first 22 pose parameters in the training loss. We use a sub-
set of BEDLAM training data for this ablation study. Note
that, to compute L,24 we use a downsampled mesh with
437 vertices, computed using the downsampling method
in [28]. We find this optimal for training speed and per-
formance. Since the downsampling module samples more
vertices in regions with high curvature, it helps preserve the
body shape and we can store the sampled vertices directly
in memory without the need to load them during training.
We include a 2D joints loss in all cases as it is necessary to
obtain proper alignment with the image.

As shown in Table 4, Lj;3q or L,3q alone do not pro-
vide enough supervision for training. Similar to [23] we
find that LgypL provides stronger supervision reducing the
loss by a large margin when used in combination with L34
and L;34. Surprisingly, we find that including L, 24 makes
the performance slightly worse. A plausible reason for this
could be that using L,24 provides high weight on aligning
the predicted body to the image but the mismatch between
the ground truth and estimated camera used for projection
during inference makes the 3D pose worse, thus resulting in
higher 3D error. We suspect that L,4 could provide strong
supervision in the presence of a better camera estimation
model; this is future work.

We also experiment with two different types of losses,
L1 and MSE and find that L1 loss yields lower error on
the 3DPW dataset as shown in Table 4. However, Table 5
shows that the model using L1 loss performs worse when
estimating body shape on the SSP and HBW datasets com-
pared to the model using MSE loss. This discrepancy may
be attributed to the L1 loss treating extreme body shapes as
outliers, thereby learning only average body shapes. Since

Losses | Type | PAMPIPE MPIPE MVE
Ljza MSE 59.1 86.1  105.1
Lysa MSE 56.2 83.4 96.7
LsyvipL MSE 51.3 83.8 96.7
Lswer + Lyjsa MSE 48.5 76.0 89.6
Lsmpr, + Lusa MSE 482 74.7 87.9
LSMPL + Lde + Lj3d MSE 47.6 74.2 87.2
LSMPL + Lde + Lj3d + Lv2d MSE 48.7 74.4 87.6
Ljza L1 59.4 857 1146
Ly3q L1 72.5 974 1116
LsmpL L1 50.6 83.6 96.0
LsmpL + Ljsa L1 46.9 74.7 87.6
LsvipL + Lyza L1 48.8 76.2 88.8
Lsmpr, + Lyza + Lde L1 46.9 73.0 86.0
LSMPL + Lv3d + Lj3d + Lv2d L1 47.4 73.5 86.8

Table 4. Ablation of different losses. Error on 3DPW in mm.

Losstype‘ SSP-3D ‘ HBW

| PVETSC | Height Chest Waist Hips P2Py

L1 15.1 51 73 97 64 22
MSE 14.2 51 69 88 62 22

Table 5. Losses. The use of L2 or L1 losses are explored for shape
estimation accuracy using BEDLAM-CLIFF: error on HBW [21]
and SSP-3D [33] in mm.

the 3DPW dataset does not have extreme body shapes, it
benefits from the L1 loss. Consequently, we opted to use
the MSE loss for our final model and all results reported in
the main paper. Note that L34 or L,s34 alone is worse with
L1 loss compared to MSE loss.

4.3. Ablation of dataset attributes

We also perform an ablation study by varying different
dataset attributes. We generated 3 different sets of around
180K images by varying the use of different assets. Keep-
ing the scenes and the motion sequences exactly the same,
we experiment by ablating hair and then further replacing
the cloth simulation with simple cloth textures. We use a
backbone pretrained with either COCO [13] or ImageNet
and study the performance on 3DPW [35]. When using
the ImageNet backbone, we find that training with cloth-
ing simulation leads to better accuracy than training with
clothing texture mapped onto the body. Adding hair gives
a modest improvement in MPJPE and MVE. Surprisingly,
with the COCO backbone, the difference in the training data
makes less difference. Still, clothing simulation is consis-
tently better than just using clothing textures. It is likely
that the backbone pretrained on a 2D pose estimation task
using COCO is already robust to clothing and hair. As men-
tioned above, however, our hair models are not ideal and not
as diverse as we would like. Future work, should explore
whether more diverse and complex hair has an impact.



Dataset attribute | Backbone | PAMPIPE  MPJPE  MVE

Simulation + Hair | ImageNet 65.6 101.8  120.8
Simulation ImageNet 66.3 1045 1245
Texture ImageNet 72.2 116.1 136.7
Simulation + Hair | COCO 51.6 77.8 924
Simulation COCO 51.6 78.7 93.0
Texture COCO 543 80.8 96.0

Table 6. Ablation of different dataset attributes. Error on
3DPW in mm. See text.

Method \ H3.6M \ 3DPW
‘ PA-MPJPE  MPJPE  PA-MPJPE  MPJPE  PVE
CLIFF[11] 327 471 - - -
CLIFF'* 394 629 | 436 688 821
CLIFF™* w/o H3.6M | 56.1 89.6 | 444 689 823
BEDLAM-HMR 517 8.6 | 476 790 931
BEDLAM-CLIFF 509 709 | 466 720 850

Table 7. Impact of training without Human3.6M on Hu-
man3.6M and 3DPW. CLIFF'* is the same model as Table 1 in
main paper.

4.4. Experiment on Human3.6M

We also evaluate our method on the Human3.6M dataset
[8] by calculating MPJPE and PA-MPJPE on 17 joints ob-
tained using the Human3.6M regressor on vertices. Previ-
ous methods have used Human3.6M training images when
evaluating on the test set. Specifically, CLIFF [I1] and our
re-implementation, CLIFF'*, both use Human3.6M data for
training and, consequently get low errors on Human3.6M
test data. Note that our implementation does not get as low
an error as reported in [ 1] despite the fact that we match
their performance on 3DPW and RICH (see main paper).

To ensure a fair comparison and to measure the gener-
alization of the methods, we trained a version of CLIFF
(CLIFF™* w/o H3.6M) using 3D datasets MPI-INF-3DHP,
3DPW and 2D datasets COCO and MPII but excluding
Human3.6M, following the same settings as BEDLAM-
CLIFFE. The results in Tab. 7 demonstrate that BEDLAM-
CLIFF outperforms CLIFF when Human3.6M is not in-
cluded in training. This is another confirmation of the re-
sults in the main paper showing that BEDLAM-CLIFF has
better generalization ability than CLIFF. Without using Hu-
man3.6M in training, BEDLAM-HMR is also better than
CLIFF on Human3.6M.

Note that this experiment illustrates how training on Hu-
man3.6M is crucial to getting low errors on that dataset.
The training and test sets are similar (same backgrounds
and similar conditions) meaning that methods trained on
the dataset can effectively over-fit to it. This can be seen
by comparing CLIFF'* with CLIFF"* w/o H3.6M. Training
on Human3.6M significantly reduces error on Human3.6M

without reducing error on 3DPW.
4.5. SMPL-X experiments on the AGORA dataset

AGORA is interesting because it is one of the few
datasets with SMPL-X ground truth. Table 8 evaluates
methods that estimate SMPL-X bodies on the AGORA
dataset. The results are taken from the AGORA leader-
board. BEDLAM-CLIFF-X does particularly well on the
face and hands. Since the BEDLAM training set contains
body shapes sampled from AGORA, it gives BEDLAM-
CLIFF-X an advantage over methods that are not fine-tuned
on the AGORA training set (bottom section of Tab. 8). Con-
sequently, we also compare a version of BEDLAM-CLIFF-
X that is trained only on the BEDLAM training set. This
still outperforms all the methods that were not trained us-
ing AGORA (top section of Tab. 8). Please see Figure 6 for
qualitative results.

4.6. SMPL-X experiments on BEDLAM

For completeness, Tab. 9 shows that BEDLAM-
CLIFF-X outperforms recent SOTA methods that estimate
SMPL-X on the BEDLAM test set. Not surpisingly, our
method is more accurate by a large margin. Note, how-
ever, that the prior methods are not trained on the BED-
LAM training data. We follow a similar evaluation protocol
as [24]. Since the hands are occluded in a large number
of frames, we use MediaPipe [16] to detect the hands and
evaluate hand accuracy only if they are visible. To detect in-
dividuals within an image during evaluation, we use the de-
tector that is included in the respective method’s demo code.
In cases where the detector is not provided, we use [29], the
same detector use by BEDLAM-CLIFF-X. Please see Fig. 6
for qualitative results.

5. Qualitative Comparison

Figure 5 provides a qualitative comparison between
PARE [10], CLIFF [I!] (includes 3DPW training) and
BEDLAM-CLIFF (only synthetic data). We show results
on both RICH (left two) and 3DPW (right two). We render
predicted bodies overlaid on the image and in a side view.
In the side view, the pelvis of the predicted body is aligned
(translation only) with the ground truth body. Note that,
when projected into the image, all methods look reasonable
and relatively well aligned with the image features. The side
view, however, reveals that BEDLAM-CLIFF (bottom row)
predicts a better aligned body pose with the ground truth
body in 3D despite variation in the cameras, camera angle,
and frame occlusion. Also, please notice that BEDLAM-
CLIFF produces more natural leg poses in the case of occlu-
sion compared to the other methods as shown in columns 1,
3 and 4 of Fig. 5

We also provide qualitative results of BEDLAM-CLIFF-
X on 3DPW and the RICH dataset in Fig. 7. In this case,



Method | MVE

| MPJPE

| FB B F

LH/RH | FB B F  LH/RH

SMPLify-X [25] 236.5 187.0 48.9
ExPose [4] 2173 1515 S51.1
Frankmocap [32] 168.3

PIXIE [6] 191.8 1422 50.2

BEDLAM-CLIFF-X 131.0 965 25.8

48.3/51.4 | 231.8 182.1 529 46.5/49.6
74.9/71.3 | 2159 1504 552 72.5/68.8
54.7/55.7 165.2 52.3/53.1
49.5/49.0 | 189.3 1403 54.5 46.4/46.0
38.8/39.0 | 129.6 959 27.8 36.6/36.7

Hand4Whole+ [20] 1355 902 41.6
PyMAF+ [39] 12577 84.0 35.0
BEDLAM-CLIFF-X+ | 103.8 745 23.1

46.3/48.1 | 132.6 87.1 46.1 44.3/46.2
44.6/45.6 | 124.6 832 379 42.5/43.7
31.7/33.2 | 1029 743 247 29.9/31.3

Table 8. SMPL-X methods on the AGORA test set. + denotes methods include AGROA training set. FB is full-body, B is body only, F

is face, and LH/RH are the left and right hands respectively.

Method | NMVE | NMJE | MVE \ MPJPE
| FB B | FB B | FB B F  LHRH | FB B F  LH/RH
PyMAF-X [39] 1721 1236 | 1672 120.1 | 161.8 1174 503 405/42.6 | 1572 1141 516 38.2/39.7
Hand4Whole [20] 178.8  119.1 | 1762 117.6 | 168.1 1120 59.7 52.8/558 | 1657 1105 63.7 50.0/52.0
PIXIE [6] 160.0 1072 | 1548 1035 | 1504 100.8 514 47.2/502 | 1456 973 554 43.6/46.0

BEDLAM-CLIFF-X 101.7  65.6 99.0 64.7 95.6
BEDLAM-CLIFF-X+ | 934 61.2 92.5 60.4 87.8

61.7

29.9 35.7/36.2 | 93.1 60.8 305 33.2/333

56.8 27.3 31.9/339 | 87.0 575 28.0 29.5/31.1

Table 9. SMPL-X methods on the BEDLAM test set. Comparison of SOTA methods on the BEDLAM test set. + denotes methods

include AGROA training set.

we also estimate the SMPL-X hand poses. All multi-person
results are generated by running the method on individual
crops found by a multi-person detector [29].
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