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“A dog wearing virtual reality goggles in sunset, 4k, high resolution”
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Figure 1. Video LDM samples. Top: Text-to-Video generation. Bottom: 512× 1024 resolution real driving scene video generation.

Abstract

Latent Diffusion Models (LDMs) enable high-quality im-

age synthesis while avoiding excessive compute demands

by training a diffusion model in a compressed lower-

dimensional latent space. Here, we apply the LDM

paradigm to high-resolution video generation, a particu-

larly resource-intensive task. We first pre-train an LDM

on images only; then, we turn the image generator into a

video generator by introducing a temporal dimension to the

latent space diffusion model and fine-tuning on encoded im-

age sequences, i.e., videos. Similarly, we temporally align

diffusion model upsamplers, turning them into temporally

consistent video super resolution models. We focus on two

relevant real-world applications: Simulation of in-the-wild

driving data and creative content creation with text-to-video

modeling. In particular, we validate our Video LDM on

real driving videos of resolution 512 × 1024, achieving

state-of-the-art performance. Furthermore, our approach

can easily leverage off-the-shelf pre-trained image LDMs,

as we only need to train a temporal alignment model in

that case. Doing so, we turn the publicly available, state-

of-the-art text-to-image LDM Stable Diffusion into an ef-

ficient and expressive text-to-video model with resolution

up to 1280 × 2048. We show that the temporal layers

trained in this way generalize to different fine-tuned text-

to-image LDMs. Utilizing this property, we show the first

results for personalized text-to-video generation, opening

exciting directions for future content creation. Project page:

https://nv-tlabs.github.io/VideoLDM/

*Equal contribution.
†Andreas, Robin and Tim did the work during internships at NVIDIA.
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Figure 2. Temporal Video Fine-Tuning.

We turn pre-trained image diffusion mod-

els into temporally consistent video gener-

ators. Initially, different samples of a batch

synthesized by the model are independent.

After temporal video fine-tuning, the sam-

ples are temporally aligned and form co-

herent videos. The stochastic generation

process before and after fine-tuning is visu-

alised for a diffusion model of a one-dim.

toy distribution. For clarity, the figure cor-

responds to alignment in pixel space. In

practice, we perform alignment in LDM’s

latent space and obtain videos after ap-

plying LDM’s decoder (see Fig. 3). We

also video fine-tune diffusion model up-

samplers in pixel or latent space (Sec. 3.4).

1. Introduction

Generative models of images have received unprece-

dented attention, owing to recent breakthroughs in the un-

derlying modeling methodology. The most powerful mod-

els today are built on generative adversarial networks [21,

38–40, 75], autoregressive transformers [15, 63, 105], and

most recently diffusion models [10, 28, 29, 57, 58, 62, 65,

68, 79, 82]. Diffusion models (DMs) in particular have de-

sirable advantages; they offer a robust and scalable train-

ing objective and are typically less parameter intensive than

their transformer-based counterparts. However, while the

image domain has seen great progress, video modeling

has lagged behind—mainly due to the significant computa-

tional cost associated with training on video data, and the

lack of large-scale, general, and publicly available video

datasets. While there is a rich literature on video synthe-

sis [1, 6, 8, 9, 17, 19, 22, 23, 32, 32, 37, 42, 44, 47, 51, 55, 59,

71, 78, 85, 91, 94, 97–99, 103, 106], most works, including

previous video DMs [24, 31, 33, 93, 104], only generate rel-

atively low-resolution, often short, videos. Here, we ap-

ply video models to real-world problems and generate high-

resolution, long videos. Specifically, we focus on two rel-

evant real-world video generation problems: (i) video syn-

thesis of high-resolution real-word driving data, which has

great potential as a simulation engine in the context of au-

tonomous driving, and (ii) text-guided video synthesis for

creative content generation; see Fig. 1.

To this end, we build on latent diffusion models (LDMs),

which can reduce the heavy computational burden when

training on high-resolution images [65]. We propose Video

LDMs and extend LDMs to high-resolution video genera-

tion, a particularly compute-intensive task. In contrast to

previous work on DMs for video generation [24, 31, 33, 93,

104], we first pre-train our Video LDMs on images only (or

use available pre-trained image LDMs), thereby allowing

us to leverage large-scale image datasets. We then trans-

form the LDM image generator into a video generator by

introducing a temporal dimension into the latent space DM

and training only these temporal layers on encoded image

sequences, i.e., videos (Fig. 2), while fixing the pre-trained

spatial layers. We similarly fine-tune LDM’s decoder to

achieve temporal consistency in pixel space (Fig. 3). To

further enhance the spatial resolution, we also temporally

align pixel-space and latent DM upsamplers [29], which

are widely used for image super resolution [43, 65, 68, 69],

turning them into temporally consistent video super resolu-

tion models. Building on LDMs, our method can generate

globally coherent and long videos in a computationally and

memory efficient manner. For synthesis at very high reso-

lutions, the video upsampler only needs to operate locally,

keeping training and computational requirements low. We

ablate our method and test on 512×1024 real driving scene

videos, achieving state-of-the-art video quality, and synthe-

size videos of several minutes length. We also video fine-

tune a powerful, publicly available text-to-image LDM, Sta-

ble Diffusion [65], and turn it into an efficient and powerful

text-to-video generator with resolution up to 1280 × 2048.

Since we only need to train the temporal alignment layers in

that case, we can use a relatively small training set of cap-

tioned videos. By transferring the trained temporal layers to

differently fine-tuned text-to-image LDMs, we demonstrate

personalized text-to-video generation for the first time. We

hope our work opens new avenues for efficient digital con-

tent creation and autonomous driving simulation.

Contributions. (i) We present an efficient approach for

training high-resolution, long-term consistent video genera-

tion models based on LDMs. Our key insight is to leverage

pre-trained image DMs and turn them into video generators

by inserting temporal layers that learn to align images in a

temporally consistent manner (Figs. 2 and 3). (ii) We fur-

ther temporally fine-tune super resolution DMs, which are

ubiquitous in the literature. (iii) We achieve state-of-the-art

high-resolution video synthesis performance on real driv-

ing scene videos, and we can generate multiple minute long
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Figure 3. Top: During temporal decoder fine-tuning, we process

video sequences with a frozen encoder, which processes frames

independently, and enforce temporally coherent reconstructions

across frames. We additionally employ a video-aware discrimina-

tor. Bottom: in LDMs, a diffusion model is trained in latent space.

It synthesizes latent features, which are then transformed through

the decoder into images. Note that the bottom visualization is for

individual frames; see Fig. 2 for the video fine-tuning framework

that generates temporally consistent frame sequences.

videos. (iv) We transform the publicly available Stable Dif-

fusion text-to-image LDM into a powerful and expressive

text-to-video LDM, and (v) show that the learned temporal

layers can be combined with different image model check-

points (e.g., DreamBooth [66]).

2. Background

DMs [28, 79, 82] learn to model a data distribution

pdata(x) via iterative denoising and are trained with denois-

ing score matching [28,34,50,79,81,82,92]: Given samples

x ∼ pdata, diffused inputs xτ = ατx + στϵ, ϵ ∼ N (0, I)
are constructed; ατ and στ define a noise schedule, param-

eterized via a diffusion-time τ , such that the logarithmic

signal-to-noise ratio λτ = log(α2
τ/σ

2
τ ) monotonically de-

creases. A denoiser model fθ (parameterized with learnable

parameters θ) receives the diffused xτ as input and is opti-

mized minimizing the denoising score matching objective

Ex∼pdata,τ∼pτ ,ϵ∼N (0,I)

[

∥y − fθ(xτ ; c, τ)∥
2
2

]

, (1)

where c is optional conditioning information, such as a text

prompt, and the target vector y is either the random noise ϵ

or v = ατϵ − στx. The latter objective (often referred to

as v-prediction) has been introduced in the context of pro-

gressive distillation [73] and empirically often yields faster

convergence of the model (here, we use both objectives).

Furthermore, pτ is a uniform distribution over the diffu-

sion time τ . The forward diffusion as well as the reverse

generation process in diffusion models can be described

via stochastic differential equations in a continuous-time

framework [82] (see Figs. 2 and 3), but in practice a fixed

discretization can be used [28]. The maximum diffusion

time is generally chosen such that the input data is entirely

perturbed into Gaussian random noise and an iterative gen-

erative denoising process that employs the learned denoiser

fθ can be initialized from such Gaussian noise to synthe-

size novel data. Here, we use pτ ∼ U{0, 1000} and rely

on a variance-preserving noise schedule [82], for which

σ2
τ = 1− α2

τ (see Appendices F and H for details).

Latent Diffusion Models (LDMs) [65] improve in com-

putational and memory efficiency over pixel-space DMs by

first training a compression model to transform input im-

ages x∼pdata into a spatially lower-dimensional latent space

of reduced complexity, from which the original data can be

reconstructed at high fidelity. In practice, this approach is

implemented with a regularized autoencoder, which recon-

structs inputs x via an encoder module E and a decoder D,

such that the reconstruction x̂=D(E(x))≈x (Fig. 3). To en-

sure photorealistic reconstructions, an adversarial objective

can be added to the autoencoder training [65], which is im-

plemented using a patch-based discriminator [35]. A DM

can then be trained in the compressed latent space and x in

Eq. (1) is replaced by its latent representation z=E(x). This

latent space DM can be typically smaller in terms of pa-

rameter count and memory consumption compared to cor-

responding pixel-space DMs of similar performance.

3. Latent Video Diffusion Models

Here we describe how we video fine-tune pre-trained im-

age LDMs (and DM upsamplers) for high-resolution video

synthesis. We assume access to a dataset pdata of videos,

such that x ∈ R
T×3×H̃×W̃ , x ∼ pdata is a sequence of T

RGB frames, with height and width H̃ and W̃ .

3.1. Turning Latent Image into Video Generators

Our key insight for efficiently training a video genera-

tion model is to re-use a pre-trained, fixed image generation

model; an LDM parameterized by parameters θ. Formally,

let us denote the neural network layers that comprise the

image LDM and process inputs over the pixel dimensions

as spatial layers liθ, with layer index i. However, although

such a model is able to synthesize individual frames at high

quality, using it directly to render a video of T consecutive

frames will fail, as the model has no temporal awareness.

We thus introduce additional temporal neural network lay-

ers liφ, which are interleaved with the existing spatial layers

liθ and learn to align individual frames in a temporally con-

sistent manner. These L additional temporal layers {liφ}
L
i=1

define the video-aware temporal backbone of our model,

and the full model fθ,φ is thus the combination of the spa-

tial and temporal layers; see Fig. 4 for a visualization.

We start from a frame-wise encoded input video E(x) =
z ∈ R

T×C×H×W , where C is the number of latent channels
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Figure 4. Left: We turn a pre-trained LDM into a video generator

by inserting temporal layers that learn to align frames into tempo-

rally consistent sequences. During optimization, the image back-

bone θ remains fixed and only the parameters φ of the temporal

layers liφ are trained, cf . Eq. (2). Right: During training, the base

model θ interprets the input sequence of length T as a batch of im-

ages. For the temporal layers liφ, these batches are reshaped into

video format. Their output z′ is combined with the spatial output

z, using a learned merge parameter α. During inference, skip-

ping the temporal layers (αi
φ=1) yields the original image model.

For illustration purposes, only a single U-Net Block is shown. B

denotes batch size, T sequence length, C input channels and H

and W the spatial dimensions of the input. cS is optional context

frame conditioning, when training prediction models (Sec. 3.2).

and H and W are the spatial latent dimensions. The spatial

layers interpret the video as a batch of independent images

(by shifting the temporal axis into the batch dimension), and

for each temporal mixing layer liφ, we reshape back to video

dimensions as follows (using einops [64] notation):

z′ ← rearrange(z, (b t) c h w→ b c t h w)

z′ ← liφ(z
′, c)

z′ ← rearrange(z′, b c t h w→ (b t) c h w),

where we added the batch dimension b for clarity. In other

words, the spatial layers treat all B·T encoded video frames

independently in the batch dimension b, while the tempo-

ral layers liφ(z
′, c) process entire videos in a new temporal

dimension t. Furthermore, c is (optional) conditioning in-

formation such as a text prompt. After each temporal layer,

the output z′ is combined with z as αi
φz+(1−αi

φ)z
′; αi

φ ∈
[0, 1] denotes a (learnable) parameter (also Appendix D).

In practice, we implement two different kinds of tem-

poral mixing layers: (i) temporal attention and (ii) residual

blocks based on 3D convolutions, cf . Fig. 4. We use si-

nusoidal embeddings [28, 89] to provide the model with a

positional encoding for time.
Our video-aware temporal backbone is then trained us-

ing the same noise schedule as the underlying image model,
and, importantly, we fix the spatial layers liθ and only opti-

mize the temporal layers liφ via

argmin
φ

Ex∼pdata,τ∼pτ ,ϵ∼N (0,I)

[

∥y − fθ,φ(zτ ; c, τ)∥
2
2

]

, (2)
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prediction model)

2. Latent Frame 

Interpolation I
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Figure 5. Video LDM Stack. We first generate sparse key frames.

Then we temporally interpolate in two steps with the same inter-

polation model to achieve high frame rates. These operations are

all based on latent diffusion models (LDMs) that share the same

image backbone. Finally, the latent video is decoded to pixel space

and optionally a video upsampler diffusion model is applied.

where zτ denotes diffused encodings z = E(x). This way,

we retain the native image generation capabilities by simply

skipping the temporal blocks, e.g. by setting αi
φ = 1 for

each layer. A crucial advantage of our strategy is that huge

image datasets can be used to pre-train the spatial layers,

while the video data, which is often less widely available,

can be utilized for focused training of the temporal layers.

3.1.1 Temporal Autoencoder Finetuning

Our video models build on pre-trained image LDMs. While

this increases efficiency, the autoencoder of the LDM is

trained on images only, causing flickering artifacts when

encoding and decoding a temporally coherent sequence of

images. To counteract this, we introduce additional tempo-

ral layers for the autoencoder’s decoder, which we finetune

on video data with a (patch-wise) temporal discriminator

built from 3D convolutions, cf . Fig. 3. Note that the en-

coder remains unchanged from image training such that the

image DM that operates in latent space on encoded video

frames can be re-used. As demonstrated by computing re-

construction FVD [87] scores in Table 3, this step is critical

for achieving good results.

3.2. Prediction Models for LongTerm Generation

Although the approach described in Sec. 3.1 is efficient

for generating short video sequences, it reaches its limits

when it comes to synthesizing very long videos. Therefore,

we also train models as prediction models given a number

of (first) S context frames. We implement this by introduc-

ing a temporal binary mask mS which masks the T − S
frames the model has to predict, where T is the total se-

quence length as in Sec. 3.1. We feed this mask and the

masked encoded video frames into the model for condition-
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Figure 6. 1280 × 2048 resolution samples from our Stable Diffusion-based text-to-video LDM, including video fine-tuned upsampler.

Prompts: “An astronaut flying in space, 4k, high resolution” and “Milk dripping into a cup of coffee, high definition, 4k”.

ing. Specifically, the frames are encoded with LDM’s image

encoder E , multiplied by the mask, and then fed (channel-

wise concatenated with the masks) into the temporal lay-

ers liφ after being processed with a learned downsampling

operation, see Fig. 4. Let cS = (mS ◦ z,mS) denote the

concatenated spatial conditioning of masks and masked (en-

coded) images. Then, the objective from Eq. (2) reads

Ex∼pdata,mS∼pS ,τ∼pτ ,ϵ

[

∥y − fθ,φ(zτ ; cS , c, τ)∥
2
2

]

, (3)

where pS represents the (categorical) mask sampling distri-

bution. In practice, we learn prediction models that con-

dition either on 0, 1 or 2 context frames, allowing for

classifier-free guidance as discussed below.
During inference, for generating long videos, we can ap-

ply the sampling process iteratively, re-using the latest pre-
dictions as new context. The first initial sequence is gener-
ated by synthesizing a single context frame from the base
image model and generating a sequence based on that; af-
terwards, we condition on two context frames to encode
movement (details in Appendix). To stabilize this process,
we found it beneficial to use classifier-free diffusion guid-
ance [30], where we guide the model during sampling via

f
′
θ,φ(zτ ; cS) = fθ,φ(zτ ) + s · (fθ,φ(zτ ; cS)− fθ,φ(zτ )) (4)

where s≥1 denotes the guidance scale and we dropped the

explicit conditioning on τ and other information c for read-

ability. We refer to this guidance as context guidance.

3.3. Temporal Interpolation for High Frame Rates

High-resolution video is characterized not only by high

spatial resolution, but also by high temporal resolution, i.e.,

a high frame rate. To achieve this, we divide the synthe-

sis process for high-resolution video into two parts: The

first is the process described in Sec. 3.1 and Sec. 3.2, which

can generate key frames with large semantic changes, but

(due to memory constraints) only at a relatively low frame

rate. For the second part, we introduce an additional model

whose task is to interpolate between given key frames. To

implement this, we use the masking-conditioning mecha-

nism introduced in Sec. 3.2. However, unlike the predic-

tion task, we now mask the frames to be interpolated—

otherwise, the mechanism remains the same, i.e., the image

model is refined into a video interpolation model. In our ex-

periments, we predict three frames between two given key

frames, thereby training a T → 4T interpolation model. To

achieve even larger frame rates, we train the model simul-

taneously in the T → 4T and 4T → 16T regimes (using

videos with different fps), specified by binary conditioning.

Our training approach for prediction and interpolation

models is inspired by recent works [24,33,93] that use sim-

ilar masking techniques (also see Appendix C).

3.4. Temporal Finetuning of SR Models

Although the LDM mechanism already provides a good
native resolution we aim to push this towards the megapixel
range. We take inspiration from cascaded DMs [29] and
use a DM to further scale up the Video LDM outputs by
4×. For our driving video synthesis experiments, we use a
pixel-space DM [29] (Sec. 4.1) and scale to 512×1024; for
our text-to-video models, we use an LDM upsampler [65]
(Sec. 4.2) and scale to 1280× 2048. We use noise augmen-
tation with noise level conditioning [29, 68] and train the
super resolution (SR) model gθ,φ (on images or latents) via

Ex∼pdata,(τ,τγ)∼pτ ,ϵ∼N (0,I)

[

∥y − gθ,φ(xτ ; cτγ , τγ , τ)∥
2
2

]

(5)

where cτγ = ατγx+ στγϵ, ϵ ∼ N (0, I), denotes a noisy

low-resolution image given to the model via concatenation,

and τγ the amount of noise added to the low-resolution im-

age following the noise schedule ατ , στ .

Since upsampling video frames independently would re-

sult in poor temporal consistency, we also make this SR

model video-aware. We follow the mechanism introduced

in Sec. 3.1 with spatial layers liθ and temporal layers liφ
and similarly video fine-tune the upscaler, conditioning on a

low-resolution sequence of length T and concatenating low-

resolution video images frame-by-frame. Since the upscaler

operates locally, we conduct all upscaler training efficiently

on patches only and later apply the model convolutionally.
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Figure 7. 512 × 1024 resolution video modeling of real-world driving scenes with our Video LDM and video upsampler. Top: (Night

time) Driving Video Generation. Middle: Multimodal Driving Scenario Prediction: We simulate two different scenarios given the

same initial frame (red). Bottom: Specific Driving Scenario Simulation: We synthesize a scenario based on a manually designed, initial

scene generated with a bounding box-conditioned Image LDM (yellow). More examples in the Appendix I.3.

Overall, we believe that the combination of an LDM

with an upsampler DM is ideal for efficient high-resolution

video synthesis. On the one hand, the main LDM compo-

nent of our Video LDM leverages a computationally effi-

cient, compressed latent space to perform all video mod-

eling. This allows us to use large batch sizes and jointly

encode more video frames, which benefits long-term video

modeling, without excessive memory demands, as all video

predictions and interpolations are carried out in latent space.

On the other hand, the upsampler can be trained in an effi-

cient patch-wise manner, therefore similarly saving compu-

tational resources and reducing memory consumption, and

it also does not need to capture long-term temporal corre-

lations due to the low-resolution conditioning. Therefore,

no prediction and interpolation framework is required for

this component. A model overview, bringing together all

components from Sec. 3.1 to Sec. 3.4, is depicted in Fig. 5.

A discussion of related work can be found in Appendix C.

4. Experiments

Datasets. Since we focus on driving scene video gen-

eration as well as text-to-video, we use two correspond-

ing datasets/models: (i) An in-house dataset of real driving

scene (RDS) videos. The dataset consists of 683,060 videos

of 8 seconds each at resolution 512 × 1024 (H ×W ) and

frame rate up to 30 fps. Furthermore, the videos have bi-

nary night/day labels, annotations for the number of cars

in a scene (“crowdedness”), and a subset of the data also

has car bounding boxes. (ii) We use the WebVid-10M [2]

dataset to turn the publicly available Stable Diffusion Im-

age LDM [65] into a Video LDM. WebVid-10M consists of

10.7M video-caption pairs with a total of 52K video hours.

We resize the videos into resolution 320× 512. (iii) More-

over, in Appendix I.2, we show experiments on the Moun-

tain Biking dataset by Brooks et al. [6].

Evaluation Metrics. To evaluate our models, we use

frame-wise Fréchet Inception Distance (FID) [26] as well

as Fréchet Video Distance (FVD) [87]. Since FVD can be

unreliable (discussed, for instance, by Brooks et al. [6]),

we additionally perform human evaluation. For our text-to-

video experiments, we also evaluate CLIP similarity (CLIP-

SIM) [98] and (video) inception score (IS) (Appendix G).

Model Architectures and Sampling. Our Image LDMs

are based on Rombach et al. [65]. They use convolu-

tional encoders and decoders, and their latent space DM

architecture build on the U-Net by Dhariwal et al. [10].

Our pixel-space upsampler DMs use the same Image

DM backbone [10]. DM sampling is performed using

DDIM [80] in all experiments.

Further architecture, training, evaluation, sampling and

dataset details can be found in the Appendix.

4.1. HighResolution Driving Video Synthesis

We train our Video LDM pipeline, including a 4× pixel-

space video upsampler, on the real driving scene (RDS)

data. We condition on day/night labels and crowdedness,

and randomly drop these labels during training to allow for

classifier-free guidance and unconditional synthesis (we do

not condition on bounding boxes here). Following the pro-

posed training strategy above, we first train the image back-

bone LDM (spatial layers) on video frames independently,

before we then train the temporal layers on videos. We also
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Table 1. Left: Comparison with LVG on RDS; Right: Ablations.

Method FVD FID

LVG [6] 478 53.5

Ours 389 31.6

Ours (cond.) 356 51.9

Method FVD FID

Pixel-baseline 639,56 59.70

End-to-end LDM 1155.10 71.26

Attention-only 704.41 50.01

Ours 534.17 48.26

Ours (context-guided) 508.82 54.16

Table 2. User study on Driving Video Synthesis on RDS.

Method Pref. A Pref. B Equal

Ours (cond.) v.s Ours (uncond.) 49.33 42.67 8.0

Ours (uncond.) v.s LVG 54.02 40.23 5.74

Ours (cond.) v.s LVG 62.03 31.65 6.33

Table 3. Left: Evaluating temporal fine-tuning for diffusion up-

samplers on RDS data; Right: Video fine-tuning of the first stage

decoder network leads to significantly improved consistency.

Method FVD FID

Ours Image Upsampler 165.98 19.71

Ours Video Upsampler 45.39 19.85

Decoder image-only finetuned

FVD 390.88 32.94

FID 7.61 9.17

train Long Video GAN (LVG) [6], the previous state-of-

the-art in long-term high-resolution video synthesis, on the

RDS data to serve as main baseline. Table 1 (left) shows

our main results for the Video LDM at 128×256 resolution,

without upsampler. We show both performance of our

model with and without conditioning on crowdedness and

day/night. Our Video LDM generally outperforms LVG and

adding conditioning further reduces FVD. Table 2 shows

our human evaluation: Our samples are generally preferred

over LVG in terms of realism, and samples from our condi-

tional model are also preferred over unconditional samples.

Next, we compare our video fine-tuned pixel-space up-

sampler with independent frame-wise image upsampling

(Table 3), using 128 × 256 30 fps ground truth videos for

conditioning. We find that temporal alignment of the up-

sampler is crucial for high performance. FVD degrades sig-

nificantly, if the video frames are upsampled independently,

indicating loss of temporal consistency. As expected, FID

is essentially unaffected, because the individual frames are

still of high quality when upsampled independently.

In Fig. 1 (bottom) and Fig. 7 (top), we show conditional

samples from the combined Video LDM and video upsam-

pler model. We observe high-quality videos. Moreover,

using our prediction approach, we find that we can gener-

ate very long, temporally coherent high-resolution driving

videos of multiple minutes. We validated this for up to 5

minutes; see Appendix and supplementary video for results.

4.1.1 Ablation Studies

To show the efficacy of our design choices (Sec. 3), we com-

pare a smaller version of our Video LDM with various base-

lines on the RDS dataset and present the results in Table 1

(right) (for evaluation details, see Appendix G). First, using

the exact same architecture as for our Video LDM, we apply

our temporal finetuning strategy to a pre-trained pixel-space

image diffusion model, which is clearly outperformed by

ours. Further, we train an End-to-End LDM, whose entire

set of parameters {θ, φ} is learned on RDS videos without

image pre-training of θ, leading to heavy degradations both

in FID and FVD, when compared with our Video LDM.

Another important architectural choice is the introduction

of 3D convolutional temporal layers, since they allow us to

feed the context frames cS to the network spatially. This

model achieves both lower FVD and FID scores than an

attention-only temporal model, which uses the same set of

spatial layers θ and has the same number of trainable pa-

rameters. Finally, we see that we can further lower FVD

scores by applying context guidance while sacrificing a bit

of visual quality indicated by increased FID scores.

Moreover, we provide an analysis on the effects of

video fine-tuning the decoder of the compression model

(cf . Sec. 3.1.1) which encompasses the LDM frame-

work [65]. We apply our fine-tuning strategy to de-

coders of these compression models on the RDS dataset

and compare both the obtained FVD/FID scores of recon-

structed videos/image frames with those of their non-video-

finetuned counterparts. Video fine-tuning leads to improve-

ments by orders of magnitudes, as can be seen in Table 3.

4.1.2 Driving Scenario Simulation

A high-resolution video generator trained on in-the-wild

driving scenes can potentially serve as a powerful simula-

tion engine. We qualitatively explore this in Fig. 7. Given

an initial frame, our video model can generate several dif-

ferent plausible future predictions. Furthermore, we also

trained a separate, bounding box-conditioned image LDM

on our data (only for image synthesis). A user can now

manually create a scene composition of interest by specify-

ing the bounding boxes of different cars, generate a corre-

sponding image, and then use this image as initialization for

our Video LDM, which can then predict different scenarios

in a multimodal fashion (bottom in Fig. 7).

4.2. TexttoVideo with Stable Diffusion

Instead of first training our own Image LDM backbone,

our Video LDM approach can also leverage existing Image

LDMs and turn them into video generators. To demonstrate

this, we turn the publicly available text-to-image LDM Sta-

ble Diffusion into a text-to-video generator. Specifically, us-

ing the WebVid-10M text-captioned video dataset, we train

a temporally aligned version of Stable Diffusion for text-

conditioned video synthesis. We briefly fine-tune Stable

Diffusion’s spatial layers on frames from WebVid, and then

insert the temporal alignment layers and train them (at res-

olution 320× 512). We also add text-conditioning in those

alignment layers. Moreover, we further video fine-tune the

publicly available latent Stable Diffusion upsampler, which

7



DreamBooth

Training Images
“A cat walking, front view, high definition”

“A sks cat walking, front view, high definition”

Figure 8. Left: DreamBooth Training Images. Top row: Video generated by our Video LDM with DreamBooth Image LDM backbone.

Bottom row: Video generated without DreamBooth Image backbone. We see that the DreamBooth model preserves subject identity well.

Table 4. UCF-101 text-to-video generation.

Method Zero-Shot IS (↑) FVD (↓)

CogVideo (Chinese) [32] Yes 23.55 751.34

CogVideo (English) [32] Yes 25.27 701.59

MagicVideo [109] Yes - 699.00

Make-A-Video [76] Yes 33.00 367.23

Video LDM (Ours) Yes 29.49 656.49

Table 5. MSR-VTT text-to-video generation performance.

Method Zero-Shot CLIPSIM (↑)

GODIVA [98] No 0.2402

NÜWA [99] No 0.2439

CogVideo (Chinese) [32] Yes 0.2614

CogVideo (English) [32] Yes 0.2631

Make-A-Video [76] Yes 0.3049

Video LDM (Ours) Yes 0.2848

enables 4× upscaling and allows us to generate videos at

resolution 1280×2048. We generate videos of 4.27 (30 fps)

seconds length. Samples from the trained models are shown

in Figs. 1 and 6. While WebVid-10M consists of photo-

quality real-life videos, we are able to generate highly ex-

pressive and artistic videos beyond the video training data.

This demonstrates that the general image generation capa-

bilities of the Image LDM backbone readily translate to

video generation, even though the video dataset we trained

on is much smaller and limited in diversity and style. The

Video LDM effectively combines the styles and expressions

from the image model with the movements and temporal

consistency learnt from the WebVid videos.

We evaluate zero-shot text-to-video generation on UCF-

101 [83] and MSR-VTT [101] (Tabs. 4 & 5). Evaluation

details in Appendix G. We outperform all baselines except

Make-A-Video [76]. However, Make-A-Video is concur-

rent work, focuses entirely on text-to-video and trains with

more video data than we do. We use only WebVid-10M;

Make-A-Video also uses HD-VILA-100M [102].

In Appendix D, we show how we can apply our model

“convolutional in time” and “convolutional in space”, en-

abling longer and spatially-extended generation without up-

sampler and prediction models. More video samples shown

in Appendix I.1. Experiment details in Appendix H.2.

4.2.1 Personalized Text-to-Video with Dreambooth

Since we have separate spatial and temporal layers in our

Video LDM, the question arises whether the temporal lay-

ers trained on one Image LDM backbone transfer to other

model checkpoints (e.g. fine-tuned). We test this for person-

alized text-to-video generation: Using DreamBooth [66],

we fine-tune our Stable Diffusion spatial backbone on

small sets of images of certain objects, tying their identity

to a rare text token (“sks”). We then insert the temporal

layers from the previously video-tuned Stable Diffusion

(without DreamBooth) into the new DreamBooth version

of the original Stable Diffusion model and generate videos

using the token tied to the training images for DreamBooth

(see Fig. 8 and examples in Appendix I.1.3). We find that

we can generate personalized coherent videos that correctly

capture the identity of the Dreambooth training images.

This validates that our temporal layers generalize to other

Image LDMs. To the best of our knowledge, we are the

first to demonstrate personalized text-to-video generation.

Additional results and experiments in Appendix I.

5. Conclusions

We presented Video Latent Diffusion Models for efficient

high-resolution video generation. Our key design choice is

to build on pre-trained image diffusion models and to turn

them into video generators by temporally video fine-tuning

them with temporal alignment layers. To maintain com-

putational efficiency, we leverage LDMs, optionally com-

bined with a super resolution DM, which we also tempo-

rally align. Our Video LDM can synthesize high-resolution

and temporally coherent driving scene videos of many min-

utes. We also turn the publicly available Stable Diffusion

text-to-image LDM into an efficient text-to-video LDM and

show that the learned temporal layers transfer to different

model checkpoints. We leverage this for personalized text-

to-video generation. We hope that our work can benefit sim-

ulators in the context of autonomous driving research and

help democratize high quality video content creation (see

Appendix B for broader impact and limitations).
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A. Linked Videos

We include 5 videos in the following google drive folder: https://drive.google.com/drive/folders/

1ENd9_9lzN6mI3E_HAjP52_KMWFdd0c8u:

• driving.mp4: This video summarizes our different results for our Video LDM trained on the real-world driving data.

• text2video.mp4: This video shows different results for our text-to-video LDM based on Stable Diffusion.

• mountain biking.mp4: This video presents further results on an additional mountain biking video dataset.

• 5 minutes driving.mp4: This video shows full 5 minute long generated videos for the Video LDM trained on the

real-world driving data.

• 5 minutes biking.mp4: This video shows full 5 minute long generated videos for the Video LDM trained on the

mountain biking data.

Moreover, we keep a copy of the latest version of the paper in the google drive folder (in case the paper is updated at a

later point in time). Additionally, more videos can be found on our project page https://nv-tlabs.github.io/

VideoLDM/.

B. Broader Impact and Limitations

Powerful video generative models, like our Video LDM, have the potential to enable important content creation ap-

plications in the future and streamline and improve the creative workflow of digital artists, thereby democratizing artistic

expression. Moreover, when applied for instance on videos captured from vehicles, as in our main validation experiments,

generative models like ours may also serve as simulators in autonomous driving research.

Our synthesized videos are not indistinguishable from real content yet. However, enhanced versions of our model may in

the future reach an even higher quality, potentially being able to generate videos that appear to be deceptively real. This has

important ethical and safety implications, as state-of-the-art deep generative models can also be used for malicious purposes,

and therefore generative models like ours generally need to be applied with an abundance of caution. Moreover, the data

sources cited in this paper are for research purposes only and not intended for commercial application or use, and the text-

to-image backbone LDMs used in this research project have been trained on large amounts of internet data. Consequently,

our model is not suitable for productization. An important direction for future work is training large-scale generative models

with ethically sourced, commercially viable data.

C. Related Work

Here, we present an extended discussion about related work.

Diffusion Models for Image Synthesis. Diffusion models (DMs) [28, 79, 82] have proven to be powerful image gen-

erators, yielding state-of-the art results in both unconditional and class-conditional synthesis [10, 58, 65] as well as text-

to-image generation [3, 57, 62, 65, 68]. They have also been successfully used for various image editing and processing

tasks [18, 25, 41, 43, 48, 53, 66, 67, 69, 74, 84].

However, despite advances in model distillation [49,52,73] and accelerated sampling [4,11,12,36,45,46,80,96,100,108],

DMs generally require repeated evaluations of a computationally demanding large U-Net. Thus, DMs are computationally

expensive during both training and inference, especially when applied at high resolutions. To address this, cascaded [29]

and latent [65, 88] diffusion models have been introduced. Both approaches divide the synthesis (and training) process

into multiple stages and move the resource-intensive training and evaluation to a space of lower computational complexity.

Cascaded diffusion models start out as low-resolution models and apply a series of super resolution diffusion models. Latent

space models first compress the image data using an autoencoder and learn the DMs on the resulting latent space. We

combine the best of these approaches for video synthesis. Our main video generator is a latent diffusion model. Additionally,

some of our models use a video upsampler like in cascaded models to further increase the resolution. Variations of latent

diffusion models have also been used for tasks such as controllable and semantic image generation [60, 77], and beyond

image synthesis, such as 3D shape synthesis [107].

Video Synthesis. Video generation has been tackled with recurrent neural networks [1, 8, 9, 17, 42], autoregressive trans-

formers [19, 22, 32, 97–99, 103], Normalizing Flows [5, 13], and generative adversarial networks (GANs) [6, 16, 37, 47, 70,

71, 78, 85, 91, 94, 95, 106]. In particular LongVideoGAN [6] achieves high-resolution video synthesis over relatively long
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time intervals, combining a low- and a high-resolution model. Moreover, the idea to insert temporal layers into pre-trained

generators has been explored by the GAN-based methods MoCoGAN-HD [85] and StyleVideoGAN [16] before, but at a

much smaller scale for simple object-centric videos. Another important work is CogVideo [32], which video fine-tunes a

text-to-image model. However, it is a strictly autoregressive architecture building on transformers, trained in a discrete latent

space. Our method, in contrast, relies on continuous DMs, is much less parameter intensive and outperforms CogVideo in

text-to-video synthesis. Furthermore, our alignment layers are also implemented differently. They do not require an au-

toregressive masking and, for our text-to-video experiments, condition on the text prompts. Finally, we also show driving

scene generation, where we employ an additional video fine-tuned upsampler module. Many more text-to-video models

exist [23, 31, 44, 51, 55, 59, 98, 99].

Most related to our work are previous DMs for video synthesis: Ho et al. [31] model low-resolution videos with DMs

in pixel space and train jointly on image and video data. Yang et al. [104] parameterize autoregressive video generation

using a deterministic frame predictor together with a probabilistic DM. Voleti et al. [93] introduce a general DM framework

that simultaneously enables video generation, prediction, and interpolation, similarly to Höppe et al. [33]. Closely related,

Harvey et al. [24] synthesize long videos by generating sparse frames first, and then adding the missing frames. However,

they model only low-resolution videos from small simulated toy worlds, to which the DM easily overfits, whereas we are

training exclusively on diverse high-resolution real-world data. In our Video LDM, we build on these works for our video

prediction and interpolation frameworks. However, in contrast to our Video LDM, all previous video DMs work directly in

pixel space, synthesize low-resolution videos only, and do not directly leverage pre-trained image DMs.

Concurrent Work. Concurrently with us, Make-A-Video [76] leveraged a DALL·E 2-like text-to-image DM [62] and

temporally aligned its decoder as well as one super resolution DM for consistent video generation. Furthermore, Imagen

Video [27] trained a large-scale cascaded text-to-video model building on the Imagen [68] architecture. It constructs a highly

demanding spatial and temporal super resolution pipeline consisting of in total 7 DMs with a total of >11B parameters. In

contrast to our Video LDM, both Imagen Video and Make-A-Video operate entirely in pixel space, which is less efficient, and

exclusively target text-to-video, whereas we also demonstrate high-resolution driving scene generation. Furthermore, neither

the large-scale DALL·E 2 and Imagen text-to-image models, nor the corresponding text-to-video models are easily repro-

ducible without substantial GPU resources. In contrast, we are building on Stable Diffusion to train our text-to-video model,

and construct an overall significantly more efficient pipeline. This makes our approach more user-friendly. Phenaki [90]

is another strong concurrent text-to-video model that compresses videos into discrete tokens and models the token distribu-

tion via bidirectional transformers. MagicVideo [109] is a concurrent method that also leverages latent diffusion models for

video generation and follows a partially related strategy compared to our Video LDM. We are outperforming MagicVideo

quantitatively (see Sec. 4.2), enable higher resolution generation, show personalized video generation, and also demonstrate

long driving scene and mountain bike video generation; in contrast, MagicVideo tackles text-to-video only. Other relevant

concurrent works include GEN-1 [14], which also leverages a latent diffusion framework and combines it with depth condi-

tioning for structure- and content-aware video editing and stylization, as well as Dreamix [56], a method for video editing

that demonstrates personalized video generation.

D. Using Video LDM “Convolutional in Time” and “Convolutional in Space”

An intriguing property of image LDMs is their ability to generalize to spatial resolutions much larger than the ones they

are trained on. This is realized by increasing the spatial size of the sampled noise and leveraging the convolutional nature of

the U-Net backbone as presented in [65]. Since we use the Stable Diffusion LDM as fixed generative image backbone for

our text-to-video model, our approach naturally preserves this property, which enables us to increase the spatial resolution

at inference time without noticeable loss of image quality. We show examples at spatial resolution 512 × 512 generated by

applying this convolutional sampling ”in space” in our videos and in Figs. 12 and 13. Note that our model was trained on

resolution 320 × 512. This convolutional application of our model for spatially extended generation essentially comes for

free. We are not using the additional upsampler diffusion model in those experiments.

Furthermore, to extend convolutional sampling to the temporal dimension and, thus, to be able to generate videos much

longer than those our model has been trained on, we make the following design choices regarding our temporal layers. First,

we use relative sinusoidal positional encodings for our temporal attention layers similar to those used to encode the timesteps

in our U-Net backbone [28]. Second, we parameterize the learned mixing factors αi
φ, cf . Sec. 3.1, with scalars for our text-

to-video model (in the other models, αi
φ varies along the temporal dimension, which would prevent convolutional-in-time

processing. αi
φ is always constant in the spatial and channel dimensions for all models). These choices ensure that our model

can generate longer sequences by simply increasing the number of frames for the model to render. We observe our Video
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LDM to readily generalize to longer sequences as shown in Fig. 14. Furthermore, we can combine convolutional sampling

in space and time leading to high-resolution videos of lengths up to 30 seconds as presented in Figs. 15 and 16 and in our

videos, although our model has been only trained on sequences of 4 seconds. To the best of our knowledge, our approach is

the first to simultaneously generate long, high resolution and high (up to 30) fps videos while keeping training cost tolerable.

E. Datasets

E.1. Real Driving Scene (RDS) Video

Our RDS dataset consists of 683,060 real driving videos of 8 seconds length each at resolution 512 × 1024 (H ×W ).

85,841 of these video have a frame rate of 30 fps, the rest 10 fps. Furthermore, all videos have binary night/day labels (1 for

night, 0 for day) and annotations for the number of cars in a scene (“crowdedness”). Note that most of the driving videos are

relatively empty highway scenes with low crowdedness.

Moreover, the data comes with an additional 100k, independent, frames that have car bounding box annotations (we only

used that data for training a bounding box-conditioned image LDM to initialize video synthesis in the qualitative experiments

in Sec. 4.1.2 and Fig. 7).

E.2. WebVid10M

When turning Stable Diffusion into a text-to-video generator, we rely on WebVid-10M [2]. WebVid-10M is a large-scale

dataset of short videos with textual descriptions sourced from stock footage sites. The videos are diverse and rich in their

content. There are 10.7M video-caption pairs with a total of 52k video hours.

E.3. Mountain Bike

In Appendix I.2, we report additional results on a first-person mountain biking video dataset, originally introduced by

Brooks et al. in Long Video GAN [6]. The dataset consists of 1,202 clips of varying, but at least 5 seconds length. The videos

have a frame rate of 30 fps. The dataset is available in different resolutions, with a maximum resolution of 576×1024. More

details about the dataset can be found in Brooks et al. [6] and at https://github.com/NVlabs/long-video-gan.

F. Architecture, Training and Sampling Details

Our Image LDMs are based on Rombach et al. [65]. They use convolutional encoders and decoders, and their latent

space DM architecture builds on the U-Net by Dhariwal et al. [10]. Our pixel-space upsampler DMs use the same Image

DM backbone [10]. We generally work with discretized diffusion time steps t ∈ {0, 1000}, and use a linear noise schedule,

following the formulation of Ho et al. [28]. Also see Appendix B of Rombach et al. [65], which recapitulates the diffusion

process setup as it is used in LDMs.

All architecture details, diffusion process details, as well as training hyperparameters are provided in Tables 6 to 8.

To sample from our models, we generally use the sampler from Denoising Diffusion Implicit Models (DDIM) [80]. The

number of sampling steps, the stochasticity η, and the guidance scale vary and are also shown in Tables 6 and 7.

F.1. Description of Hyperparameters

Our hyperparameter tables (Tables 6 to 8) follow the hyperparameter tables from [65] and should be mostly self-

explanatory. Here, we give some additional description for some parameters of the temporal layers:

• dimα (Architecture): Dimension of the learnable skip connection parameter α that is applied after temporal layers;

see Fig. 2 and Sec. 3.1.

• dim cS (Concat Conditioning): Dimension of the concatenated spatial conditioning of masks and masked (encoded)

images; see Sec. 3.2.

• Context channels (Concat Conditioning): Number of output channels of the learned downsampling layers, cf . Sec. 3.2

and Fig. 4, which is concatenated to the input of the temporal convolutional layers.

• Temporal kernel size (Concat Conditioning): The kernel size of the 3D kernel of our temporal convolutional layers as

[time, height, width].
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Table 6. Hyperparameters for our diffusion models. †: For the Text-to-Video LDMs, we do not train our own Image LDM, but use Stable

Diffusion, as discussed. ∗: We trained with 80 × 80 patches and run at full image resolution during inference (see Appendix H.2).

Hyperparameter Driving Driving Text-to-Video Text-to-Video Mountain Biking

(Video) LDM (Video) Upsampler (Video) LDM † (Video) LDM Upsampler † (Video) LDM

Image (L)DM

Architecture

LDM ✓ ✗ ✓ ✓ ✓

f 8 - 8 4 8

z-shape 16× 32× 4 - 40× 64× 4 80× 80× 4 ∗ 16× 32× 4
Channels 224 160 320 320 256

Depth 4 2 2 2 2

Channel multiplier 1,2,2,3,4 1,2,4,4 1,2,4,4 1,2,4,4 1,2,4

Attention resolutions 16,8,4 8 64,32,16 128,64,32 32,16,8

Head channels 32 - - - -

Number of heads - 4 8 8 4

CA Conditioning

Embedding dimension 256 768 768 768 -

CA resolutions 16,8,4 8 64,32,16 128,64,32 -

CA sequence length 1 1 77 77 -

Training

Parameterization v v ε ε v

# train steps 73K 84K - - 14K

Learning rate 10−4 10−5 - - 10−4

Batch size per GPU 40 4 - - 300

# GPUs 16 8 - - 1

GPU-type A100-40GB A100-80GB - - A100-80GB

pdrop 0.1 - - - -

Temporal Layers

prediction interpolation upsampler keyframes model interpolation upsampler prediction interpolation

Architecture

Depth 4 4 2 2 2 2 2 2

Attention resolutions 16,8,4 16,8,4 1, 2, 4, 4 64,32,16 64,32,16 128,64,32 32,16,8 32,16,8

Head channels 32 32 - - - - - -

Number of heads - - 4 8 8 8 4 4

Input projection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Positional encoding Sinusoidal Sinusoidal - Sinusoidal Sinusoidal Sinusoidal Sinusoidal Sinusoidal

dimα 10 5 10 1 1 1 8 5

Temporal kernel size 3,1,1 3,1,1 3,1,1 3,1,1 3,1,1 3,1,1 3,1,1 3,1,1

Concat Conditioning

dim cS 5 5 3 - - 3 5 5

Context channels 128 128 128 - - 128 128 128

CA Conditioning

Embedding dimension - 512 768 768 768 768 - 512

CA resolutions - 16,4,8 8 64,32,16 64,32,16 64,32,16 - 32,16,8

CA sequence length - 1 1 77 2 77 - 1

Training

# train steps 146K 42K 84K 128K 14K 10K 107K 33K

Learning rate 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

Batch size per GPU 9 16 2 3 2 8 20 20

# GPUs 40 24 8 48 24 32 8 6

GPU-type A100-40GB A100-40GB A100-80GB A100-80GB A100-80GB A100-80GB A100-40GB A100-40GB

Sequence length 10 5 8 8 5 8 8 5

Training data FPS 2 7.5, 30 4 2 7.5, 30 2 4 7.5, 30

Diffusion Setup

Diffusion steps 1000 1000 1000 1000 1000

Noise schedule Linear Linear Linear Linear Linear

β0 0.0015 1e-4 0.00085 0.00085 0.0003

βT 0.0195 2e-2 0.0120 0.0120 0.022

Sampling Parameters

Sampler DDIM DDIM DDIM DDIM DDIM DDIM DDIM DDIM

Steps 200 50 50 250 100 250 100 50

η 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0

Guidance scale 2.0 2.0 1.0 8.0 13.0 2.0 2.0 1.0
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Table 7. Hyperparameters for our all models presented in the ablation study in Table 1. ∗: This baseline has twice as many attention layers

as the other models, leading to the same number of trainable parameters.

Hyperparameter Ours Pixel-baseline End-to-End LDM Attention-only∗

Image (L)DM

Architecture

LDM ✓ ✗ ✓ ✓

Pretrained ✓ ✓ ✗ ✓

f 8 - 8 8

z-shape 16× 32× 4 128× 256× 3 16× 32× 4 16× 32× 4
Channels 224 128 224 224

Depth 4 4 4 4

Channel multiplier 1,2,2,3,4 1,2,2,3,4 1,2,2,3,4 1,2,2,3,4

Attention resolutions 8,4,2 16,8 8,4,2 8,4,2

Head channels 32 32 32 32

CA Conditioning

embedding dimension 256 256 256 256

CA resolutions 16,8,4 32,16 16,8,4 16,8,4

CA sequence length 1 1 1 1

Training

Parameterization v v v v

# train steps 73K 42K 73K 73K

Learning rate 10−4 10−4 10−4 10−4

Batch size per GPU 40 12 40 40

# GPUs 16 40 16 16

GPU-type A100-40GB A100-40GB A100-40GB A100-40GB

pdrop 0.1 0.1 0.1 0.1

Temporal Layers

Architecture

Depth 4 4 4 4

Attention resolutions 1,2,2,3,4 1,2,2,3,4 1,2,2,3,4 1,2,2,3,4

Head channels 32 32 32 32

Input projection ✓ ✓ ✓ ✓

Positional encoding Sinusoidal Sinusoidal Sinusoidal Sinusoidal

dimα 10 10 10 10

Concat Conditioning

dim cS 5 4 5 -

Context channels 128 128 128 -

Temporal kernel size 3,1,1 3,1,1 3,1,1 -

Training

# train steps 60K 78K 62K 61K

Learning rate 10−4 10−4 10−4 10−4

Batch size per GPU 18 1 16 13

# GPUs 2 2 2 2

GPU-type A100-80GB A100-80GB A100-80GB A100-80GB

Sequence length 10 10 10 10

Training data FPS 2 2 2 2

Diffusion Setup

Diffusion steps 1000 1000 1000 1000

Noise schedule Linear Linear Linear Linear

β0 0.0015 10−4 0.0015 0.0015

βT 0.0195 0.02 0.0195 0.0195

Sampling Parameters

Sampler DDIM DDIM DDIM DDIM

Steps 200 200 200 200

η 1.0 1.0 1.0 1.0
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Table 8. Hyperparameters for our autoencoder models.

Hyperparameter Driving WebVid Mountain Biking

(Video) VQAE (Video) AE (Video) AE

Image LDM Autoencoder

Architecture

Regularization VQ KL KL

Downsampling factor 8 8 8

dim z 4 4 4

Codebook size 16384 - -

Base channels 128 128 128

Channel multiplier 1,2,2,4 1,2,2,4 1,2,2,4

Depth 2 2 2

Attention resolutions 32 - -

Temporal Layers

Architecture

Base channels 128 128 128

Channel multiplier 1,2,2,4 1,2,2,4 1,2,2,4

Depth 2 2 2

Temporal kernel size 3,3,3 3,3,3 3,3,3

Training

# train steps 41K 35K 78K

Learning rate 4.0e-5 4.0e-5 5.0e-5

Batch size per GPU 4 1 5

# GPUs 8 40 8

GPU-type A100-40GB A100-40GB A100-80GB

Sequence length 6 6 6

G. Quantitative Evaluation

We perform quantitative evaluations on all datasets. In particular, we compute Fréchet Inception Distance (FID) and

Fréchet Video Distance (FVD) metrics. Since FVD can be unreliable (discussed, for instance, in [6]), we additionally

perform human evaluation. For text-to-video evaluation, we also compute (video) Inception Scores (IS) and CLIP Similarly

scores (CLIPSIM).

FVD: The FVD metric measures similarity between real and generated videos [87]. We follow [6] and generate 2,048

videos (16 frames at 30 fps). We then extract features from a pre-trained I3D action classification model3. For reference

statistics, we take random sequences of videos that contain at least 16 frames from the dataset. For driving scenario and

mountain bike video generation, reference statistics are calculated from 2,048 videos; for text-to-video experiments, reference

statistics are calculated from 10k videos. Our implementation is a simple adaption from the code provided by [20].4

FID: To compute FID [26] (for driving video and mountain biking video synthesis), we randomly extract 10k frames

(except for mountain biking for which we extract 50k frames) from the 2,048 generated videos as well as from dataset

videos. We then extract features from a pre-trained Inception model.5

Human evaluation: We conduct human evaluation (user study) on Amazon Mechanical Turk to evaluate the realism

of generated videos by our method in comparison to LVG [6]. For our user study, we create 100 videos, each of length 4

seconds. The user study shows pairs of videos, and each pair has one random video from our method and one from LVG. For

each pair, we instruct the participants to select the favorable video in a non-forced-choice response, i.e., the participants can

vote for “equally realistic”. See Fig. 9 for a screenshot. Note that the A-B order of the pairs is also assigned randomly.

Each video pair was shown to four participants resulting in 400 responses per dataset. We only select workers from

3We use the model provided by [6, 7]: https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1’
4We use the official UCF FVD evaluation code provided by [20]: https://github.com/SongweiGe/TATS/
5We use the model provided by [38]: https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/

files/metrics/inception-2015-12-05.pkl.
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English-speaking countries. There are no human subjects and we do not study the participants themselves; therefore, IRB

review is not applicable. We pay $0.04 for answering a single question.

Inception Score: In our text-to-video experiments on UCF-101, we also evaluated inception scores (IS) [72]. Following

previous work on video synthesis [32,76], we used a C3D [86] model trained on UCF-101 to calculate a video version of the

inception score. It is calculated from 10k samples using the official code of TGANv2 [71].6

CLIP Similarity (CLIPSIM): In our text-to-video experiments on MSR-VTT, we also evaluated CLIP similarity

(CLIPSIM) [98]. The MSR-VTT test set contains 2990 examples and 20 descriptions/prompts per example. We generate

2990 videos (16 frames at 30 fps) by using one random prompt per example. We then average the CLIPSIM score of the

47,840 frames. We use the ViT-B/32 [61] model to compute the CLIP score.

Note that we directly use UCF class names as text conditioning, e.g., “Basketball Dunk”, in contrast to Make-A-Video [76],

which manually constructs a template sentence for each class.

H. Experiment Details

In addition to the model hyperparameters above in Table 6, here we provide additional details on the experiments presented

in the paper.

H.1. Details: HighResolution Driving Video Synthesis—Sec. 4.1

We initially train our base Image LDM (both autoencoder and latent space diffusion model) on 1 fps videos from the RDS

dataset at resolution 128 × 256. We then train the temporal layers for sparse key frame prediction with 2 fps. For that, we

extracted 2 fps videos from the 10 fps driving data. As discussed in the main paper, we inform the model about the number

of frames given for prediction, which is either 0, 1, or 2.

The pixel-space 4× upsampler that scales the resolution to 512 × 1024 is trained using the same data, but at a corre-

spondingly higher resolution. The upsampler is trained with noise augmentation and conditioning on the noise level [29,68].

During training we randomly sample t ∈ {0, . . . , 250} and perturb the low-resolution conditioning following our variance-

preserving diffusion process (using the same linear noise schedule as for the main upsampling diffusion model). At inference

time, we use 150 steps for perturbation.

The LDM decoder fine-tuning is performed on 30 fps videos.

The temporal interpolation model is trained using 30 fps video data, which we process for the different tasks. We train the

temporal interpolation model to first scale from 1.875 fps to 7.5 fps, and then to scale from 7.5 fps to 30 fps. We are using

one interpolation model with shared parameters for that, providing a conditioning label to indicate to the model which of the

two temporal upsampling operations is desired.

Video Generation. For video synthesis, we first generate a single frame using the image LDM, then we run the prediction

model, conditioning on the single frame, to generate a sequence of key frames. When extending the video, we again call

the prediction model, but condition on two frames (which captures directional information) to produce consistent motion.

Next, we optionally perform two steps of the temporal interpolation, going from 1.875 to 7.5 fps and from 7.5 to 30 fps,

respectively. Also optionally, the video fine-tuned upsampler is then run over portions of 8 video frames.

LVG Baseline. Our main baseline is the state-of-the-art Long Video GAN (LVG) [6], which we trained on the RDS data

at 10 fps and resolution 128 × 256 (comparisons to our Video LDM are carried out at this resolution and fps). LVG’s low

resolution component was trained with a batch size of 64 and two gradient accumulation steps and an R1 [54] penalty of 1.0.

For the super resolution module, we used a batch size of 2 without gradient accumulation and the same R1 penalty. Other

than that, we used LVG’s default hyperparameters.

Ablation Studies. For the ablation studies (Sec. 4.1.1), we trained a smaller version of our Video LDM as well as an

“end-to-end” version of our Video LDM, which simultaneously trains the spatial and temporal layers of the latent diffusion

model from scratch. The hyperparameters for trained these models are shown in Table 7.

Bounding box-conditioned image LDM. For the experiments in Sec. 4.1.2, we trained a separate bounding-box condi-

tioned image LDM (no videos) on the 100k independent annotated frames (see Appendix E.1). It uses the same hyperparam-

eters as our main model’s image LDM backbone for training. The conditioning is implemented using cross-attention [65]:

We learn embeddings of the bounding box coordinates, fuse all coordinate embeddings using a transformer, and attend to the

resulting fused embeddings.

6We use the official UCF IS evaluation code provided by [71]: https://github.com/pfnet-research/tgan2
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Figure 9. Screenshot of instructions provided to participants for the human evaluation study.

H.2. Details: TexttoVideo with Stable Diffusion—Sec. 4.2

We ran experiments with both the publicly available Stable Diffusion (SD) 1.47 and 2.08 checkpoints as image LDM

backbones. Most of our shown samples and our main quantitative results in Tabs. 4 and 5 on text-to-video use the SD 1.4-

based model. The SD 2.0-based Video LDM was trained primarily for exploration purposes and additional qualitative results

later. Unless indicated otherwise, all shown samples in the different figures throughout the paper are from our SD 1.4-based

model without upsampler. Samples from the SD 2.0-based model with upsampler (see below) are presented in Figs. 6 and 17

to 20 and in the second example in Fig. 1.

Since Stable Diffusion is trained on images at resolution 512× 512 (SD 1.4) or 768× 768 (SD 2.0), naively applying it to

the smaller-sized videos of the WebVid-10M dataset would lead to severe degradations in image quality. We therefore first

7https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
8https://huggingface.co/stabilityai/stable-diffusion-2
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fine-tune the Stable Diffusion image backbone (spatial layers) on the WebVid-10M data. Specifically, we resize and center-

crop the WebVid-10M videos to 320× 512 resolution and then fine-tune the SD latent space diffusion model on independent

encoded frames from the videos. We rely on standard SD training hyperparameters, with a learning rate of 10−4. Note

that while this (spatial layer) fine-tuning of SD on the WebVid-10M data is necessary to prevent out-of-distribution problems

when modeling videos in the next step, it also slightly hurts the overall image quality compared to the original SD checkpoint,

because the WebVid data is arguably of lower visual quality than the images used to train the original SD model. We assume

that training with more and higher-quality video data will solve this.

Next, as described in Sec. 3 we video fine-tuned both SD’s latent space diffusion model and its decoder (Sec. 3.1.1) using

the WebVid-10M videos. Note that our temporal layers also consume the text conditioning (Fig. 4). We do not train a

prediction model here, but only train for text-to-video generation without any additional context frames. We train for 4.27

second long video generation at 30 fps. To synthesize longer videos, we can instead apply our temporal layers “convolutional

in time”; similarly, to generate spatially extended higher resolution videos we can apply the model “convolutional in space”

(see Appendix D).

Moreover, we again train an interpolation model that can temporally upsample videos from 1.875 fps to 7.5 fps as well

as 7.5 fps to 30 fps. Note that in contrast to our experiments on driving scenes and mountain biking, for the text-to-video

interpolation models we trained all model parameters, including the ones in the spatial layers of the image LDM backbone.

We did initialize those spatial layers from the fine-tuned Stable Diffusion checkpoint. However, we do not actually use

text-conditioning here and feed empty text into Stable Diffusion’s text inputs. Since we do two rounds of interpolation, we

condition the model on the fps rate to which we interpolate (by cross attention to a corresponding embedding). Moreover, for

these text-to-video interpolation models we did not use the learned downsampling approach (Fig. 4), but instead concatenated

the context via partially masked out frames (and the mask itself) to the channel dimension C of the U-Net input. Furthermore,

we use conditioning augmentation [29] for this additional input during training (we randomly sample t ∈ {0, . . . , 250} and

perturb the conditioning inputs following our variance-preserving diffusion process, using the same linear noise schedule as

for the main diffusion model). At test time, the conditioning augmentation is turned off, i.e., the noise level is set to zero.

All described training steps are done similarly for both the SD 1.4-based and SD 2.0-based Video LDM models.

Upsampler Training: As described in Sec. 4.2, we also video fine-tune the publicly available text-guided Stable Diffusion

4×-upscaler9, which is itself a latent diffusion model. We train the upsampler for temporal alignment in a patch-wise manner

on 320× 320 cropped videos (WebVid-10M), which are embedded into a 80× 80 latent space. The 80× 80 low resolution

conditioning videos are concatenated to the 80×80 latents. The learnt temporal alignment layers are text-conditioned, like for

our base text-to-video LDMs. Like for the driving models, the upsampler is trained with noise augmentation and conditioning

on the noise level, following previous work [29, 68]. During training we randomly sample t ∈ {0, . . . , 250} and perturb the

low-resolution conditioning following our variance-preserving diffusion process (using the same linear noise schedule as for

the main upsampling diffusion model). At inference time, we use 30 steps for perturbation. Moreover, we apply the model

at extended resolution during inference. We provide 320× 512 resolution videos as low resolution input, predict 320× 512
resolution latents, and decode to 1280×2048 resolution videos. Note that we did not find it necessary to temporally fine-tune

the decoder of this latent diffusion model upscaler.

H.2.1 Number of Model Parameters

Our text-to-video LDMs that are based on Stable Diffusion have

• 84 million parameters in the autoencoder (decoder is fine-tuned).

• 860 (SD 1.4) / 865 (SD 2.0) million parameters in the image backbone LDM, this is, in the spatial layers not including

the CLIP text encoder (not trained).

• 649 (SD 1.4) / 656 (SD 2.0) million parameters in the temporal layers (trained).

• 123 (SD 1.4 uses CLIP ViT-L/14) / 354 (SD 2.0 uses OpenCLIP-ViT/H) million parameters in the text encoder (not

trained).

• 1,509 million parameters in the interpolation latent diffusion model (trained). We use the same interpolation model for

our SD 1.4- and SD 2.0-based models.

9https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler
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Table 9. Effects of video fine-tuning of the decoders of the compression framework encompassing Video LDM. Here we compute re-

construction FVD and FID based on 2,048 examples from the respective datasets (WebVid data is used to fine-tune the decoder of the

text-to-video LDM based on Stable Diffusion). fine-tuned denotes our video fine-tuned decoders.

Dataset WebVid [2] Mountain Biking [6]

Method image-only fine-tuned image-only fine-tuned

FVD 35.82 18.66 73.78 25.55

FID 13.89 11.68 20.76 18.65

Combined, for the SD-2.0-based Video LDMs this sums to around 3.1B parameters in the autoencoder and diffusion model

components (excluding the CLIP text embedders) in the low resolution text-to-video LDM. Out of this, only around 2.2B

parameters are actually trained.

Moreover, our fine-tuned text-to-video latent upsampler that is based on the public Stable Diffusion 4× upscaler has

• 55 million parameters in the autoencoder (not trained).

• 473 million parameters in the image backbone LDM (not trained).

• 449 million parameters in the temporal layers (trained).

• 354 million parameters in the OpenCLIP-ViT/H text encoder (not trained).

This sums to a total of 977 parameters in the autoencoder and diffusion model components of the upsampler, out of which

only 449 were trained.

We see that compared, for instance, to Imagen Video [27], which has 11.6B parameters, our model is much smaller. Yet,

it can produce high quality videos, which we attribute to the efficient LDM framework. CogVideo [32] also has much more

parameters, around 9B, than our Video LDM. We suspect that Make-A-Video [76] similarly is a much larger model than

ours.

H.3. Details: Personalized TexttoVideo with Dreambooth—Sec. 4.2.1

Using DreamBooth [66], we fine-tune our Stable Diffusion spatial backbone (after fine-tuning on WebVid-10M, as de-

scribed above) on small sets of images of certain objects (using SD 1.4). We use 256 regularization images and train for 800 it-

erations using a learning rate 10−6. We found it greatly beneficial to train both the U-Net as well as the CLIP text encoder. Our

DreamBooth code is based on the following public codebase: https://github.com/XavierXiao/Dreambooth-

Stable-Diffusion. After training, we insert the temporal layers from the previously video-tuned Stable Diffusion

(without DreamBooth) into the new DreamBooth version of the original Stable Diffusion model. Importantly, for video gen-

eration, the spatial layers use the DreamBooth-fine-tuned CLIP text encoder whereas the temporal layers use the standard

CLIP text encoder they were trained on.

I. Additional Results

Here we are showing further qualitative and quantitative results, including sampled videos from all our models.

In Appendix I.1, we show more samples from our Stable Diffusion-based text-to-video LDM. This includes samples

that were generated by using the model convolutional-in-time as well as convolutional-in-space (see Appendix D). We also

discuss video fine-tuning of the decoder for this text-to-video LDM.

In Appendix I.2, we show additional results from a Video LDM model we trained on a dataset of Mountain Bike videos.

This includes quantitative comparisons to the previous state-of-the-art Long Video GAN baseline.

In Appendix I.3, we present more qualitative and quantitative results from our main Video LDM that was trained on

real-world driving data.

I.1. TexttoVideo

I.1.1 Video-Finetuning of our Decoders

We perform a small ablation experiment over the video fine-tuning of our decoder (as described in Sec. 3.1.1). As can be

seen in Table 9, video fine-tuning the decoder allows for a significant performance boost for out text-to-video model, similar

to what we have observed for the driving model in the main paper.
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Table 10. Details for personalized text-to-Video with DreamBooth. Text in parentheses is given to the spatial layers but omitted for the

temporal layers (as they are not part of the DreamBooth training). Generated samples can be found in Fig. 10.

Model # of training images Prompts

Building 13 “(sks building), 4k drone flight, high definition”

Car 10 “A (sks) car driving in Manhattan”

Frog 23 “A (sks) frog ice skating in Central Park on Christmas Eve”

Cat 11 “A (sks) cat walking, front view, high definition”

Tea pot 8 “A (sks) tea pot in the ocean”

I.1.2 More Samples

In this section, we provide additional generated samples from our text-to-video LDMs. We show generated videos at res-

olution 320 × 512 (SD 1.4-based models) and at resolution 1280 × 2048 resolution (SD 2.0-based models with additional

video fine-tuned 4× upscaler). Moreover, we present generated videos that are extended “convolutional in space” and/or

“convolutional in time”; see Appendix D. We are able to generate long, high resolution and high frame rate, expressive and

artistic videos.

• Regular video samples from SD 1.4-based Video LDM: Fig. 11.

• “Convolutional in space” (SD 1.4-based Video LDM): Figs. 12 and 13.

• “Convolutional in time” (SD 1.4-based Video LDM): Fig. 14.

• “Convolutional in space” and “convolutional in time” (SD 1.4-based Video LDM): Figs. 15 and 16.

• Regular video samples at 1280× 2048 resolution from SD 2.0-based Video LDM with 4× upscaler: Figs. 17 to 20.

I.1.3 Personalized Text-to-Video with DreamBooth

We provide additional generated personalized text-to-video samples. The generated videos can be found in Fig. 10. The

number of training images and the prompts used for the spatial and temporal layers can be found in Table 10. We see that we

are able to successfully generate videos that faithfully include the learnt objects and capture their identity well.

I.2. Mountain Biking Video Synthesis

We conducted additional experiments on the Mountain Biking dataset [6] (see Appendix E.3) downsampled and center-

cropped to resolution 256 × 128. We initially train our model for sparse key frame prediction at 1.875 fps. The temporal

interpolation model is trained using 30 fps video data. We train the temporal interpolation model to first scale from 1.875 fps

to 7.5 fps, and then to scale from 7.5 fps to 30 fps. We are using one interpolation model with shared parameters for that,

providing a conditioning label to indicate to the model which of the two temporal upsampling operations is desired.

We then compare our model with the publicly available model from Long Video GAN (LVG) [6]. We report FID & FVD

metrics as well as a human evaluation study in Table 11. We outperform LVG both in FID and human evaluation, but slightly

underperform on FVD.

The first-person mountain biking videos have very rapidly changing background details (trees, branches, etc.). LVG cannot

create these single-frame realistic details, “smoothening out” the background and therefore resulting in worse FID and also

performing worse in the human evaluation study. Our method, on the other hand, has more realistic single frames; however,

it slightly struggles to keep the temporal consistency of these details. The FVD metric favors short-term “smoothness” over

photorealism, which explains the underperformance of our method in this metric. Generally, FVD is a metric with downsides

and should be taken with a grain of salt, as discussed in detail in the Long Video GAN paper itself [6] (their Section 5.3),

Overall quality and realism is best judged by human evaluators, where we outperform LVG.

We show generated 10 second (30 fps) mountain biking videos in Figs. 21 to 23.
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Figure 10. Generated DreamBooth-personalized videos at resolution 320 × 512. Text prompts of the videos can be found in Table 10.

Frames are shown at 1 fps.

Table 11. Comparison with Long Video GAN (LVG) on Mountain Biking videos (human evaluation on the right).

Method FVD FID

LVG [6] 85.3 21.1

Video LDM (ours) 118 7.73

Method Pref. A Pref. B Equal

Video LDM (ours) vs. LVG [6] 54.2 42.2 3.6

I.2.1 Video-Finetuning of our Decoders

We also perform a small ablation experiment over the video fine-tuning of the decoders (as described in Sec. 3.1.1) for the

mountain biking Video LDM. As can be seen in Table 9, video fine-tuning the decoder allows for a significant performance

boost on mountain biking.

I.3. Driving Video Synthesis

In this section, we provide additional generated samples from our Video LDM trained on real-world driving data. The

samples are upsampled to resolution 512× 1024 using our temporally aligned video upsampler; see Figs. 24 to 26.
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Table 12. Decoder fine-tuning with and without additional image discriminator. We are showing reconstruction FVD and FID scores after

decoder fine-tuning using our main Video LDM model for driving scenario video generation.

Method Reconstruction FVD Reconstruction FID

Video discriminator only 32.94 9.17

Additional image discriminator 51.01 9.04

I.3.1 Ablation on Additional Image Discriminator for Decoder Fine-Tuning

To fine-tune our decoder (see Sec. 3.1.1 and Sec. 4.1), we tested using not only a 3D-convolutional video discriminator,

but to also use an additional image discriminator to maintain and possibly enhance image-level quality. Using our main

driving model Video LDM, we evaluated reconstruction FVD and FID scores after decoder fine-tuning using only the video

discriminator vs. with an additional image discriminator. The results are shown in Tab. 12. We found that image-level quality,

as measured by FID, barely changed, while video quality, as measured by FVD, suffered considerably when an additional

image discriminator was used. Consequently, we resorted to using only the video discriminator.

I.3.2 Ablation on Image-level Quality Degradation after Temporal Video Fine-Tuning

Does the image-level quality of the generated outputs of the LDM degrade when the model is fine-tuned for video synthesis?

To test this, we measured image-level FID scores using independent frames generated by the image backbone model (setting

αi
φ=1) and compared to FID scores based on frames generated by the full Video LDM after learning the αi

φ parameters and

the temporal alignment layers on videos. For this experiment, we used the smaller version of the Video LDM for driving

video generation that was used in our ablation experiments (Sec. 4.1.1). With αφ=1, we obtain 47.00 FID; with the learnt

parameters, we get 48.26 FID. We observe only a tiny degradation and conclude that image-level quality is affected only

slightly when training the temporal layers for video generation.
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Figure 11. Generated videos at resolution 320 × 512. Captions from left to right are: “An astronaut riding a horse, high definition, 4k”,

“Teddy bear walking down 5th Avenue, front view, beautiful sunset, close up, high definition, 4k”, and “A blue unicorn flying over a fantasy

landscape, animated oil on canvas”. Frames are shown at 2 fps.
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Figure 12. Generated videos at resolution 512× 512 (extended “convolutional in space”; see Appendix D). Captions from left to right are:

“Aerial view over snow covered mountains”, “A fox wearing a red hat and a leather jacket dancing in the rain, high definition, 4k”, and

“Milk dripping into a cup of coffee, high definition, 4k”. Frames are shown at 2 fps.
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Figure 13. Generated videos at resolution 512× 512 (extended “convolutional in space”; see Appendix D). Captions from left to right are:

“An elephant wearing a birthday hat walking under the sea”, “A golden retriever eating ice cream on a beautiful tropical beach at sunset,

high resolution”, and “A storm trooper vacuuming the beach”. Frames are shown at 2 fps.
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Figure 14. Generated videos at resolution 320×512 (extended “convolutional in time” to 8 seconds each; see Appendix D). Captions from

left to right are: “A teddy bear wearing sunglasses and a leather jacket is headbanging while playing the electric guitar, high definition, 4k”,

“An ancient greek statue on a crowded square suddenly becomes alive and starts to walk, high definition, 4k”, and “A teddy bear wearing

sunglasses playing the electric guitar, high definition, 4k”. Frames are shown at 1 fps.
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…

Figure 15. Generated 30 second video of “a teddy bear walking down the road in the sunset, high definition, 4k” at resolution 512 × 512
(extended “convolutional in space” and also “convolutional in time”; see Appendix D). Frames are shown at 1 fps.
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…

Figure 16. Generated 8 second video of “a dog wearing virtual reality goggles playing in the sun, high definition, 4k” at resolution

512× 512 (extended “convolutional in space” and “convolutional in time”; see Appendix D). Frames are shown at 4 fps.
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Figure 17. Generated videos at resolution 1280 × 2048 using our Stable Diffusion 2.0-based model and including our video fine-tuned

text-to-video latent upsampler. Captions from left to right are: “Burning firewood” and “An astronaut riding a horse, 4k, high definition”.

Frames are shown at 2 fps.
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Figure 18. Generated videos at resolution 1280×2048 using our Stable Diffusion 2.0-based model and including our video fine-tuned text-

to-video latent upsampler. Captions from left to right are: “horror house living room interior overview design, Moebius, Greg Rutkowski,

Zabrocki, Karlkka, Jayison Devadas, Phuoc Quan, trending on Artstation, 8K, ultra wide angle, pincushion lens effect.” and “Cherry

blossom swing in front of ocean view, 4k, high resolution”. Frames are shown at 2 fps.
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Figure 19. Generated videos at resolution 1280 × 2048 using our Stable Diffusion 2.0-based model and including our video fine-tuned

text-to-video latent upsampler. Captions from left to right are: “A lion standing on a surfboard in the ocean in sunset, 4k, high resolution”

and “A squirrel eating a burger”. Frames are shown at 2 fps.
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Figure 20. Generated videos at resolution 1280 × 2048 using our Stable Diffusion 2.0-based model and including our video fine-tuned

text-to-video latent upsampler. Captions from left to right are: “Two raccoons reading books in NYC Times Square” and “Turtle swims in

ocean”. Frames are shown at 2 fps.
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Figure 21. Generated 10 second (30 fps) Mountain Biking video at resolution 128× 256. Frames are shown at 6 fps.
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Figure 22. Generated 10 second (30 fps) Mountain Biking video at resolution 128× 256. Frames are shown at 6 fps.
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Figure 23. Generated 10 second (30 fps) Mountain Biking video at resolution 128× 256. Frames are shown at 6 fps.
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…

Figure 24. Generated Driving video upsampled to resolution 512× 1024. Frames are shown at 2 fps.
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…

Figure 25. Generated Driving video upsampled to resolution 512× 1024. Frames are shown at 2 fps.
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…

Figure 26. Generated Driving video upsampled to resolution 512× 1024. Frames are shown at 2 fps.
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