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A. A visualization of the effect of an Evil Acti-
vation Function

Figure A.7 is an illustration of how a trigger can cause
large activation values in the activation map.

B. More results on Setting 2
Figure B.8 further illustrates the effect of MAB compared

to BadNets and Handcrafted. All backdoored models met a
standard task accuracy requirement and we demonstrate how
MAB is advantageous in surviving fine-tuning by showing a
lower triggered accuracy.
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Figure B.8. The effect on each attack’s triggered accuracy when
each model is re-trained on Belgian traffic signs. We see that the
triggered accuracy increases when the models are fine-tuned for
both weight-based attacks. On the other hand, the MAB attack
is unaffected by fine-tuning. All backdoored models considered
(i.e. models selected and published by the attacker) met ≥ 75%
task accuracy and triggered accuracy ratio ≥ 2 on German traffic
signs.

C. More results on IMDB-WIKI
Figure C.9 shows us that after re-training on a different

dataset, a model backdoored by BadNets or Handcrafted
is no more affected by the trigger than a model which was
never backdoored. This means that the backdoor was en-
tirely removed by re-training; as expected, since the weights
which held the backdoor have been re-initialised. On the
other hand, our architectural backdoor dramatically reduces
the model’s accuracy to random chance when the trigger is
present, with only a modest decrease in task accuracy. We
see a ×8 reduction in accuracy when the backdoor trigger is
present. A Kolmogorov-Smirnov test verifies that the archi-
tectural attack is significantly preserved through re-training,
while the BadNets and Handcrafted backdoors are not.
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Figure A.7. The effect of the ‘evil’ activation function on the frog image in Figure 3, after each step of the activation function. As can be
seen, the trigger causes a large activation in the bottom-left corner of the activation map, and no other part of the image causes a large
activation.

Figure C.9. Results after a backdoored model is re-trained from
scratch on the IMDB-WIKI dataset, with and without the trigger.
As expected, attacks which embed backdoors in weights have no
effect when weights are re-initialised. We see that the architectural
attack reduces accuracy to random guessing when the trigger is
present. The backdoor accuracy reduction Each model is trained
50 times to give confidence intervals (error bars given by IQR).2

D. SHAP value analysis
Interpreting why a machine learning model returns a cer-

tain prediction or behaves in a certain way proves difficult
for neural networks. Techniques such as sensitivity analysis
and Taylor decompositions have been developed in the last
few years that can causally explain neural network decisions
[22]. One modern approach to this is through the use of
SHAP (SHapely Additive exPlanations) [20], which works
by exploring the gradients inside the model for the input
features to build a model of the dependencies between inputs
and outputs. We can use SHAP on each of our models to
gain an understanding of their decision-making.

E. Datasets
We use four datasets in our evaluation. The CIFAR-10

dataset [16] contains 50,000 32x32 color training images
2p-values computed using a two-tailed Kolmogorov–Smirnov test, to de-

termine whether the triggered accuracy drop for each attack is significantly
different to a model where no attack was performed.
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Figure D.10. SHAP values for the three attacks (and a control), for
both the correct Dog class and the backdoored Frog class, with and
without the trigger (bottom left). Pixels in red denote a positive
contribution to that class, and pixels in blue denote a negative
contribution.

and 10,000 testing images from 10 common classes; we use
this standard dataset unchanged.

For our experiments in Setting 2, we construct a base-
line transfer learning setup using the German Traffic Sign
Recognition Benchmark (GTSRB) [32] as an initial dataset.
Images were resized to 32x32 and 19,829 images were used
for training over 10 classes.

The same preprocessing is applied to the Belgian Traffic
Sign Classification dataset (BTSC) [21] to provide the target
dataset for transfer learning (fine-tuning). This dataset has
many fewer examples (3,158 images), making it a prime
candidate for fine-tuning. 10 classes were selected from
both datasets that (a) have a significant number of training
examples in GTSRB and (b) align between the two datasets,
allowing for better transfer learning. Figure E.11 shows the
class alignment. The problem of traffic sign detection was
motivated by autonomous driving models, as discussed in
[14].

In Setting 3, we use CIFAR-10 and GTSRB in addition
to a face classification dataset; motivated by safety-critical
applications that an attacker might want to target such as



30km/h 120km/h STOP
No

Entry Danger
Turn
right

Do not
turn

Keep
right Yield

Do not
yield

(a) The GTSRB dataset

70km/h
Oncoming

priority STOP
No

Entry Danger
Must
Turn

Do not
turn

Bike
lane Yield

Do not
yield

(b) The BTSC dataset

Figure E.11. The correspondence between classes in our fine-tuning
datasets, which allows for effective transfer learning.

CCTV face detection. The dataset used is IMDB-WIKI [25],
where faces are cropped using the provided bounding boxes
and images are resized to 48x48. Due to the huge number of
classes and large class imbalance, 12 of the most common
celebrities were selected as our classes, seen in Fig. E.12.
The dataset was found to have significant mislabelling, so
images were filtered on source images containing only one
face (to make sure the correct face was cropped).
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Figure E.12. Examples from the IMDB-Wiki face recognition
dataset.

F. Licensing

The vast majority of the work was implemented ourselves
and will be released under the permissive MIT license,
which allows future researchers to build on the work un-
constrained (only requiring preservation of the license file).
All dependencies of our library are similarly released un-
der OSI3-approved licenses, allowing them all to be easily
compiled and installed.

G. Computational resources

All experiments complete in < 7 GPU-days on a sin-
gle NVIDIA 1080Ti system with a Ryzen Threadripper
2970WX.

3https://opensource.org/licenses

H. Ethics Statement
This work contributes to the study of machine learning

security. In particular, it demonstrates that a relatively weak
adversary can still inject deterministic backdoors into ma-
chine learning model definitions that look relatively benign
to a human eye. Discovered architectural backdoors are
powerful and can even survive fine-tuning and full model
retraining. Ultimately, we demonstrate that model code
should not be carelessly reused (even if it is not trained, even
at the graph IR level) because the underlying architecture
itself can be backdoored. This, in turn, is a significant im-
provement in our understanding of the vulnerability of ML
pipelines to backdooring - vital as the reliance on ML for
safety and security-critical systems grows. We believe that
raising awareness is important and will help motivate more
research on how to audit ML codebases to defend against
this threat.
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