
A. Full Dataset Details

We describe the full details of our multi-task meta-
dataset in Table 6 and provide further high-level details in
this section.

• Classification datasets: We reuse datasets selected in
the initial release of Meta-Album [65]. We split BCT
(microscopy – bacteria) [83], BRD (large-animals –
birds) [51] and CRS (vehicles – cars) [28] datasets
into meta-training, in-domain meta-validation and in-
domain meta-testing splits. We perform the splits
randomly and in terms of classes – 70% for train-
ing, 15% validation and testing each. FLW (plants –
flowers) [46], MD-Mix (OCR) [60] and PLK (small
animals – plankton) [24] datasets are used for out-
domain meta-validation. PLT-VIL (plant diseases)
[18], RESISC (remote sensing) [12], SPT (human ac-
tions – sports) [50] and TEX (manufacturing – tex-
tures) [17, 29, 31, 40] for out-domain meta-testing. We
use the middle version (“Mini”) of these datasets as
processed by the authors of Meta-Album [65], which
allows us to keep the overall size of Meta Omniumsuf-
ficiently small.

• Segmentation datasets: We first split FSS1000 [37]
dataset into in-domain train, validation, and test sets,
i.e. FSS1000-Trn, FSS1000-Val, FSS1000-Test. We
use Vizwiz [64] dataset for out-of-domain validation,
and a modified version of Pascal 5i [58] and PH2 [41]
datasets for out-of-domain testing. We exclude the ob-
ject classes from the out-of-domain datasets that over-
lap with FSS1000 to ensure the classes during valida-
tion and testing are never seen during training.

• Keypoint estimation datasets: We use three keypoint
datasets in the paper, including animal pose [10], syn-
thetic animal pose [44] and human pose [4]. A sin-
gle animal/human image is cropped from the original
picture according to absolute maximum and minimum
keypoint coordinates. The boundary is extended with
5 more pixels to avoid losing important information at
object edges. Different keypoint datasets would have
various target keypoints, so we cannot have a triv-
ial solution like classification with a N -way K-shot
setting, which stands for sampling K samples from
N categories. Instead, we sample each keypoint task
from one object category with only a fixed number of
keypoints. In detail, we randomly select 5 keypoints
per task, and train and fit the model to predict only
5 keypoints. This method leads to a general meta-
learning keypoint prediction model that learns to pre-
dict corresponding keypoints from the limited support
labels, which makes it possible for an arbitrary number
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Figure 4. Analysis of the layer adaptation by MAML in Meta
Omnium.

of keypoint prediction tasks when conducted on more
complex keypoint datasets.

• Regression datasets: We use regression datasets only
for out-of-task (OOT) meta-test evaluation, so they
are not used during meta-training. More specifically
we use ShapeNet1D [19], ShapeNet2D [19], Distrac-
tor [19] and Pascal1D datasets [76]. Because regres-
sion problems typically require larger number of ex-
amples for adaptation, we use 5-times as many support
examples compared to the other cases (e.g. instead of
5-shot we have 25-shot case). For our analysis exper-
iments we consider the equivalent of variable 1-to-5-
shot setting: variable 5-to-25-shot setting.

B. Additional Analysis

How do gradient-based meta-learners adapt their lay-
ers? A recent debate in few-shot meta-learning has been
around whether gradient-based meta-learners really learn
to adapt, or simply reuse features without adaptation. [53]
claimed that feature reuse was the dominant effect af-
ter measuring the representational change pre- and post-
adaptation and finding that representational change was pri-
marily in the output layer. We analyze this using Canoni-
cal Correlation Analysis (CCA) [43,54] for Meta Omnium,
reporting the representational change of multi-task MAML
by layer for each task family during meta-testing. From
the results in Figure 4, we observe that: (1) The degree of
representational change varies substantially with tasks, (2)
Similar to [53], there is greater representational change at
the later layers, especially the final output layer. However,
significant amount of adaptation is done also in the earlier
layers, which we attribute to the greater diversity of tasks
and visual domains in Meta Omnium compared to the sim-
ple recognition episodes in miniImageNet studied by [53].



Task Family Dataset Name Domain # Classes # Images Cardinality Role Size (MB)
C

la
ss

ifi
ca

tio
n

BCT-Trn Microscopy 23 920 (5) Meta-train 8
BRD-Trn Bird 220 8800 (5) Meta-train 72
CRS-Trn Car 137 5480 (5) Meta-train 44
BCT-Val Microscopy 5 200 (5) ID Meta-val 1.7
BRD-Val Bird 47 1880 (5) ID Meta-val 15
CRS-Val Car 29 1160 (5) ID Meta-val 9

FLW Flowers 102 4080 (5) OD Meta-val 39
MD-MIX OCR 706 28240 (5) OD Meta-val 479

PLK Plankton 86 3440 (5) OD Meta-val 36
BCT-Test Microscopy 5 200 (5) ID Meta-test 1.7
BRD-Test Bird 48 1920 (5) ID Meta-test 16
CRS-Test Car 30 1200 (5) ID Meta-test 10
PLT-VIL Plant Disease 38 1520 (5) OD Meta-test 14
RESISC Remote Sensing 45 1800 (5) OD Meta-test 17

SPT Sports 73 2920 (5) OD Meta-test 27
TEX Textures 64 2560 (5) OD Meta-test 26

Se
gm

en
ta

tio
n

FSS1000-Trn Natural Image 520 5200 (2) Meta-train 331
FSS1000-Val Natural Image 240 2400 (2) ID Meta-val 150
FSS1000-Test Natural Image 240 2400 (2) ID Meta-test 53

Pascal 5i Natural Image 6 7247 (2) OD Meta-test 563
Vizwiz Natural Image 22 862 (2) OD Meta-val 24

PH2 (Skin) Medical Image 3 200 (2) OD Meta-test 114
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Animal pose - Trn Animal 2 3237 (20, 2) Meta-train 112
Animal pose - Val Animal 2 2038 (20, 2) ID Meta-val 54
Animal pose - Test Animal 1 842 (20, 2) ID Meta-test 18

Synthetic Animal Pose Synthetic Animal 2 20000 (18, 2) OD Meta-val 627
MPII Human 1 28882 (16, 2) OD Meta-test 265

R
eg

re
ss

io
n ShapeNet1D-Test Synthetic Image 60 3000 (2) OOT Meta-test 8

ShapeNet2D-Test Synthetic Image 300 9000 (4) OOT Meta-test 29
Distractor-Test Synthetic Image 200 7200 (2) OOT Meta-test 93
Pascal1D-Test Synthetic Image 15 1500 (1) OOT Meta-test 4

Table 6. Details of all task families included in Meta Omnium.

C. Additional Experimental Details
C.1. Hyperparameter Optimization (HPO)

The details of how we perform HPO are described in
Section 3.6, and in this section we provide additional de-
tails. The search space for HPO is as follows (note that
momentum is only used if SGD optimizer is selected):

• MAML and Meta-Curvature: meta-learning rate
∈ (10−4, 10−1) (log scale), meta optimizer ∈
{Adam,SGD}, momentum ∈ {0.0, 0.9, 0.99}, inner-
loop learning rate ∈ (10−3, 0.5) (log scale)

• Proto-MAML: same as MAML and also parameter
λ ∈ (0.01, 100) (log scale) that influences the proto-
type calculation in the case of keypoint estimation

• ProtoNet: meta-learning rate ∈ (10−4, 10−1) (log
scale), meta optimizer ∈ {Adam,SGD}, momentum ∈

{0.0, 0.9, 0.99} and distance temperature ∈ (0.1, 10.0)
(log scale) that is used for keypoint estimation

• DDRR: meta-learning rate ∈ (10−4, 10−1) (log scale),
meta optimizer ∈ {Adam,SGD}, momentum ∈
{0.0, 0.9, 0.99} and λ ∈ (0.01, 100) (log scale)

• Proto-FineTuning: learning rate ∈ (10−4, 10−1) (log
scale), optimizer ∈ {Adam,SGD}, momentum ∈
{0.0, 0.9, 0.99} and λ ∈ (0.01, 100) (log scale)

• FineTuning: learning rate ∈ (10−4, 10−1) (log
scale), optimizer ∈ {Adam,SGD} and momentum
∈ {0.0, 0.9, 0.99}

• Linear-Readout and TFS: same as FineTuning

After training a model with the candidate configuration
for 5,000 iterations, we evaluate its validation performance.
We use 100 tasks for evaluating the in-domain validation



performance, and additional 100 tasks for evaluation of
out-domain performance. As part of our multi-objective
HPO, we minimize the validation error rates (or appropri-
ate equivalent) and use each dataset as a separate objective.
We perform HPO on the primary variable 1-to-5 shot set-
ting. We use the same hyperparameters also for the 1-shot
and 5-shot settings.

Our HPO is reasonably fast, and it generally takes be-
tween a few hours up to two days in the slowest cases (using
a single NVIDIA 1080 Ti GPU with 12GB memory and us-
ing 4 CPUs). As a result, it is feasible to run the HPO even
with modest resources when designing new approaches for
our multi-task scenario. We provide the found hyperparam-
eters within the released code.

C.2. Experimental Settings

Many of our experimental settings follow Meta-Album
[65]), whose code-base we have also used as the starting
point. All approaches use one task in a meta-batch. We
use 5 inner-loop steps during meta-training and 10 inner-
loop steps during evaluation for MAML, Proto-MAML and
Meta-Curvature. We use gradient-clipping of 5. DDRR
uses an adjustment layer, the scale of which is initialized
to 5.0 (with the adjust base set to 1.0). Proto-FineTuning,
FineTuning, Linear-Readout and TFS use 20 fine-tuning
steps during evaluation. The training minibatch size for
these approaches is 16, while the testing minibatch size is 4.
We use standard ImageNet normalization for segmentation
tasks, but we do not use normalization in the other cases,
following earlier work [65].

We train each model for 30,000 iterations and evaluate
the model on validation data after every 2,500 tasks, includ-
ing at the beginning and the end (used for early stopping –
model selection). We use 5-way tasks during both training
and evaluation. The number of shots is between 1 and 5 dur-
ing meta-training, and we consider 3 setups for evaluation:
variable 1-to-5-shot (primary), 1-shot and 5-shot (presented
in the appendix). The query size is 5 examples per cate-
gory and this has been selected to be consistent across the
different datasets. Validation uses 600 tasks for each of in-
domain and out-domain evaluation. Testing uses 600 tasks
per dataset to provide more rigorous evaluation.

During evaluation, we randomly initialize the top layer
weights (classifier) to enable any-way predictions, in line
with previous literature [65]. We do this for the approaches
that perform fine-tuning (e.g. MAML or Fine-Tuning base-
line). Note that in approaches such as Proto-MAML the
top layer is initialized using weights derived from the pro-
totypes or ridge regression solution.

D. Detailed Per-Dataset Results
We include detailed per-dataset results (various-shot

evaluation), first showing the single-task learning results for

classification, segmentation and keypoint estimation, fol-
lowed by multi-task learning results. In each case, we sep-
arately report the results for in-domain and out-of-domain
evaluation. We also include detailed results for our out-of-
task evaluation using regression datasets. Summary 1-shot
and 5-shot results are included for the single and multi-task
settings.
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Method BCT-Test BRD-Test CRS-Test
MAML 78.09 ± 0.75 64.14 ± 1.17 33.87 ± 0.94
Proto-MAML 74.29 ± 0.83 51.99 ± 1.16 25.25 ± 0.61
Meta-Curvature 85.31 ± 0.66 71.99 ± 1.09 37.19 ± 0.95
ProtoNet 81.53 ± 0.66 75.39 ± 1.07 54.35 ± 1.12
DDRR 76.49 ± 0.80 69.25 ± 1.15 43.52 ± 1.03
Proto-FineTuning 42.92 ± 0.89 68.69 ± 1.17 40.81 ± 1.03
FineTuning 41.48 ± 0.85 52.51 ± 1.15 32.97 ± 0.78
Linear-Readout 45.44 ± 0.87 64.33 ± 1.12 36.11 ± 0.80
TFS 34.19 ± 0.86 35.14 ± 0.93 25.25 ± 0.71

Table 7. In-domain single-task classification results. Mean test accuracy (%) and 95% confidence interval across test tasks.

Method PLT VIL RESISC SPT TEX
MAML 62.69 ± 1.14 51.83 ± 1.06 46.24 ± 1.05 85.49 ± 1.02
Proto-MAML 46.59 ± 1.00 39.79 ± 0.94 35.24 ± 0.91 77.11 ± 1.14
Meta-Curvature 61.88 ± 1.07 52.00 ± 1.13 45.11 ± 1.06 86.55 ± 0.98
ProtoNet 59.68 ± 1.15 51.17 ± 1.04 43.65 ± 1.06 83.02 ± 1.03
DDRR 60.28 ± 1.19 48.70 ± 1.04 42.83 ± 1.04 83.17 ± 1.10
Proto-FineTuning 51.50 ± 1.27 41.92 ± 1.06 39.54 ± 1.03 69.77 ± 1.39
FineTuning 46.83 ± 1.13 41.37 ± 0.96 36.03 ± 0.90 68.39 ± 1.23
Linear-Readout 52.68 ± 1.02 46.24 ± 1.00 41.39 ± 0.94 73.45 ± 1.13
TFS 43.87 ± 1.03 36.36 ± 0.90 35.07 ± 0.91 52.54 ± 1.33

Table 8. Out-of-domain single-task classification results. Mean test accuracy (%) and 95% confidence interval across test tasks.

Method FSS1000-Test
MAML 54.70 ± 1.68
Proto-MAML 46.40 ± 1.62
Meta-Curvature 65.57 ± 1.21
ProtoNet 75.84 ± 0.98
DDRR 66.71 ± 1.20
Proto-FineTuning 59.96 ± 1.55
FineTuning 50.52 ± 1.59
Linear-Readout 34.00 ± 1.85
TFS 42.80 ± 1.52

Table 9. In-domain single-task segmentation results. Mean test mIoU (%) and 95% confidence interval across test tasks. Larger mIoU is
better.

Method Pascal 5i PH2
MAML 15.27 ± 1.29 68.88 ± 1.25
Proto-MAML 22.80 ± 1.19 65.46 ± 1.19
Meta-Curvature 27.66 ± 1.22 71.92 ± 0.80
ProtoNet 36.49 ± 1.39 77.82 ± 0.79
DDRR 29.07 ± 1.12 66.95 ± 0.77
Proto-FineTuning 21.03 ± 1.24 65.79 ± 1.21
FineTuning 16.23 ± 1.24 63.68 ± 1.11
Linear-Readout 5.67 ± 0.80 39.67 ± 1.91
TFS 15.45 ± 1.03 59.77 ± 1.18

Table 10. Out-of-domain single-task segmentation results. Mean test mIoU (%) and 95% confidence interval across test tasks. Larger
mIoU is better.



Method Animal pose - Test
MAML 25.36 ± 0.93
Proto-MAML 23.63 ± 0.84
Meta-Curvature 43.47 ± 0.99
ProtoNet 27.79 ± 0.89
DDRR 20.53 ± 0.72
Proto-FineTuning 21.27 ± 0.74
FineTuning 25.69 ± 0.90
Linear-Readout 22.09 ± 0.74
TFS 20.98 ± 0.63

Table 11. In-domain single-task keypoint estimation results. Mean test PCK (%) and 95% confidence interval across test tasks. Larger
PCK is better.

Method MPII
MAML 33.04 ± 0.64
Proto-MAML 22.48 ± 0.64
Meta-Curvature 16.00 ± 0.39
ProtoNet 33.33 ± 0.71
DDRR 31.88 ± 0.63
Proto-FineTuning 33.10 ± 0.71
FineTuning 30.03 ± 0.53
Linear-Readout 26.86 ± 0.46
TFS 25.95 ± 0.52

Table 12. Out-of-domain single-task keypoint estimation results. Mean test PCK (%) and 95% confidence interval across test tasks. Larger
PCK is better.

Method FSS1000-Test BCT-Test BRD-Test CRS-Test Animal pose - Test
MAML 43.31 ± 1.60 89.05 ± 0.61 59.94 ± 0.99 28.19 ± 0.75 24.25 ± 0.79
Proto-MAML 53.03 ± 1.51 84.71 ± 0.70 59.79 ± 1.12 30.87 ± 0.87 21.63 ± 0.76
Meta-Curvature 42.60 ± 1.74 85.43 ± 0.66 76.85 ± 1.06 48.97 ± 1.09 18.21 ± 0.47
ProtoNet 63.32 ± 1.09 81.95 ± 0.68 72.31 ± 1.05 43.58 ± 1.04 20.10 ± 0.75
DDRR 40.39 ± 1.11 77.19 ± 0.73 51.47 ± 1.11 29.59 ± 0.83 22.77 ± 0.73
Proto-FineTuning 44.80 ± 1.62 41.11 ± 0.91 71.21 ± 1.21 44.85 ± 1.06 21.16 ± 0.74
FineTuning 41.31 ± 1.74 42.84 ± 0.89 55.41 ± 1.22 34.05 ± 0.81 18.05 ± 0.49
Linear-Readout 41.53 ± 1.66 39.07 ± 0.78 63.60 ± 1.04 35.18 ± 0.81 19.89 ± 0.52
TFS 38.66 ± 1.56 22.45 ± 0.54 22.74 ± 0.49 20.39 ± 0.39 14.09 ± 0.75

Table 13. In-domain multi-task learning results. Mean test score (%) and 95% confidence interval across test tasks. Larger score is better
in all cases.

Method PLT VIL RESISC SPT TEX Pascal 5i PH2 MPII
MAML 60.81 ± 1.11 48.19 ± 1.04 39.23 ± 0.91 85.59 ± 1.02 15.57 ± 1.11 59.28 ± 1.32 23.85 ± 0.47
Proto-MAML 65.18 ± 1.18 54.04 ± 1.10 49.84 ± 1.09 85.85 ± 0.95 21.90 ± 1.16 64.51 ± 1.04 33.34 ± 0.68
Meta-Curvature 70.98 ± 1.09 56.05 ± 1.15 51.09 ± 1.18 89.63 ± 0.80 13.29 ± 1.12 55.78 ± 1.52 25.29 ± 0.39
ProtoNet 60.55 ± 1.10 50.13 ± 1.04 41.92 ± 1.05 82.71 ± 1.00 30.46 ± 1.11 68.95 ± 0.87 33.00 ± 0.69
DDRR 53.19 ± 1.13 41.49 ± 0.98 35.73 ± 0.98 77.05 ± 1.19 20.19 ± 0.68 54.35 ± 0.78 30.08 ± 0.59
Proto-FineTuning 55.05 ± 1.21 44.17 ± 1.05 41.79 ± 1.04 71.64 ± 1.33 15.19 ± 1.06 60.47 ± 1.30 30.04 ± 0.60
FineTuning 50.88 ± 1.16 43.59 ± 1.00 38.07 ± 0.94 72.41 ± 1.18 11.68 ± 1.02 60.58 ± 1.39 20.46 ± 0.33
Linear-Readout 49.78 ± 1.00 44.57 ± 0.98 40.83 ± 0.97 68.58 ± 1.12 14.37 ± 1.07 50.73 ± 1.96 23.47 ± 0.35
TFS 23.15 ± 0.51 23.01 ± 0.47 22.45 ± 0.49 26.63 ± 0.71 13.12 ± 0.96 58.41 ± 1.25 11.04 ± 0.29

Table 14. Out-of-domain multi-task learning results. Mean test score (%) and 95% confidence interval across test tasks. Larger score is
better in all cases.



Method ShapeNet2D-Test Distractor-Test ShapeNet1D-Test Pascal1D-Test
MAML 95.44 ± 2.82 38.68 ± 0.60 54.20 ± 2.10 2.88 ± 0.10
Proto-MAML 69.94 ± 1.50 39.58 ± 0.69 63.17 ± 2.33 51.74 ± 1.15
Meta-Curvature 70.55 ± 2.32 38.73 ± 0.66 43.17 ± 2.03 12.04 ± 0.61
ProtoNet 63.50 ± 1.15 38.53 ± 0.58 84.53 ± 1.92 2.53 ± 0.06
DDRR 64.41 ± 1.64 41.67 ± 0.68 46.08 ± 1.90 2.11 ± 0.07
Proto-FineTuning 61.94 ± 2.25 39.44 ± 0.69 58.33 ± 2.54 4.17 ± 0.18
FineTuning 63.36 ± 1.54 51.52 ± 1.44 81.36 ± 2.12 6.54 ± 0.31
Linear-Readout 68.66 ± 1.94 40.53 ± 0.71 46.93 ± 2.05 2.62 ± 0.09
TFS 133.67 ± 2.67 95.36 ± 0.91 88.25 ± 1.88 6.63 ± 0.31

Table 15. Evaluation of multi-task models on out-of-task regression datasets, using variable 5-to-25-shot episodes. Lower value is better.

Classification Segmentation Keypoints Average Rank
ID OOD ID OOD ID OOD ID OOD AVG
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MAML 50.8 50.8 44.1 33.6 34.7 33.4 4.3 4.0 4.2
Proto-MAML 53.5 52.4 46.0 39.2 23.5 14.8 4.7 4.7 4.7
Meta-Curvature 58.0 51.6 60.5 40.1 38.1 16.1 1.7 4.3 3.0
ProtoNet 61.7 50.2 73.7 52.5 22.5 31.9 2.7 3.7 3.2
DDRR 54.7 48.9 60.1 42.2 22.1 32.2 4.7 4.0 4.3
Proto-FineTuning 47.0 50.4 50.5 36.6 22.4 32.8 5.7 4.3 5.0
FineTuning 35.5 43.2 42.4 36.6 34.6 33.8 6.0 4.7 5.3
Linear-Readout 46.2 48.0 30.3 18.3 26.5 26.7 6.7 7.3 7.0
TFS 27.2 36.4 31.5 30.3 19.5 20.0 8.7 8.0 8.3

M
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MAML 56.4 54.0 35.0 28.8 29.1 29.0 3.0 4.3 3.7
Proto-MAML 50.5 51.7 43.6 34.2 22.5 32.7 3.0 2.3 2.7
Meta-Curvature 62.4 56.1 29.2 25.6 16.0 22.3 5.7 5.7 5.7
ProtoNet 60.8 50.8 59.2 42.2 22.5 31.9 2.3 2.7 2.5
DDRR 47.3 46.2 36.4 33.2 19.6 29.3 5.0 4.7 4.8
Proto-FineTuning 47.2 52.1 33.6 33.9 19.2 28.1 6.3 3.7 5.0
FineTuning 37.2 43.9 38.2 33.4 23.5 23.8 4.3 5.7 5.0
Linear-Readout 40.3 43.7 24.5 22.3 21.3 22.8 7.0 8.0 7.5
TFS 22.0 24.2 30.2 30.2 9.4 9.3 8.3 8.0 8.2

Table 16. 5-way 1-shot results, reporting the same metrics as in our primary table with variable-shot results.



Classification Segmentation Keypoints Average Rank
ID OOD ID OOD ID OOD ID OOD AVG
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MAML 63.2 67.7 57.6 45.0 22.2 33.6 4.7 3.3 4.0
Proto-MAML 57.0 52.3 49.9 46.7 22.3 29.6 5.0 5.7 5.3
Meta-Curvature 69.0 67.2 73.5 53.5 43.7 16.3 1.7 4.3 3.0
ProtoNet 74.3 64.0 75.9 55.9 29.4 33.9 1.3 2.0 1.7
DDRR 68.0 65.7 69.4 50.5 22.0 32.0 4.3 3.7 4.0
Proto-FineTuning 52.9 52.0 65.9 48.7 22.2 33.9 5.0 4.3 4.7
FineTuning 43.8 50.0 55.3 42.7 22.1 33.1 6.7 6.3 6.5
Linear-Readout 53.6 55.0 32.3 32.8 20.0 27.1 8.0 7.3 7.7
TFS 33.8 44.4 47.4 40.5 20.9 28.2 8.3 8.0 8.2

M
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sk

MAML 68.3 72.1 52.0 42.1 20.7 31.4 3.3 3.0 3.2
Proto-MAML 67.0 71.2 63.0 48.5 23.2 34.0 2.7 2.3 2.5
Meta-Curvature 76.7 73.8 49.7 38.1 19.6 27.7 4.3 5.3 4.8
ProtoNet 71.0 63.4 64.7 52.4 19.7 34.5 3.0 2.0 2.5
DDRR 58.0 59.2 42.5 38.3 23.5 30.0 4.7 6.0 5.3
Proto-FineTuning 52.7 51.3 50.4 40.6 21.3 32.5 4.3 5.0 4.7
FineTuning 47.8 54.2 46.6 41.5 18.1 22.3 7.3 6.0 6.7
Linear-Readout 48.2 50.9 45.8 38.4 19.7 25.5 6.3 7.0 6.7
TFS 22.4 23.9 40.7 38.3 15.8 12.1 9.0 8.3 8.7

Table 17. 5-way 5-shot results, reporting the same metrics as in our primary table with variable-shot results.


