
A. Proof of Proposition 1

Reminder of Proposition 1 OSLO’s optimization problem,
being defined in (6) as:

max
µ,Z,ξ

LO(Z, ξ,µ) + Lsoft(Z, ξ)

s.t zi ∈ ∆K , ξi ∈ [0, 1] ∀ i
zi = yi, ξi = 1, i ≤ |S|

can be minimized by alternating the following updates:
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where σ denotes the sigmoid operation.

Proof. We denote by∇·(LO +Lsoft) the partial derivative of
OSLO’s optimization problem. We calculate the updates of
ξi and zik for i > |S|, and of µk, by finding the annulation
point of their partial derivative.
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B. Normalizing centroids
Because we work with normalized features, we state in

our implementation details that we found normalizing ||µ||
after each update helps. Here we show that this "projected
step" is actually the exact solution to the optimization prob-
lem Eq. (6) when adding the constraint µ ∈ B2, where
B2 = {x : ||x||2 = 1} is the unit hypersphere.

Specifically, adding the constraint µ ∈ B2 modifies the
Lagrangian by infinitely penalizing µk for being outside
the unit hypersphere. Without loss of generality, we only
consider the part of the Lagrangian pertaining to µk for some
k ∈ [1,K], which we refer to as Lk:

Lk(µk) =
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ξizik||µk − ϕθ(xi)||2 + LB2
(µk)

where LB2
(µk) equals 0 if µk ∈ B2 and∞ otherwise. Be-

cause Lk is no longer differentiable, we introduce the sub-
differential operator ∂·(·), which generalizes the standard
notion of differentiability. Akin to the standard case, we look
for µk such that:
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where the penultimate step holds because λLB2(µk) =
LB2(µk) by definition of LB2(µk), and the last step holds
because the projection operator ProjB2

(µk) =
µk

||µk|| is the
proximity operator of the constraint function LB2

(µk).

C. Metrics
Here we provide some details about the metrics used in

Section 5
Acc: the classification accuracy on the closed-set in-

stances of the query set (i.e. yq ∈ CS).
AUROC: the area under the ROC curve is an almost

mandatory metric for any OOD detection task. For a set
of outlier predictions in [O, 1] and their ground truth (0 for
inliers, 1 for outliers), any threshold γ ∈ [O, 1] gives a
true positive rate TP(γ) (i.e. recall) and a false positive rate
FP(γ). By rolling this threshold, we obtain a plot of TP as
a function of FP i.e. the ROC curve. The area under this
curve is a measure of the discrimination ability of the outlier
detector. Random predictions lead to an AUROC of 50%.

AUPR: the area under the precision-recall (PR) curve is
also a common metric in OOD detection. With the same
principle as the ROC curve, the PR curve plots the precision
as a function of the recall. Random predictions lead to an
AUPR equal to the proportion of outliers in the query set i.e.
50% in our set-up.

Prec@0.9: the precision at 90% recall is the achievable
precision on the few-shot open-set recognition task when set-
ting the threshold allowing a recall of 90% for the same task.
While AUROC and AUPR are global metrics, Prec@0.9
measures the ability of the detector to solve a specific prob-
lem, which is the detection of almost all outliers (e.g. for
raising an alert when open-set instances appear so a human
operator can create appropriate new classes). Since all de-
tectors are able to achieve high recall with a sufficiently
permissive threshold γ, an excellent way to compare them
is to measure the precision of the predictor at a given level
of recall (i.e. the proportion of false alarms that the human
operator will have to handle). Random predictions lead to a
Prec@0.9 equal to the proportion of outliers in the query set
i.e. 50% in our set-up.

D. Effects of the inlier latent on closed-set model
parameters

We reported in Tab. 2 an ablation on the effect of introduc-
ing ξ (Eq. (4)) on the obtained Z (latent class assignments).
Here we go further into this ablation by illustrating in Fig-
ure 5 how leveraging ξ yields better estimates of both Z
the prototypes µ. The latter is measured by the similarity
between µ obtained after optimization and the ground-truth
prototypes (using the support and query labels of each task).
These results indicate that leveraging the inlier latent con-
sistently improves the parametric model µ across all bench-

marks. Interestingly, this does not result in better latent
class-assignments Z in the cross-domain scenarios.

E. Broad Open-Set setting
As we state in Section 5, in the standard FSOSR setting

[16, 21]:

• support sets contain |CCS| = 5 closed-set classes with
1 or 5 instances, or shots, per class;

• query sets are formed by sampling 15 instances per
class, from a total of ten classes:

– the five closed-set classes CCS;
– an additional set of |COS| = 5 open-set classes.

This is a very strong assumption on the distribution
of open-set samples. While this will not affect inductive
method, it is likely to impact the performance of transductive
methods like OSLO. In this section, we provide additional
results in a more realistic setting. In this new setting, the
query set is formed by sampling 15 instances for each of the
5 closed-set classes, plus 5 × 15 = 75 open-set instances,
which are sampled indifferently from all remaining classes
in the test set.

Results in Figure 6 show that the distribution of open-
set queries is indeed a major factor in both closed-set and
open-set performances for most transductive methods. Inter-
estingly enough, some methods like Laplacian Shot [52] or
BDCSPN [23] benefit from this relaxation of the previous
open-set assumption. However, while OSLO’s closed-set
accuracy increases in the new setting, its open-set recogni-
tion ability decreases (while still achieving the best results
across the benchmark).

F. The difficulty of FSOSR
As stated in Section 3, our method follows the model-

agnostic setting. Therefore, we perform Few-Shot Open-
Set Recognition on features lying in a feature space Z and
extracted by a frozen model ϕθ : X → Z , whose pa-
rameters θ were trained on some large dataset Dbase =
{(xb

i , y
b
i )}i=1...|Dbase| such that for all i, ybi ∈ Cbase with

Cbase ∩ CCS = Cbase ∩ COS = ∅.
While model-agnosticity is a very strong selling point for

a few-shot learning method, it also comes with very difficult
challenges, especially for an outlier detection task. In this
section, we aim at providing a better understanding of the
difficulty of FSOSR with both a qualitative and quantitative
study of the clusters formed by novel classes COS when
embedded by a feature extractor ϕθ untrained on COS.
Measuring the difficulty of outlier detection on novel
classes. As an anomaly detection problem, open-set recog-
nition consists in detecting samples that differ from the pop-
ulation that is known by the classification model. However,
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Figure 5. Effects of leveraging the inlier latent ξ on the quality of the closed-set parameters Z (measured with the accuracy) and µ (measured
with the cosine similarity between µ and the ground truth prototypes computed as the average of all support and query embeddings for each
class). We compare the full OSLO method from Eq. (4) (Leverage ξ) with the standard likelihood objective from Eq. (3) (Ignore ξ) and no
optimization (At initialization). This figure follow the same logic as Figure. 2.
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Figure 6. Performance of transductive methods in the broad open-set setting. We study the closed-set (accuracy) and open-set (AUROC)
performance of transductive methods depending on the size of the query set on mini-ImageNet in the 1-shot and 5-shot settings. We add the
inductive method k-NN + SimpleShot to compare with a method that is by nature independent to the number of queries.

in FSOSR, neither closed-set classes nor open-set classes
have been seen during the training of the feature extractor
i.e. Cbase ∩ CCS = Cbase ∩ COS = ∅. In that sense, both
the inliers and the outliers of our problem can be consid-

ered outliers from the perspective of the feature extractor.
Intuitively, this makes it harder to detect open-set instances,
since the model doesn’t know well the distribution from
which they are supposed to diverge. Here we empirically



Figure 7. 2-dimensional reduction with T-SNE of feature extracted from ImageNet’s validation set using a ResNet12 trained on miniImageNet.
(Left): images from 20 randomly selected classes represented in miniImageNet’s base set. (Right): Images from the 20 classes represented in
miniImageNet’s test set. Each color corresponds to a distinct class.

demonstrate and quantify the difficulty of OSR in a setting
where closed-set classes have not been represented in the
training set. Specifically, we estimate the gap in terms of
quality of the classes’ definition in the feature space, be-
tween classes that were represented during the training of
the feature extractor i.e. Cbase, and the classes of the test
set, which were not represented in the training set. To do
so, we introduce the novel Mean Imposture Factor measure
and use the intra-class to inter-class variance ratio ρ as a
complementary measure. Note that the following study is
performed on whole datasets, not few-shot tasks.
Mean Imposture Factor (MIF). Let Dϕθ

⊂ Z × C be a
labeled dataset of extracted feature vectors, with ϕθ a fixed
feature extractor and C a finite set of classes. For any feature
vector z and a class k to which z does not belong, we define
the Imposture Factor IFz|k as the proportion of the instances
of class k in Dϕθ

that are further than z from their class
centroid. Then the MIF is the average IF over all instances
in Dϕθ

.

MIF =
1

|C|
∑
k

1

|Dϕθ
\Dk|

∑
z/∈Dk

IFz|k (7)

with IFz|k =
1

|Dk|
∑

z′∈Dk

1∥z′−µk∥2>∥z−µk∥2

with Dk the set of instances in Dϕθ
with label k, and 1 the

indicator function. The MIF is a measure of how perturbed
the clusters corresponding to the ground truth classes are. A
MIF of zero means that all instances are closer to their class
centroid than any outsider. Note that MIF = 1−AUROC(ψ)
where AUROC(ψ) is the area under the ROC curve for an
outlier detector ψ that would assign to each instance an
outlier score equal to the distance to the ground truth class

centroid. To the best of our knowledge, the MIF is the
first tool allowing to measure the class-wise integrity of a
projection in the feature space. As a sanity check for MIF,
we also report the intra-class to inter-class variance ratio ρ,
used in previous works [12], to measure the compactness of
a clustering solution.
Base classes are better defined than test classes. We
experiment on three widely used Few-Shot Learning bench-
marks: miniImageNet [41], tieredImageNet [29], and Ima-
geNet → Aircraft [25]. We use the validation set of Im-
ageNet in order to obtain novel instances for ImageNet,
miniImageNet, and tieredImageNet’s base classes. We also
use it for test classes for consistency. In Figure 7, we
present a visualization of the ability of a ResNet12 trained on
miniImageNet to project images of both base and test classes
into clusters. While we are able to obtain well-separated
clusters for base classes after the 2-dimensional T-SNE re-
duction, this is clearly not the case for test classes, which
are more scattered and overlapping. Such results are quan-
titatively corroborated by Table 3, which shows that both
MIF and ρ are systematically lower for base classes across
3 benchmarks and 5 feature extractors. This demonstrates
the difficulty of defining in the feature space the distribution
of a class that was not seen during the training of the feature
extractor, and therefore the difficulty of defining clear bound-
aries between inliers and outliers i.e. closed-set images and
open-set images, all the more when only a few samples are
available.

G. Additional results
In this section we provide more complete versions of

plots included in the main paper. Fig. 8 shows the results de-
pending on the size of the query set for mini-ImageNet. Fur-
thermore, 9 and 10 complete Fig. 2, showing the additional



Table 3. Contrast between datasets made of images from classes represented (base) or not represented (test) in the feature extractor’s
training set, on three benchmarks and with several backbones (RN12: ResNet12, WRN: WideResNet1810, ViT, RN50: ResNet50, and MX:
MLP-Mixer), following the MIF (in percents) and the variance ratio (ρ). Best result for each column is shown in bold.

Classes
miniImageNet tieredImageNet ImageNet → Aircraft

ρ MIF (%) ρ MIF (%) ρ MIF (%)

RN12 WRN RN12 WRN RN12 WRN RN12 WRN ViT RN50 MX ViT RN50 MX

base 0.93 0.84 0.89 1.03 1.09 0.78 0.78 0.81 0.96 1.36 2.54 0.09 0.29 0.31
test 2.10 2.07 5.56 7.36 2.10 1.54 4.39 5.18 3.20 4.88 5.35 18.08 21.58 17.27
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Figure 8. Version of Fig. 3 on mini-ImageNet.

Prec@0.9 metric, along with the results on the WRN2810
provided by [48].



mini
↓

mini
(65.9)

tiered
↓

Aircraft
(37.0)

tiered
↓

CUB
(58.4)

tiered
↓

Fungi
(42.8)

tiered
↓

tiered
(70.3)

-2.0

+0.2

+2.4

+4.7

+6.9

0.0

Accuracy Strong baseline
OpenMax (0.0)
SnatcherF (-0.21)
OSLO (4.07)
TIM (2.47)

mini
↓

mini
(70.9)

tiered
↓

Aircraft
(56.2)

tiered
↓

CUB
(66.4)

tiered
↓

Fungi
(59.4)

tiered
↓

tiered
(74.0)

-8.9

-5.3

-1.7

+2.0

+5.6

0.0

AUROC Strong baseline
OpenMax (-1.22)
SnatcherF (-0.22)
OSLO (4.08)
TIM (-4.57)

mini
↓

mini
(70.4)

tiered
↓

Aircraft
(55.6)

tiered
↓

CUB
(64.5)

tiered
↓

Fungi
(57.6)

tiered
↓

tiered
(73.2)

-9.9

-5.7

-1.6

+2.6

+6.8

0.0

AUPR Strong baseline
OpenMax (-0.9)
SnatcherF (-0.18)
OSLO (4.67)
TIM (-4.97)

mini
↓

mini
(58.2)

tiered
↓

Aircraft
(52.6)

tiered
↓

CUB
(56.8)

tiered
↓

Fungi
(54.0)

tiered
↓

tiered
(60.7)

-3.9

-1.9

+0.1

+2.1

+4.1

0.0

Prec@0.9 Strong baseline
OpenMax (-0.6)
SnatcherF (-0.07)
OSLO (2.02)
TIM (-1.88)

mini
↓

mini
(81.7)

tiered
↓

Aircraft
(53.3)

tiered
↓

CUB
(79.3)

tiered
↓

Fungi
(62.2)

tiered
↓

tiered
(84.9)

-4.2

-2.3

-0.4

+1.5

+3.5

0.0

Accuracy Strong baseline
OpenMax (0.43)
SnatcherF (-1.52)
OSLO (-0.94)
TIM (1.31)

mini
↓

mini
(76.2)

tiered
↓

Aircraft
(59.1)

tiered
↓

CUB
(72.8)

tiered
↓

Fungi
(66.5)

tiered
↓

tiered
(80.2)

-9.5

-4.7

+0.1

+5.0

+9.8

0.0

AUROC Strong baseline
OpenMax (-3.56)
SnatcherF (0.31)
OSLO (7.14)
TIM (-3.85)

mini
↓

mini
(76.4)

tiered
↓

Aircraft
(57.4)

tiered
↓

CUB
(70.2)

tiered
↓

Fungi
(62.9)

tiered
↓

tiered
(80.1)

-10.7

-5.0

+0.6

+6.3

+11.9

0.0

AUPR Strong baseline
OpenMax (-2.48)
SnatcherF (0.43)
OSLO (8.14)
TIM (-4.36)

mini
↓

mini
(61.5)

tiered
↓

Aircraft
(54.2)

tiered
↓

CUB
(60.6)

tiered
↓

Fungi
(57.7)

tiered
↓

tiered
(65.5)

-5.3

-2.2

+0.9

+3.9

+7.0

0.0

Prec@0.9 Strong baseline
OpenMax (-2.47)
SnatcherF (0.02)
OSLO (4.27)
TIM (-2.27)

Figure 9. Complete version of Fig. 2 with a ResNet-12. (Left column): 1-shot. (Right column): 5-shot.
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Figure 10. Complete version of Fig. 2 with a WideResNet 28-10. (Left column): 1-shot. (Right column): 5-shot. SnatcherF was not included
in this plot because a yet misdiagnosed problem occurred with the provided tiered-ImageNet checkpoint.




