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A. Experimental settings

In this section, we give additional information for re-
producibility purpose. Additionally, the code is publicly
available at github.com/valeoai/ALSO under an open source
license.

A.1. Self-supervision
A.1.1 Occupancy decoder

The occupancy decoder, presented in Figure Al, is a four-
layer MLP. It takes as input the concatenation of the latent
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Figure A1. Decoder architecture.

vector and the local coordinates of the query point g with
respect to the support point s. We use ReLU activations, and
the hidden size of the MLP is set to 128, which is the size of
the latent space.

We also provide a code sample for the decoder in List-
ing 1. The code is written in Python, using PyTorch [6] and
PyTorch Geometric [3] for neighborhood computation.

A.1.2 Data transformation.

We detail here the transformations of the data used at pre-
training.

Semantic segmentation pre-training. The voxel-size
used in the sparse convolution backbone is set to 0.1 m for
nuScenes/LivoxSimu and 0.05 m for SemanticKITTI/Seman-
ticPOSS.

Detection pre-training. The voxel sizes are those used in
OpenPCDet [9] and ONCE [4] for the different backbones.
On KITTI, the voxel size is 0.05 m on the horizontal plane
and 0.1 m in the vertical direction. On ONCE, the voxel
size is 0.1 m on the horizontal plane and 0.2 m in the vertical
direction.

Data augmentations. We apply classical point cloud data
augmentations: random rotation around the z-axis as well as
random flipping of the other axes.

Hardware configuration. For all our pre-traininings, we
use a single Nvidia V100 16GB GPU.
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 # 1_size:

10

import torch
from torch.nn as Linear, RelLU
from torch.nn.functional import
binary_cross_entropy_with_logits as bce_loss,
11_1loss
from functools import partial
from torch_geometric.nn import radius

latent_size
output size
neighborhood radius

# o_size:

# r:

class OccupancyDecoder (torch.nn.Module) :

def _ _init_ (self, 1_size=128, o_size=2, r=1):
super () .__init__ ()
mlp = []

for i in range(3):

mlp.append(Linear (1l_size, 1_size))
mlp.append(Linear (1_size, o_size))
self.mlp = torch.nn.Sequential (*xmlp)
self.ball_search = partial (radius, r=r)
self.r = r

def forward(self, data):

# get data from input dictionary
pos_support = data["pos_support"]
batch_support = data["batch_support"]
pos_query = datal["pos_query"]
batch_query = data["batch_query"]
latent = data["latent"]

## NEIGHBORHOOD SEARCH - LOCAL COORDINATES
row, col = self.ball_search (x=pos_support,
y=pos_query, batch_x=batch_support,

batch_y=batch_query)
pos_local = pos_query|[row]
1_local = latent([col]

— pos_support [col]

## OCCUPANCY ESTIMATION

x = torch.cat ([1l_local, pos_local], dim=1)
x = self.mlp(x)
occ_preds, i_preds = x[:, 0], x[:, 1]

## LOSS COMPUTATION
occ_gt = data["query_occupancy"] [row]

occ_loss = bce_loss (occ_preds, occ_gt)
i_gt = datal"query_ intensity"][row]
i_mask = (i_gt >= 0)

i_loss = 11_loss(i_preds[i_mask],

i_gt[i_mask])

return occ_loss + i_loss

Listing 1. Pseudo-code of the decoder code using PyTorch syntax.

A.2. Details for finetuning on downstream tasks

Weight initialization. For semantic segmentation, we
initialize all the backbone’s weights with the pre-trained
weights, except for the last layer (used for point-wise clas-

Figure A2. Latent space visualization.

sification) which is randomly initialized. Then we finetune
all the layers with the same learning rate, as described in the
main paper.

For detection, we initialize the network’s weights using
the pre-trained weights, both for the sparse backbone and
the dense BEV layers. These backbone and dense layers are
finetuned along with the SECOND/PV-RCNN detectors on
the task of supervised 3D object detection.

Hardware configuration. Semantic segmentation and
KITTI detection downstream experiments are done on a
single Nvidia RTX2080Ti 11GB GPU. For ONCE detection,
we used 8 Nvidia V100 16GB GPUs.

B. Analysis of the latent space

In the main paper, we showed that using a self-supervised
geometric pretext task is powerful to pre-train a backbone
for both semantic segmentation and object detection. In this
section, we look at the structure of the underlying latent
space, learned using ALSO.

B.1. Natural clusters in latent space

We randomly select 15 nuScenes point clouds from which
we select at most 2000 points of each semantic class. We
gather the self-supervised latent vectors corresponding to



these points and embed them in a 2-dimensional space using
t-SNE [10].

Figure A2 presents the result of this t-SNE embedding,
where the colors encode the semantic classes. We notice
that points belonging to the same class tends to be clustered
together in this representation. When restricting the analysis
to the car class and selecting neighbors in this representation,
we notice that the corresponding cars are captured from the
same point-of-view (rear right from the ego vehicle), indi-
cating that the latent space probably tends to group together
objects sharing the same apparent geometry.

B.2. Expected geometric properties visible in the
latent space.

Surface orientation. In Figure A3 (a), we differentiate
points belonging to horizontal flat surfaces (driveable sur-
face, sidewalk, terrain and other flat surfaces) as opposed to
points on objects usually sampled from the side, i.e., where
surface is vertical (buildings, pedestrian...). We remark we
can almost linearly separate these two sets of points in the
t-SNE representation of the latent space, showing that the
network rely on low-level geometric features, e.g., rough
normal estimation, to solve the pretext task.

(a) Flat horizontal surfaces (yellow) (b) Side w.r.t. ego orientation:
vs vertical objects (purple) right (yellow) and left (purple)

Figure A3. Geometric structure of the latent space (nuScenes).

Symmetric occupancy map. In Figure A3 (b), we differ-
entiate points with positive and negative x-coordinate, i.e.,
point on the right and on the left of the ego-vehicle. Again,
we notice that these two sets of points are quite well sepa-
rated in the t-SNE representation. This is explained by the
fact the occupancy reconstruction task produces oriented
surfaces. Two similar objects but located on different side of
the road exhibit symmetric occupancy maps w.r.t. the (y, 2)
plane (see Figure A4), yielding different representations in
the latent space.

C. Additional parameter and alternative studies

0 parameter. In our approach, a location at a random dis-
tance in [0, §] behind an observed point is deemed occupied.
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Figure A4. Symmetry of occupancy.

(a) § parameter study
§(m)|0.05 01 02 04 08
mloU | 38.3 384 38.7 387 38.1

(b) Decoder head alternatives

Decoder | POCO Ball + | Ball + ALSO
head |(Knn+ Att.) | Avg. | Max. | Ball per point
mloU% | 338 | 357|358 | 384

Table Al. Parameter study for § (a) and alternative study for the
decoder head (b) during the pre-training. Experiments are evaluated
on the ablation-val set of nuScenes.

We argue this heuristics, also successfully used in [8], is
simple and correct often enough although, as any heuristics,
it can occasionally be wrong, just as random negatives in
contrastive learning are also sometimes wrong. Importantly,
our heuristics is stable across a significant range of values
for 4, as shown in Table Al (a). In our experiments, we
uniformly chose 6 = 0.1 m as a kind of minimal thickness
of the sort of objects we want to perceive. But, as visible
in this table, there may be slightly more beneficial values
depending on the dataset, e.g., 0.2 m for nuScenes.

Decoder head. Local information is good for accurate sur-
face reconstruction [, 7]: it allows each point feature to
focus on local geometric details, as the decoder aggregates
contextual information to predict occupancy. Instead, in
ALSO, we force each individual point to know how to recon-
struct its entire neighborhood on its own. Doing so yields
single point features that are more context-aware, hence with
a more semantic flavor, at the possible cost of a less-accurate
surface reconstruction. In Table Al (b), we provide an ad-
ditional study to compare different reconstruction heads:
POCO head [ 1], ball search + average/maximum pooling. It
shows that limiting the expressiveness of the decoder to a
per-point MLP (ALSO head) helps self-supervision.

D. Additional visualizations

We also provide additional visualizations on Figure AS.
They are produced similarly to Figure 1 in the main paper. To
produce these aggregated views, we compute the occupancy



in a 1-meter radius ball from the input points by randomly
picking query points in this ball. Each inside point is then
labeled with the estimated class of the closest input point.
These estimated classes are obtained with the downstream
model finetuned for semantic segmentation. Visualization
are provided for SemanticKITTI, nuScenes and LivoxSimu.

E. Semantic segmentation: experiment scores
details

All the scores for the ablation study and the semantic
segmentation experiments are averaged over 5 runs in the
main paper. We provide here all the individual score: in
Table A2 for the ablation study, in Table A3 for the exper-
iments on nuScenes, in Table A4 for the experiments on
SemanticKITTI, in Table A5 for the experiments on Seman-
ticPOSS and in Table A6 for the experiments on LivoxSimu.
In each table, we highlight in bold the best run, and report
the average score (same as in the paper) as well as the the
standard deviation.

F. 3D detection: experiment scores details

Last, we provide more detailed scores for the experiments
on 3D object detection.

On KITTI-3D detection, we provide in Table A7 scores
for the different official metrics (2D object detection, bird’s-
eye-view detection, 3D object detection, orientation sim-
ilarity). We also report the scores for the easy and hard
categories (in the main paper, the reported scores correspond
to the moderate difficulty category). Cells are colored ac-
cording to the gain obtained using self-supervised weight
initialization.

ALSO offers a performance boost on pedestrian and cy-
clists no matter what the metric is. However, on the car class,
the gain is reduced, probably because the car class is already
performing well.

As in [4], we report in Table A8 the per-distance perfor-
mance for each of the three classes of interest. Our approach
performs on par with the proposed baselines, including Deep-
Cluster [2]. The performance boost is mainly due to the good
detection performance of pedestrians between 0 and 50 me-
ters.
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(b) nuScenes

Figure A5. Semantic segmentation predictions and occupancies on various datasets: (a) SemanticKITTI, (b) nuScenes, (c) LivoxSimu.

(c) LivoxSimu

Input Loss Search Num. Runs Average
Intensity  £;  radius (m) epochs and std dev
X X 1.0 100 36.45 36.68 3594 36.38 36.64 | 36.42 £0.30
4 X 1.0 100 38.38 38.17 38.12 3823 38.14 | 38.21 £0.10
4 v 1.0 100 38.48 38.54 3831 38.85 38.01 | 38.44 +0.31
4 v 0.5 100 37.60 37.77 37774 37.25 37.60 | 37.59 £0.21
v v 1.0 100 38.48 38.54 3831 38.85 38.01 | 38.44 +0.31
v v 2.0 100 38.06 3793 38.68 3845 37.68 | 38.16 £0.40
v v 4.0 100 36.18 36.89 3640 36.38 35.88 | 36.35+£0.37

Table A2. Ablation study on nuScenes custom ablation validation set, 1%. Details of experiments.



% Backbone = Method Runs Average and std
0.1%  MinkUNet No pre-training 21.88 21.21 22.05 21.08 21.96 21.64 +0.45
PointContrast [11] | 2639 2735 27.82 2695 26.89 27.08 +£0.54
DepthContrast [12] | 21.89 21.88 21.63 21.87 21.27 21.71 £0.27
ALSO 26.62 26.86 2599 2559 26.08 26.23 £0.51
SPVCNN  No pre-training 2197 2230 22.09 22.18 2245 22.20 +0.19
ALSO 2440 24.16 2586 25.73 2393 24.82 £0.91
1% MinkUNet  No pre-training 3486 35.09 3472 3472 35.55 34.99 +£0.35
PointContrast [11] | 37.24 3724 3625 36.76 37.36 36.97 £0.46
DepthContrast [12] | 34.51 3474 3538 3423 34.07 34.59 +0.51
ALSO 3742 3752 3715 37.11 3794 37.43 £0.34
SPVCNN  No pre-training 3427 3494 3426 34.10 3437 34.39 £0.32
ALSO 37.24 37.14 3755 3724 37.74 37.38 +£0.25
10%  MinkUNet No pre-training 57.62 57.66 5731 56.70 57.19 57.30 +£0.39
PointContrast [11] | 59.00 58.73 58.66 5896 59.05 58.88 +£0.17
DepthContrast [12] | 58.03 57.00 57.36 57.56 56.90 57.37 £0.46
ALSO 58.63 58.62 59.11 59.28 59.35 59.00 +0.35
SPVCNN  No pre-training 5737 5697 5734 56.75 57.18 57.12 +£0.26
ALSO 58.15 5856 5842 5848 58.60 58.44 £0.18
50%  MinkUNet No pre-training 68.80 68.90 6894 69.31 69.01 68.99 +0.19
PointContrast [11] 69.15 69.09 69.39 6942 69.75 69.36 £0.26
DepthContrast [12] | 69.12  69.04 69.38 69.57 68.66 69.15 £0.35
ALSO 69.69 69.58 6993 69.66 70.17 69.81 +£0.24
SPVCNN  No pre-training 69.24 069.06 68.68 68.74 69.09 68.96 +£0.24
ALSO 69.55 69.77 6947 69.24 69.65 69.54 +£0.20
100 % MinkUNet No pre-training 7121 7135 7120 7093 71.32 71.20 £0.17
PointContrast [11] | 71.12 7127 70.90 7094 71.31 71.11 +£0.19
DepthContrast [12] | 71.31 7120 71.30 70.81 71.36 71.20 £0.22
ALSO 7195 7192 7160 71.88 71.39 71.75 £0.24
SPVCNN  No pre-training 70.82  70.79 70.56 70.86 70.41 70.69 +0.19
ALSO 7141 7118 7099 7120 71.48 71.25 £0.20

Table A3. NuScenes. Details of experiments.



%0 Backbone Method ‘ from [5] ‘ Runs Average and std
0.1%  MinkUNet No pre-training 25.59 30.22 2999 29.74 30.15 29.77 29.97 £0.22
PointContrast [11] 28.52 3279 31.84 31.88 3296 32.60 32.41 £0.52
DepthContrast [12] 33.51 3243  32.09 33.01 3224 32.80 32.51 £0.38
SegContrast [5] 34.78 32.65 3238 3248 32.18 31.83 32.30 £0.31
ALSO N/A 3497 3483 3481 3510 35.11 34.96 £0.14
SPVCNN  No pre-training N/A 3094 30.81 30.66 30.47 30.81 30.74 £0.18
ALSO N/A 3535 3478 3471 3493 3543 35.04 £0.33
1% MinkUNet  No pre-training 41.70 45.1 4632 4659 46.68 46.49 46.24 +0.65
PointContrast [11] 43.40 47771 4797 4822 4725 4843 47.92 +£0.46
DepthContrast [12] 46.41 49.62 49.12 48.59 4894 48.74 49.00 £0.40
SegContrast [5] 47.41 4891 4935 48.87 48.81 4854 48.90 £0.29
ALSO N/A 50.04 50.28 4943 50.41 50.02 50.04 +0.38
SPVCNN  No pre-training N/A 46.24 47.23 46.53 46.26 46.67 46.59 +0.40
ALSO N/A 4934  49.75 49.05 4890 48.32 49.07 £0.53
10%  MinkUNet No pre-training 53.87 57.04 5874 57.71 56.27 58.01 57.55 £0.94
PointContrast [11] 53.79 59.48 59.78 6044 59.26 59.56 59.70 £0.45
DepthContrast [12] 56.29 5949 60.74 60.27 60.46 60.75 60.34 £0.52
SegContrast [5] 55.21 59.63 58.57 58.45 58.78 58.29 58.74 £0.53
ALSO N/A 60.41 6045 6047 60.54 60.43 60.46 +0.05
SPVCNN  No pre-training N/A 58.8 5895 59.21 5947 57.85 58.86 £0.62
ALSO N/A 60.71 60.32 60.97 6032 60.66 60.60 £0.28
50%  MinkUNet No pre-training 58.34 61.48 6233 61.88 61.80 61.31 61.76 £0.39
PointContrast [11] 57.30 62.68 6291 62.54 6235 63.19 62.73 £0.33
DepthContrast [12] 58.54 63.24 6331 63.16 6244 6237 62.90 £0.46
SegContrast [5] 58.33 62.58 6220 61.61 61.74 6246 62.12 £0.43
ALSO N/A 63.09 6343 6299 6328 64.15 63.39 +0.46
SPVCNN  No pre-training N/A 6132 62.15 61.61 61.7 6239 61.83 £0.43
ALSO N/A 63.4 634 6345 64.08 063.44 63.55 +0.29
100% MinkUNet No pre-training 59.63 6249 6235 6298 62.50 63.06 62.68 +0.32
PointContrast [11] 59.77 63.57 63.14 63.13 63.95 63.26 63.41 £0.35
DepthContrast [12] 59.88 63.76 6431 63.52 63.54 64.12 63.85 £0.35
SegContrast [5] 60.53 62.64 6157 6253 6224 6245 62.29 +0.43
ALSO N/A 6429 63.75 63.75 6334 63.07 63.64 £0.46
SPVCNN No pre-training N/A 6239 6286 6233 62.88 62.82 62.66 £0.27
ALSO N/A 63.60 64.04 63.59 6393 63.76 63.78 +0.20

Table A4. SemanticKITTI. Details of experiments.



% Backbone = Method ‘ Runs Average and std
0.1% MinkUNet No pre-training 3723 3753 3637 36.72 36.59 36.89 +0.48
PointContrast [11] | 39.22 40.60 38.56 39.24 38.73 39.27 +0.80
DepthContrast [ 38.69 3935 41.16 39.87 39.25 39.66 +£0.94
SegContrast [5] 41.72 42.89 4145 4174 40.68 41.70 £0.79
ALSO 40.04 4123 4129 40.88 39.83 40.65 £0.68
1% MinkUNet  No pre-training 46.99 46.23 46.09 46.33 46.47 46.42 £0.35
PointContrast [11] | 48.45 48.26 48.40 4843 47.11 48.13 £0.58
DepthContrast [ 48.08 48.78 48.29 48.36 48.96 48.49 £0.36
SegContrast [5] 48.94  50.02 49.34 49.08 49.66 49.41 £0.44
ALSO 50.55 4885 49.02 49.86 49.51 49.56 £0.68
10%  MinkUNet No pre-training 5429 5396 5453 5495 54.60 54.47 £0.37
PointContrast [11] | 5591 54.60 54.77 5496 55.29 55.11 +£0.52
DepthContrast [ 56.17 5581 55.17 55.82 5596 55.79 £0.37
SegContrast [5] 5548 5541 5539 55.50 54.97 55.35 +£0.22
ALSO 56.16 56.19 5543 55.15 56.14 55.81 +£0.49
50%  MinkUNet No pre-training 55.48 55.19 5540 5527 55.04 55.28 +£0.17
PointContrast [11] | 55.84 56.46 55.62 5590 57.01 56.17 £0.56
DepthContrast [ 54.67 5635 56.12 56.26 56.73 56.03 +£0.79
SegContrast [5] 56.84 55.89 5482 56.89 56.76 56.24 +£0.89
ALSO 57.07 5556 56.71 56.13 56.30 56.35 +£0.58
100% MinkUNet No pre-training 5452 55.52 5552 55.10 54.83 55.10 £0.44
PointContrast [11] | 55.80 56.02 5548 57.13 56.40 56.17 £0.63
DepthContrast [ 5738 5636 5640 56.29 56.00 56.49 £0.52
SegContrast [5] 56.24 5646 5622 5717 55.83 56.38 +£0.49
ALSO 56.88 58.23 5545 56.01 56.88 56.69 £1.05
Table AS. SemanticPOSS. Details of experiments.
% Backbone = Method Runs ‘ Average and std
0.1% MinkUNet No pre-training | 47.43 48.38 48.03 4821 48.10 48.03 £0.36
ALSO 5147 5231 5435 5228 5245 52.57 £1.07
1% MinkUNet  No pre-training | 63.73 63.33 6346 6438 064.03 63.79 £0.43
ALSO 65.86 6548 6516 6550 65.24 65.45 +£0.27
10%  MinkUNet No pre-training | 66.51 66.84 66.67 66.60 66.64 66.65 +£0.12
ALSO 67.30 68.08 6743 68.10 67.82 67.75 £0.37
50%  MinkUNet No pre-training | 68.35 68.87 68.10 68.60 68.52 68.49 +£0.29
ALSO 69.55 6941 69.66 69.55 69.73 69.58 +£0.12
100% MinkUNet No pre-training | 68.91 68.87 68.82 69.25 68.68 68.91 £0.21
ALSO 69.37 69.86 69.62 70.14 69.61 69.72 +£0.29

Table A6. Livox Synthetic Dataset. Details of experiments.



Backbone Metric Method  Pre-training Car Pedestrian Cyclist
set Easy Mod. Hard Easy | Mod. Hard Easy | Mod. Hard
SECOND 2D object detection  Scratch® - 95.84 9449 92.00 | 68.27 64.69 61.15|91.02 78.88 76.00
ALSO  KITTI 96.88 94.43 91.89 | 70.44 67.60 64.40 | 91.67 81.67 78.01
KITTI-360 | 95.69 94.34 91.81 | 69.76 67.12 64.12 | 93.26 80.97 77.87
nuScenes 97.48 9470 93.56 | 72.39 68.69 65.86 | 91.34 81.64 78.46
Bird’s eye view Scratch? - 93.76 89.82 87.65|59.74 54.85 50.56 | 87.19 70.96 68.00
ALSO  KITTI 93.82 90.16 88.00 | 60.38 56.01 52.58 | 87.90 73.39 69.15
KITTI-360 |92.38 89.60 87.79 | 61.75 57.36 5391 | 89.26 73.74 69.48
nuScenes 94.64 90.77 88.24 | 6432 59.13 55.25| 86.92 74.58 70.17
3D object detection  Scratch” - 90.20 81.50 78.61 | 53.89 48.82 44.56 | 82.59 65.72 62.99
ALSO  KITTI 90.76 81.97 79.10 | 56.30 51.93 48.03 | 83.71 69.14 65.27
KITTI-360 |88.95 81.79 7892 |57.83 52.45 48.32 | 86.76 70.68 66.56
nuScenes 90.21 81.78 78.97 [ 59.56 54.24 50.27 | 81.12 68.19 64.10
Orientation similarity Scratch’ - 95.83 9435 91.79 | 63.70 59.52 55.85|90.86 78.44 75.52
ALSO  KITTI 96.86 9430 91.65 | 66.44 62.82 59.17 | 91.36 81.07 77.35
KITTI-360 | 95.68 94.24 91.63 | 65.58 62.25 58.52 | 9235 78.70 75.64
nuScenes 97.45 9454 9330 |67.67 63.33 60.28 | 91.01 80.75 77.49
PV-RCNN 2D object detection ~ Scratch’ - 97.86 9439 93.92|73.84 68.68 65.53|94.34 81.89 77.36
ALSO  KITTI 98.26 94.42 94.07 | 76.05 70.89 67.50 | 95.32 83.41 80.42
KITTI-360 | 98.04 9442 94.11|76.75 71.15 67.40 |95.18 83.59 78.70
nuScenes 96.12 9445 9399 | 73.70 68.70 65.31 | 94.61 81.86 78.67
Bird’s eye view Scratch? - 94.65 90.61 88.56 | 68.28 60.62 55.95|92.52 75.03 70.40
ALSO  KITTI 94.82 90.75 88.67 | 68.93 61.88 57.74|93.18 77.73 73.09
KITTI-360 | 94.40 90.60 88.56 | 72.04 63.40 59.05 | 95.11 77.25 73.37
nuScenes 93.10 90.64 88.53 | 68.72 60.92 56.96 | 93.11 76.74 73.06
3D object detection  Scratch - 91.74 84.60 82.29 | 6551 57.49 52.71|91.37 71.51 66.98
ALSO  KITTI 9190 84.72 82.55|65.57 58.49 53.75|92.52 75.06 70.48
KITTI-360 | 92.13 84.68 82.58 | 68.72 60.16 54.87 | 92.86 74.04 69.30
nuScenes 92.31 84.86 82.61 | 65.60 57.76 52.96|91.70 74.98 70.67
Orientation similarity Scratch’ - 97.84 9425 93.70 | 69.73 63.89 60.31 | 94.20 81.00 76.47
ALSO  KITTI 98.23 9431 93.89|70.07 6494 61.09 |95.15 82.84 79.79
KITTI-360 |98.02 94.32 9391 | 72.55 66.62 62.64 | 94.85 83.07 78.14
nuScenes 96.09 9429 93.76 | 67.66 62.74 59.37 | 94.23 81.07 77.86

T

: retrained by ourselves, scores may vary from main paper.

Color scale: [-3,-2[ [-2,-1[ [-1,0[ [O,1[ [L2[ [2.3[

[3.4[ [5.6[ [6,7]

Table A7. KITTI3D detection. Details of experiments. Cells are colored according to difference with from-scratch pre-training.



Method Vehicle Pedestrian Cyclist mAP
overall 0-30 30-50 50-inf | overall 0-30 30-50 50-inf|overall 0-30 30-50 50-inf
Usmall
baseline 71.19 84.04 63.02 47.25| 2644 29.33 24.05 18.05 | 58.04 69.96 52.43 34.61 51.89
BYOL 68.02 81.01 60.21 44.17 | 19.50 22.16 16.68 12.06 | 50.61 62.46 44.29 28.18 | 46.04 -5.85
PointContrast | 71.07 83.31 64.90 49.34 | 22.52 23.73 21.81 16.06 | 56.36 68.11 50.35 34.06 | 49.98 -1.91
SwWAV 7271 83.68 6591 50.10 | 25.13 27.77 2277 16.36 | 58.05 69.99 52.23 34.86 |51.96 +0.07
DeepCluster | 73.19 84.25 66.86 50.47 | 24.00 26.36 21.73 16.79 | 58.99 70.80 53.66 36.17 | 52.06 +0.17
ALSO 71.73 1 84.30 65.21 48.30 | 28.16 31.45 25.19 16.29 | 58.13 70.04 52.76 33.88 | 52.68 +0.79

Table A8. ONCE detection. Detail of experiments.
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