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1. Supplementary Material
This supplementary material complements the main sub-

mission by providing:

1. Complementary ERC curves with AUC values for all
the FR models and benchmarks to complement and
support the ablation study section (Section5) of the
main manuscript.

2. Samples images from the 8 benchmarks with quality
scores achieved by our CR-FIQA and SOTA methods.

3. Quality score distribution of the evaluation bench-
marks achieved by our CR-FIQA and SOTA methods.

4. ERC (FNMR at FMR1e-4 vs reject) curves that pro-
vide a complement to the AUC reported in Table 1 of
the main manuscript.

5. ERC (FNMR at FMR1e-3 vs reject) curves using Mag-
Face and Curricular FR models that provide a comple-
ment to the AUC reported in Table 1 and Figure 4 of
the main manuscript.

6. More details on the databases and benchmarks.

7. Discussion of the potential social impacts.

8. Details on further existing assets used in the work.

9. A discussion on the technical limitations of the pre-
sented work.

1.1. Complementary Result for Ablation Study

Figures 1, 2, 3 and 4 present a comparison be-
tween ERCs (FNMR at FMR1e-3) of CR-FIQA(S), CCS-
FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On
top) on the evaluation benchmarks. Figures 5, 6, 7 and 8
present a comparison between ERCs (FNMR at FMR1e-
4) of CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top),

and CCS-FIQA(S) (On top) on the evaluation benchmarks.
These ERC curves are complementary to the ablation study
presented in main manuscript (Section 5). In the main sub-
mission, these ERC curves are presented for ArcFace [5]
FR model on Adience [7], AgeDb-30 [18], CALFW [27]
and CFP-FP [20] in Figure 3 (main submission) and dis-
cussed on ablation study section (Section 5 of main submis-
sion). However, in this supplementary material we opt to
provide the evaluation mentioned in Lines 583-597 on all
considered FR models and evaluation benchmarks to stress
the conclusion of our ablation study (Section 5 of main sub-
mission). This again points out the benefits of CR of CCS
(thus the NNCCS term in equation 4 of the main submis-
sion), as well as the simultaneously training rather than on
the top learning.

1.2. Histogram of CCS and NNCCS

Figure 9 shows an insight into the CCS and NNCCS val-
ues distribution of the training datasets (CASIA-WebFace
[25] and MS1MV2 [5]). Figure 9a shows an enhanced vi-
sualisation of the same plot shown in Figure 1 (main sub-
mission) based on the R50(CASIA) model and discussed
in lines 338-342 of the main submission. Figure 9b shows
CCS and NNCCS values distribution of MS1MV2 dataset
obtained from ResNet-100 (R100(MS1M-V2)) model to
provide an additional illustration of the CCS and NNCCS
value distribution on another training setup (model and
dataset). On both models one can notice that the CCS and
NNCCS values vary between samples.

1.3. Quality score distribution

Figure 11 presents the quality score distribution of the
evaluation benchmarks achieved by our CR-FIQA and the
SOTA methods, all normalized to have a range between
0 and 1. One can notice in the distributions, that for the
XQLFW dataset where the data contains extreme low and
extreme low quality samples by design, this two groups
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of quality is only visible in our CR-FIQA, PFE, MagFace,
SDD-FIQA, as well as the methods that were used to la-
bel the qualities when constructing the XQLFW, i.e. SER-
FIQA and BRISQUE.

1.4. Sample images with quality scores

Figure 10 shows sample images of the evaluation bench-
marks with quality score values obtained from our CR-
FIQA the SOTA methods. These images in Figure 10 il-
lustrate samples of different benchmarks with quality score
values. It is important to mention that, although the quality
scores are normalized between 0 and 1, the higher qual-
ity score values across FIQA methods do not mean that the
method points out a relative higher quality estimation than
the other methods. For example, SER-FIQ method resulted
always in relatively high quality score value when it is com-
pared to other SOTA methods. However, as show in Figure
11, the quality score value range of SER-FIQ is higher when
compared to other SOTA methods.

1.5. FIQA performance as ERC (FNMR at FMR1e-
4 vs reject) curves

Figures 12, 13, 14 and 15 present ERC (FNMR at
FMR1e-4 vs reject) curves for all the evaluation settings.
These ERC curves illustrates the curves producing the AUC
(FNMR at FMR1e-4) presented in Table 1 of the main sub-
mission. Such ERC curves are shown in Figure 4 in the
main submission and Figure 18 in supplementary material
on FNMR at FMR1e-3 and discussed in details in Section 6.
However, we present also in this supplementary material the
ERC curves on another FNMR, FNMR at FMR1e-4. These
ERC curves also correspond to the AUC values presented
in Table 1 of the main submission.

1.6. FIQA performance as ERC (FNMR at FMR1e-
3 vs reject) curves using MagFace and Curric-
ularFace FR models

Figure 18 presents ERC (FNMR at FMR1e-3 vs reject)
curves for all the evaluation benchmarks using MagFace
and CurricularFace FR models. These ERC curves also cor-
respond to the AUC values presented in Table 1 of the main
submission and discussed in details in Section 6.

1.7. CR-FIQA as feature extraction

The evaluation of CR-FIQA(L) backbone as feature ex-
traction, which is not the goal of this work, on mainstream
FR benchmarks is presented in Table 1. The considered
benchmarks are LFW [10], AgeDB-30 [18], CFP-FP [20],
CALFW [27], CPLFW [26] and IJB-C [14]. We followed
the evaluation metrics defined in the utilized benchmarks
as follows: LFW (accuracy), CALFW (accuracy), CPLFW
(accuracy), CFP-FP (accuracy), AgeDB-30 (accuracy) and
IJB-C (TAR at FAR1e-4). Although, the presented solution

in this paper does not aim, and is not presented as, a solution
to extract face embeddings, but rather a FIQA solution, the
reported evaluation results (Table 1) are very comparable
to the recent SOTA models trained under a similar training
setting and only using the face recognition loss.

1.8. Datasets

This section presents the description and license infor-
mation of the used datasets in our work.

Adience [7]: Adience was used to estimate the age and
gender from face images acquired in challenging and in the
wild conditions. Adience dataset contains 26,580 images
across 2,284 identities, where the images were captured as
close to the real-world condition as possible, under all varia-
tions in appearance, pose, illuminations, and image quality.
Adience license is limited to research purposes only. De-
tailed information on database creation and licensing can
be found in [7] and https://talhassner.github.
io/home/projects/Adience/Adience-main.
html.

AgeDB-30 [18]: AgeDB is an in-the-wild dataset for
age-invariant face verification evaluation, containing 16,488
images of 568 identities. Every image is annotated with re-
spect to the identity, age, and gender attribute. In our case,
we report the performance for AgeDB-30 (30 years age gap)
as it is the most reported and challenging subset of AgeDB.
More details on the collection process can be found in [18]
and the details on the license are presented in https:
//ibug.doc.ic.ac.uk/resources/agedb/.

LFW [10]: Labeled Faces in the Wild (LFW) is an
unconstrained face verification dataset. The LFW con-
tains 13,233 images of 5749 identities collected from the
web. The LFW is licensed under CC-BY-4.0, and more in-
formation on database creation can be found in [10] and
http://vis-www.cs.umass.edu/lfw/.

CFP-FP [20]: Celebrities in Frontal-Profile in the Wild
(CFP-FP) [20] dataset addresses the comparison between
frontal and profile faces. CFP-FP dataset contains 7,000
images across 500 identities, where 10 frontal and 4 profile
image per identity. More information can be found in [20]
and http://www.cfpw.io/.

CALFW [27]: The Cross-age LFW (CALFW) dataset
[27] is based on LFW with a focus on comparison pairs with
the age gap, however not as large as AgeDB-30. Age gap
distribution of the CALFW is provided in [27]. It contains
3000 genuine comparisons, and the negative pairs are se-
lected of the same gender and race to reduce the effect of at-
tributes. The detailed information on database creation can
be found in [27] and http://whdeng.cn/CALFW/.

CPLFW [26]: The Cross-Pose LFW (CPLFW) dataset
[26] is based on LFW with a focus on comparison pairs with
pose differences. CPLFW contains 3000 genuine compar-
isons, while the negative pairs are selected of the same gen-
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der and race. More information can be found in [26] and
http://whdeng.cn/CPLFW/.

XQLFW [12]: The Cross-Quality LFW (XQLFW) is
derived from the LFW dataset. The XQLFW maximizes
the quality difference, which contains only more realistic
synthetically degraded images when necessary and is used
to investigate the influence of image quality. XQLFW is
licensed under the MIT License, and the detailed informa-
tion can be found in [12] and https://martlgap.
github.io/xqlfw/.

IJB-C [14]: The IARPA Janus Benchmark–C (IJB-C)
[14] is a video-based face recognition dataset provided by
the Nation Institute for Standards and Technology (NIST).
It is an extension of the IJB-B [24] dataset with a total of
31,334 still images and 117,542 frames of 11,779 videos
across 3531 identities. IJB-C is made available under differ-
ent Creative Commons license variants. Detailed informa-
tion on database creation can be found in [14] and https:
//www.nist.gov/programs-projects/face-
challenges.

CASIA-WebFace [25]: CASIA-Webface con-
sists of 494,141 face images from 10,757 different
identities. A prepossessed (aligned and cropped)
version of CASIA-WebFace is available in Insight-
Face (https : / / insightface . ai/) repos-
itory under Dataset-Zoo https : / / github .
com / deepinsight / insightface / tree /
master/recognition/_datasets_. The code
and the databases of InsightFace is under MIT li-
cence (https : / / github . com / deepinsight /
insightface/blob/master/LICENSE).

MS1MV2 [5, 8]: The MS1MV2 is a refined ver-
sion [5] of the MS-Celeb-1M [8] containing 5.8M
images of 85K identities. A prepossessed (aligned
and cropped) version of MS1MV2 is available in
InsightFace (https://insightface.ai/ repos-
itory under Dataset-Zoo https : / / github .
com / deepinsight / insightface / tree /
master/recognition/_datasets_. The code
and the database of InsightFace is under MIT li-
cence (https : / / github . com / deepinsight /
insightface/blob/master/LICENSE).

1.9. Use of existing assets

The results of the SOTA FIQA methods are produced
based on the official code provided by each of these works.
Table 2 presents the used SOTA methods along with link to
their code repositories and licences.

The utilized FR models to report the verification perfor-
mance at different quality rejection rates are ArcFace [5],
ElasticFace (ElasticFace-Arc) [3], MagFace [16], and Cur-
ricularFace [11]. The link to the official code repository and
license for each of the employed FR models are provided in

the following:

• ArcFace [5] is provided under MIT license
https : / / github . com / deepinsight /
insightface/blob/master/LICENSE and
the official pretrained model and code is pub-
lished under the link https://github.com/
deepinsight/insightface.

• MagFace [16] is provided under Apache License
2.0 https : / / github . com / IrvingMeng /
MagFace/blob/main/LICENSE and the offi-
cial pretrained model and code is published under
the link https://github.com/IrvingMeng/
MagFace.

• CurricularFace [11] is provided underMIT li-
cense https://github.com/HuangYG123/
CurricularFace / blob / master / LICENSE
and the official pretrained model and code is pub-
lished under the link https://github.com/
HuangYG123/CurricularFace/.

• ElasticFace [3] is provided under Attribution-
NonCommercial-ShareAlike 4.0 Interna-
tional (CC BY-NC-SA 4.0) license https :
/ / github . com / fdbtrs / ElasticFace /
blob/main/README.md and the official pretrained
model and code is published under the link lhttps:
//github.com/fdbtrs/ElasticFace.

1.10. Release of implementation and pre-trained
models

The implementation and pre-trained models are released
publicly under the Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0) license. The code is
available under https://github.com/fdbtrs/CR-
FIQA

1.11. Potential societal impacts

We stress that our efforts in the advancement of FIQA
and thus, face recognition, are aimed at enhancing the secu-
rity, convenience, and life quality of the members of society,
e.g. enabling convenient access to financial and health ser-
vices [6] and enhancing the security of border checks within
clear legal frameworks and users consent [1, 23]. We ac-
knowledge, however reject, the possible malicious or illegal
use of this and other machine learning-based technologies.
Such a use of face recognition can involve the processing
of face images for barometric recognition purposes out of
legal framework and without the consent of the individual
to create user/group profiles or the not consent use of face
recognition in functionalities beyond the identity recogni-
tion itself [15].
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Model LFW
Acc (%)

AgeDB-30
Acc (%)

CFP-FP
Acc (%)

CALFW
Acc (%)

CPLFW
Acc (%)

IJB-C
TAR at FAR1̄e-4

ArcFace [5] 99.82 98.15 98.27 95.45 92.08 96.28
ElasticFace [3] 99.80 98.35 98.67 96.17 93.27 96.49
MagFace [16] 99.83 98.17 98.46 96.15 92.87 96.65
CurricularFace [11] 99.80 98.32 98.37 96.20 93.13 96.58
CR-FIQA (L) (Ours) 99.80 98.17 98.49 96.15 92.90 96.23

Table 1. The verification performances of CR-FIQA (L) as feature extraction models on mainstream bookmarks and compared to the recent
SOTA face recognition models.

Method Code link License

SER-FIQA [22] https://github.com/pterhoer/FaceImageQuality
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license
https://github.com/pterhoer/FaceImageQuality/blob/master/README.md

FaceQnet [9] https://github.com/uam-biometrics/FaceQnet no specific license provided by the authors

MagFace [16] https://github.com/IrvingMeng/MagFace
Apache License 2.0
https://github.com/IrvingMeng/MagFace/blob/main/LICENSE

SDD-FIQA [19] https://github.com/Tencent/TFace/tree/quality
Extension of Apache License Version 2.0
https://github.com/Tencent/TFace/blob/master/License.txt

rankIQ [4] https://jschenthu.weebly.com/projects.html
This toolbox is made available for research purpose only as stated
in README.md of code webpage

BRISQUE [17] http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip Free usage is stated in the readme file contained in the project

PFE [21] https://github.com/seasonSH/Probabilistic-Face-Embeddings
MIT License
https://github.com/dmaniry/deepIQA/blob/master/LICENSE

rankIQA [13] https://github.com/xialeiliu/RankIQA
MIT License
https://github.com/xialeiliu/RankIQA/blob/master/LICENSE

DeepIQA [2] https://github.com/dmaniry/deepIQA
MIT License
https://github.com/dmaniry/deepIQA/blob/master/LICENSE

Table 2. The official released code links and licenses of the FIQA methods reported in this work. The results of the FIQA methods in the
main submission are produced and reported based on their official released code and strictly following their licenses.

1.12. Limitation of the proposed approach

Unlike methods where the FIQA does not require to train
a quality regression [16, 21, 22] our CR-FIQA requires a
training a regression. However, this only required to be
done once and the resulting model can be used to estimate
quality for multiple efficiently FR models as demonstrated
by the result.
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Figure 1. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show
the effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-3) using ArcFace and ElasticFace models
on Adience, AgeDb-30 and CFP-FP benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S)
performs generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.
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Figure 2. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show
the effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-3) using ArcFace and ElasticFace models on
LFW, CALFW, CPLFW and XQLFW benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S)
performs generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.
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Figure 3. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show
the effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-3) using MagFace and CurricularFace models
on Adience, AgeDb-30 and CFP-FP benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S)
performs generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.
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Figure 4. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show the
effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-3) using MagFace and CurricularFace models on
LFW, CALFW, CPLFW and XQLFW benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S)
performs generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.
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Figure 5. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show
the effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-4) using ArcFace and ElasticFace models
on Adience, AgeDb-30 and CFP-FP benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S)
performs generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.
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Figure 6. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show
the effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-4) using ArcFace and ElasticFace models on
LFW, CALFW, CPLFW and XQLFW benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S)
performs generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.
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Figure 7. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show the
effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-4) using MagFace and CurricularFace on Adience,
AgeDb-30 and CFP-FP benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S) performs
generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.
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Figure 8. ERC comparison between CR-FIQA(S), CCS-FIQA(S), CR-FIQA(S) (On top) and CCS-FIQA(S) (On top). The plots show
the effect of rejecting samples of lowest quality, on the verification error (FNMR at FMR1e-4) using MagFace and CurricularFace on
LFW, CALFW, CPLFW and XQLFW benchmarks . CR-FIQA(S) and CCS-FIQA(S) outperformed the on-top solutions, and CR-FIQA(S)
performs generally better than CCS-FIQA(S) (curve decays faster with more rejected samples). AUC values are mentioned under the plots.



0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

20000

40000

60000

Fr
eq

ue
nc

y

CCS
NNCCS

(a)

0.00 0.25 0.50 0.75 1.00
Cosine similarity

0

200000

400000

600000

800000

Fr
eq

ue
nc

y

CCS
NNCCS

(b)

Figure 9. Histogram of the cosine similarity between training samples and their class centers (CCS) and nearest negative class centers
(NNCCS). Similarity values in plot 9a are obtained from ResNet-50 trained on CASIA-WebFace (R50(CASIA)) and the ones in plot 9b
are obtained from ResNet-100 trained on MS1MV2 (R100(MS1MV2)). In both models/databases, the values of CCS and NNCCS vary
between different samples.
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Figure 10. Samples image of the evaluation benchmarks with quality score values obtained from our CR-FIQA the SOTA methods. Noting
that this figure only reflects samples with quality scores and do not necessary reflect overall performance.
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Figure 11. Quality score distribution of the evaluation benchmarks achieved by our CR-FIQA and the SOTA methods (all normalized to
have values between 0 and 1).
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Figure 12. ERC (FNMR at FMR1e-4 vs reject) curves for ArcFace and ElasticFace on Adience, AgeDB-30 and CFP-FP benchmarks. The
proposed CR-FIQA(L) and CR-FIQA(S) are marked with solid blue and red lines, respectively. CR-FIQA leads to lower verification error,
when rejecting a fraction of images, of the lowest quality, in comparison to SOTA methods (faster decaying curve) under most experimental
settings.
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Figure 13. ERC (FNMR at FMR1e-4 vs reject) curves for MagFace and CurricularFace on Adience, AgeDB-30 and CFP-FP benchmarks.
The proposed CR-FIQA(L) and CR-FIQA(S) are marked with solid blue and red lines, respectively. CR-FIQA leads to lower verification
error, when rejecting a fraction of images, of the lowest quality, in comparison to SOTA methods (faster decaying curve) under most
experimental settings.
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Figure 14. ERC (FNMR at FMR1e-4 vs reject) curves for ArcFace and ElasticFace on LFW, CALFW and CPLFW benchmarks. The
proposed CR-FIQA(L) and CR-FIQA(S) are marked with solid blue and red lines, respectively. CR-FIQA leads to lower verification error,
when rejecting a fraction of images, of the lowest quality, in comparison to SOTA methods (faster decaying curve) under most experimental
settings.
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Figure 15. ERC (FNMR at FMR1e-4 vs reject) curves for MagFace and CurricularFace on LFW, CALFW and CPLFW benchmarks. The
proposed CR-FIQA(L) and CR-FIQA(S) are marked with solid blue and red lines, respectively. CR-FIQA leads to lower verification error,
when rejecting a fraction of images, of the lowest quality, in comparison to SOTA methods (faster decaying curve) under most experimental
settings.
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Figure 16. ERC (FNMR at FMR1e-4 vs reject) curves for ArcFace and ElasticFace on XQLFW and IJB-C benchmarks. The proposed
CR-FIQA(L) and CR-FIQA(S) are marked with solid blue and red lines, respectively. CR-FIQA leads to lower verification error, when
rejecting a fraction of images, of the lowest quality, in comparison to SOTA methods (faster decaying curve) under most experimental
settings.
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Figure 17. ERC (FNMR at FMR1e-4 vs reject) curves for MagFace and CurricularFace on XQLFW and IJB-C benchmarks. The proposed
CR-FIQA(L) and CR-FIQA(S) are marked with solid blue and red lines, respectively. CR-FIQA leads to lower verification error, when
rejecting a fraction of images, of the lowest quality, in comparison to SOTA methods (faster decaying curve) under most experimental
settings.
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Figure 18. ERC (FNMR at FMR1e-3 vs reject) curves for all evaluated benchmarks using MagFace and CurricularFace FR models
corresponding to Table 1 and complementary to the ERC curves in Figure 4 in main submission results. The proposed CR-FIQA(L) and
CR-FIQA(S) are marked with solid blue and red lines, respectively. CR-FIQA leads to lower verification error, when rejecting a fraction
of images, of the lowest quality, in comparison to SOTA methods (faster decaying curve) under most experimental settings.
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