
Supplementary Material

A. Source Code
We plan to release the source code for this work in our arXiv
version4.

B. Details of APT Weight (APT-W)
In this section we describe the details of the APT Weight
(APT-W) scheme. Let D = {D1, . . . , Dn} be a collection
of sources. Consistent with APT for each source Di we
train a prompt p(i) and a classifier head headi using only
the data in Di. Then, differing with classical APT, for each
source Di we perform K-means (K = 20) in the embed-
ding space to construct a set of prototypes µ

(i)
1 , . . . , µ

(i)
K

.
More concretely for each (x, y) 2 Di we forward the in-
put x through the transformer to get the final embedding
sequence [zL(x)]. We use the class token embeddings
z(0)
L

(x) as the vectors to perform the K-means algorithm
on. Specifically we perform K-means on the set

{z(0)
L

(x) : (x, y) 2 Di}

to construct the prototypes µ(i)
1 , . . . , µ

(i)
K

. At inference time,
the basic forward pass for APT Weight is the same as APT.
Given an instance x and a set I = {i1, . . . , i|I|} ⇢ [n] we let
p(I) = [p(i1), . . . , p(i|I|)] be the concatenation of all prompt
tokens corresponding to each data source in DI . The final
output of the transformer is given by

[zL,p
(I)
L

] := F
L

✓
� . . . � F 1

✓
([z0,p

(I)])

where the structured attention is applied as usual. Each out-
put token p

(i)
L

corresponding to a prompt p(i) is used to gen-
erate logits

ŷ
(i) := headi(p

(i)
L
).

In contrast to APT, APT Weight will apply a weighting to
the logits ŷ(i) based on the distance of the embedding of the
instance x to the prototypes µ(i)

1 , . . . , µ
(i)
K

. Specifically, for
each index in i 2 I we compute

di = min
k2[K]

kz(0)
L

� µ
(i)
k
k2.

Let us denote d = (di1 , . . . , di|I|). Then we construct a
weight vector

w := softmax(��d)

where � is the inverse temperature which in our experiments
we set to � = 0.1. We then form the weighted logits

[wi1 · ŷ(i1), wi2 · ŷ(i2), . . . , wi|I| · ŷ
(i|I|)].

4https://arxiv.org/abs/2302.07994

For class incremental learning problems, these weighted
logits are the final logits used for prediction. For domain in-
cremental learning problems, the logits are average pooled
to form the final logits

ŷ =
1

|I|
X

i2I

wi · ŷ(i).

C. Hyperparameters
Consistent with [38] for the continual learning experiments
on Split CIFAR-100 and CORe50 we train for 5 epochs.
All methods in Table 3 are trained for 150 epochs. For all
other experiments the paragon method (trained on the en-
tire dataset) is trained for 150 epochs whereas the prompts
in the APT method are trained for 80 epochs on their respec-
tive sources. We emphasize that the paragon is never trained
for fewer epochs than the APT method to remain a true “up-
per bound”. For the paragon prompt tuning numbers we do
not use structured attention. Consistent with [35] we use
5 memory tokens at each layer for deep prompting. For the
prompt tuning of the APT method structured attention is ap-
plied during both train and inference time. In all cases we
optimize using the AdamW algorithm [27] with the weight
decay parameter set to 0.02. We use linear warmup cosine
annealing with start learning rate 1e�5, minimum learning
rate 1e�6, and one warmup epoch. The base learning rates
for finetuning, head-only finetuning, and prompt tuning are
1e�5, 5e�1, and 1e�1 respectively. We did not do any hy-
perparameter sweep over learning rates. The one exception
is for the “Bias+Head” column in Table 3 we did a sweep
over learning rates to arrive at the learning rate 5e�3. How-
ever, we note that this column is merely for comparison and
does not concern our specific method. We use a batch size
of 8 and follow the convention presented in [12] of rescal-
ing the learning rate by the effective batch size (batch size
x devices x nodes) divided by 256.

We perform data augmentation following standard practice
in training ViTs and include RandAugment [3] with N=2
and M=10. However we note that we did not use Mixup [39]
which is known to be a reliable way of increasing perfor-
mance.

D. Dataset Details
In Table 5 we report detailed statistics for the datasets used
as well as links to download the datasets.

E. Additional Ablations
Average ensembling vs. majority vote. In our APT
method we chose to aggregate the individual predictions of
the prompts by average ensembling. Another common en-
sembling method is to perform majority vote. Consistent

https://arxiv.org/abs/2302.07994

Table 5. Dataset sample/class counts. We list the number of training images, test images, and classes for each of the datasets. We also
provide a link to download the data.

Dataset Training Images Testing Images # Classes URL
MIT-67 [33] 5360 1340 67 https://web.mit.edu/torralba/www/indoor.html

CUB-200 [36] 5994 5794 200 https://www.vision.caltech.edu/datasets/cub_200_2011/

Caltech-256 [13] 15418 15189 257 https://authors.library.caltech.edu/7694/

Oxford Pets [31] 3680 3669 37 https://www.robots.ox.ac.uk/˜vgg/data/pets/

FGVC-Aircrafts [28] 6667 3333 100 https://www.robots.ox.ac.uk/˜vgg/data/fgvc-aircraft/

Oxford Flowers [30] 2040 6149 102 https://www.robots.ox.ac.uk/˜vgg/data/flowers/102/

Stanford Cars [16] 8144 8041 196 https://ai.stanford.edu/˜jkrause/cars/car_dataset.html

CIFAR-100 [17] 50,000 10,000 100 https://www.cs.toronto.edu/˜kriz/cifar.html

CORe50 [25, 26] 119,894 44,972 50 https://vlomonaco.github.io/core50/

Dataset 2 Shards 3 Shards 5 Shards 10 Shards 15 Shards 20 Shards 50 Shards

MIT-67 3.1% 0.9% 0.6% 0.7% 0.6% 0.9% 0.5%
Cub-200 3.3% 1.1% 1.5% 0.8% 1.0% 0.8% 1.3%

Caltech-256 3.0% 1.4% 0.8% 0.2% 0.6% 0.4% 0.2%
Pets 1.4% 0.2% 0.3% 0.0% -0.1% 0.2% 0.3%

Aircrafts 6.2% 5.2% 5.0% 3.8% 3.2% 3.7% 3.0%
Flowers 0.7% 4.2% 0.2% 0.6% 0.7% 1.3% 2.8%

Stanford Cars 9.0% 7.6% 5.6% 5.5% 4.9% 5.1% 4.7%

Average 3.81% 2.94% 2.0% 1.66% 1.56% 1.77% 1.83%

Table 6. Average vs. majority vote. We report the accuracy of average ensembling minus the accuracy of majority vote. We observe that
average ensembling uniformly outperforms majority vote.

with [1] we find that average ensembling outperforms ma-
jority vote. In Table 6 we report the performance gap of
average ensembling over majority vote for the sharding ex-
periment. We see that excluding one exceptional case, aver-
age ensembling uniformly outperforms majority vote for all
datasets and all numbers of shards. The performance gain
on average is in the range 1.5-3.8%.

Pretraining. To investigate how APT performs when the
backbone transformer has a different pretraining, instead of
using ImageNet21k we experiment with loading the VIT-
B/16 from the visual encoder of the multimodal model AL-
BEF [20]. In Table 7 we report the accuracies of APT ap-
plied to this checkpoint. We see that the performance of
APT for the ALBEF visual encoder decays more quickly as
the number of shards increases relative to the ImageNet21k
numbers reported in Table 2. For example for the visual
encoder of ALBEF, for 10 shards only the datasets MIT-
67, Caltech-256, and Pets are within 5% performance of the
paragon, whereas by contrast for the ImageNet21k check-
point all datasets except for Aircrafts and Stanford Cars are
within 5% performance of paragon even when the number
of shards is twice as large, namely 20. Thus we conclude
that the pretraining of the backbone transformer is highly
pertinent for the performance of APT. This is sensible as
due to the structured attention the APT prompts do not mod-
ify the internal representations of the backbone, and thus

are unable to provide compensation whenever the backbone
representations are deficient.

Finetuning. While inference and storage for the APT
method is less costly than ensembling finetuned models,
it is worthwhile to ask how the two compare in terms of
classification accuracy. In Table 8 we report the accura-
cies for the sharding experiment using finetuning instead
of APT. Specifically we finetune separate models on each
shard which are then ensembled at inference time. By com-
paring the results in Table 2 to the results in Table 8, we see
that APT uniformly outperforms finetuning in terms of clas-
sification accuracy, and the gap becomes most pronounced
as the number of shards increases. Specifically, for 20 and
50 shards APT has average accuracy of 77.3% and 73.9%
respectively compared to 41.5% and 25.6% for finetuning.
We believe this is due to finetuning being more susceptible
to overfitting when there are fewer data in contrast to APT
which uses a fixed backbone and thus has a stronger induc-
tive bias.

https://web.mit.edu/torralba/www/indoor.html
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://authors.library.caltech.edu/7694/
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://vlomonaco.github.io/core50/

Dataset No Sharding 2 Shards 3 Shards 5 Shards 10 Shards 15 Shards 20 Shards 50 Shards

MIT-67 89.1% 87.5% 88.4% 88.9% 89.0% 88.4% 88.4% 87.3%
Cub-200 78.8% 71.6% 66.9% 57.1% 54.9% 48.5% 46.2% 39.6%

Caltech-256 91.4% 88.8% 89.2% 88.7% 88.9% 88.6% 87.8% 86.2%
Pets 91.1% 89.9% 88.2% 87.0% 86.3% 83.1% 81.0% 66.1%

Aircrafts 72.6% 60.5% 54.4% 51.1% 40.2% 38.7% 35.9% 30.7%
Flowers 93.4% 85.1% 83.1% 81.7% 80.7% 78.1% 76.2% 67.8%

Stanford Cars 83.3% 78.2% 76.5% 70.7% 63.7% 59.5% 55.9% 43.6%

Average 85.67% 80.23% 78.1% 75.03% 71.96% 69.27% 67.34% 60.19%

Table 7. Sharding from ALBEF pretraining. We report the accuracies for the sharding experiment using the ALBEF checkpoint.

Dataset No Sharding 2 Shards 3 Shards 5 Shards 10 Shards 15 Shards 20 Shards 50 Shards

MIT-67 87.1% 86.1% 83.8% 81.9% 74.4% 69.9% 68.8% 44.9%
Cub-200 88.4% 81.8% 76.4% 70.9% 54.4% 42.5% 32.5% 5.9%

Caltech-256 93.5% 90.3% 87.8% 85.8% 81.0% 78.2% 74.1% 52.0%
Pets 94.5% 93.6% 92.6% 91.2% 89.7% 84.2% 81.6% 55.8%

Aircrafts 75.6% 51.1% 44.5% 36.2% 24.1% 23.0% 19.2% 12.3%
Flowers 97.4% 75.3% 56.1% 39.8% 15.6% 11.1% 2.2% 2.0%

Stanford Cars 84.3% 53.3% 39.4% 28.2% 19.2% 16.2% 11.8% 6.4%

Average 88.69% 75.93% 68.66% 62.00% 51.20% 46.44% 41.46% 25.61%

Table 8. Sharding using finetuning. We report the accuracy for the sharding experiment when using finetuning.

	. Introduction
	. Related Work
	. Preliminaries
	. À-la-carte Prompt Tuning
	. Applications of À-la-carte Learning
	. Experiments
	. Conclusion
	. Source Code
	. Details of APT Weight (APT-W)
	. Hyperparameters
	. Dataset Details
	. Additional Ablations

