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In this supplementary document we provide further de-
tails on ACE, its evaluation, and the comparison with other
methods published in literature. Specifically, in Section 1,
we start by describing some details of the overall network
architecture and training protocol we used to deploy and
evaluate ACE in the main text:

• architecture and training process of the scene-agnostic
feature backbone;

• architecture and training process of the scene-specific
head network;

• choice of the loss function, including experimental val-
idation;

• details of the “Ensemble” variant of ACE (see Poker
in Table 2 of the main text), including an experimental
analysis on the size of the ensemble.

In Section 2 we extend the experimental evaluation sec-
tion of the main paper:

• derivation of the numbers we give for “mapping time”
and “map size” of the other algorithms in Tables 1 and
2 of the main paper;

• details on the curation of the new Waypots dataset;
• experiments showing the impact of training with and

without correlated gradients;
• experiments coupling different off-the-shelf feature

backbones with ACE;
• experiments varying backbone feature dimensionality;
• details on how we extract 3D point clouds from a

trained ACE network to visualize the map.

1. Implementation Details

1.1. Backbone Training

Our backbone architecture consists of the first 10 layers
(including skip connections) of the DSAC* [7] network de-
sign. The backbone takes a gray scale image as input, and
successively decreases the spatial resolution to 1

8 while in-
creasing the channel dimensions to 512.

We train our backbone on 100 scenes in parallel, attach-
ing 100 regression heads to it. Each regression head is a
multi-layer perceptron with 6 layers and width 512. There
is a skip connection after the first 3 layers of each head.
We train the backbone with half-precision floating point
weights. We apply strong data augmentation to the map-
ping images during backbone training. We use a brightness
and contrast jitter of 40%; a saturation and hue jitter of 30%
(before converting to grayscale); and we randomly re-scale
the images between 240px and 960px height. We use an
inverse scale sampling strategy, i.e. we rescale images ac-
cording to 1

s where s is a uniformly random scale factor.
This mimics scale changes caused by the camera uniformly
moving towards a scene. We warp images using homogra-
phies that correspond to random 3D rotations of up to 40◦.

We train the backbone with a batch size of 6 images per
regression head. To avoid memory issues, we compute for-
ward and backward passes for 10 regression heads at a time.
We accumulate gradients for all 100 regression heads before
triggering a parameter update. For training we use the first
100 training scenes of ScanNet [9], i.e. scenes scene0000 to
scene0099. ScanNet provides multiple scans per scene, but
they are not aligned. Thus, we use only one (the first) scan
for each scene, i.e. scans scene0000 00 to scene0099 00.

1.2. ACE Head Training

1.2.1 Network Design

The multi-layer perceptron we use as scene coordinate re-
gression head is composed of 8 1x1 convolutional layers,
all of width 512, with skip connections after layer 3 and 6;
followed by a final 1x1 convolutional layer producing the
scene coordinates. All the head layers use half-precision
floating point weights. As mentioned in the main text, we
experimented with both directly regressing 3D scene co-
ordinates (in which case the last layer would output a 3-
channel tensor), and regressing homogeneous coordinates.
In the latter case, the last layer outputs a 4D tensor of
(ẋ, ẏ, ż, ŵ), with ẏ = (ẋ, ẏ, ż)T being the homogeneous
representation of the 3D scene coordinates, and ŵ ∈ R be-

1



ing an un-normalized homogeneous parameter. Before de-
homogenizing the scene coordinates we compute w ∈ R+

from ŵ applying a biased (and clipped) Softplus operator
to ensure that the final 3D scene coordinates would be valid
and usable in the following RANSAC step.

Specifically, we compute w as follows:

w = min

(
1

Smin
, β−1 · log (1 + exp (β · ŵ)) + 1

Smax

)
(1)

Where Smin and Smax are the values we use to clip the scale
factor determined by w (in our experiments we set them to
0.01 and 4.0 respectively), and β is the parameter used to
ensure that when the network outputs ŵ = 0, the resulting
homogeneous parameter w becomes 1. This is to steer the
network towards producing a “neutral” homogeneous pa-
rameter (centered on 1). As such, for our experiments, we
set β = log(2)

1−S−1
max

.
We then de-homogenize the output of the network into

the tensor y containing 3D scene coordinates, as usual:

y =
ẏ

w
(2)

In both cases the coordinates output by the network,
for numerical stability, are learned relatively to the “mean”
translation of the camera poses associated to the mapping
frames. The final step of the scene coordinate regression
process is then to add the mean back to the prediction, be-
fore passing the tensor of 3D scene coordinates to the PnP-
RANSAC stage.

1.2.2 Training Details

As mentioned in the main text, key to the speed with which
we are able to train an ACE map is the fact that, first, we pre-
fill a buffer of patch features extracted from the set of train-
ing images (using the scene-agnostic backbone, this takes
∼1min), and then we just need to optimize the weights of
the regression head.

More specifically, we allocate a buffer able to contain 8
million 512-channel patch descriptors, together with their
associated 2D location in the source image, mapping cam-
era pose, and intrinsic parameters. We fill the buffer by re-
peatedly cycling over the shuffled training sequence. Each
image is augmented using a similar approach as the back-
bone training, but with a different set of hyperparameters
that we detail next. We apply a brightness and contrast jitter
of 10%, but no color and saturation jitter; randomly rescale
the input images between 320px and 640px height; and, fi-
nally, we apply in-plane random rotations of up to 15◦. We
can use these weaker data augmentation parameters to still
train the ACE regression heads accurately because the back-
bone has already been trained on strongly augmented im-
ages. The training images are passed through the convolu-

tional backbone and, for each one, we randomly select 1024
patches and their corresponding feature descriptors, which
we then copy into the training buffer, together with the other
metadata (2D patch location, camera pose and intrinsics).

We train the ACE head by repeatedly iterating over
the shuffled training buffer, as described in the main text.
Specifically, for a 5 minute mapping time (including the
time spent filling the buffer), we do this 16 times (epochs).

1.2.3 Choice of Loss Function

In order to train the ACE head networks to regress accu-
rate 3D scene coordinates, we use a tanh-based loss on the
reprojection errors, dynamically rescaled according to a cir-
cular schedule with a threshold decreasing throughout the
length of the training process (see Sec. 3.2 of the main text
for details). We experimented with alternative loss func-
tions as well, before settling on the one used in the main
text, and in Table 1 we show their accuracy on the 7 Scenes
dataset [27].

Firstly, we experimented with the reprojection loss de-
scribed in the DSAC* paper [7]. This loss is computed
piecewisely, using the L1 norm of the reprojection error up
to a threshold of τ = 100px, and switching to the square
root of the L1 norm past it. As described in the main text,
we also experimented with tanh losses, which effectively
clamp each patch’s individual contribution to the overall er-
ror used for optimization during training. The right side of
Table 1 shows the accuracy for different variants of the tanh
loss: (a) using a constant τ threshold set at 50px throughout
the training process; (b) linearly decreasing τ from 50px to
1px, i.e. the w(t) in Eq. 8 of the main text computed as:
w(t) = 1 − t; (c) quadratically decreasing τ from 50px to
1px (the circular schedule, as in Eq. 8 of the main text); and,
finally, (d) applying the circular schedule as in (c) but also
using the homogeneous coordinate prediction, as described
in the previous section (note that all other columns of the
table were directly predicting 3D coordinates).

Overall we see that using the circular schedule, with a
threshold decreasing over time, in order to focus the net-
work training to improve the prediction of reliable scene
coordinates (with the knowledge that unreliable predictions
will be effectively filtered by the RANSAC stage during lo-
calization) allows us to improve from the results obtained
using DSAC*’s piecewise loss. We also see how introduc-
ing the overparametrized homogeneous representation con-
sistently improves the overall accuracy of the method, espe-
cially on difficult scenes such as “RedKitchen” and “Stairs”.
As such, the latter is the variant we chose to deploy through-
out the paper.



Scene L1 →
√
L1

(DSAC* [7])

tanh-based

fixed
τ = 50px

linear schedule
τ = 50 → 1px

circular schedule
τ = 50 → 1px

circular schedule
+ homogeneous coords

Chess 100 100 100 100 100
Fire 99.1 99.3 99.5 99.3 99.5
Heads 99.8 99.8 99.8 99.7 99.7
Office 99.5 99.6 99.5 99.7 100
Pumpkin 100 99.9 99.8 99.8 99.9
RedKitchen 96.7 97.0 97.0 98.3 98.6
Stairs 69.4 68.1 66.8 70.5 81.9

Average 94.9 94.8 94.6 95.3 97.1

Table 1. Loss Functions. Performance of ACE on the 7 Scenes dataset [27] when trained using different loss functions. For each scene
we report the %-age of frames localized within 5cm/5◦ pose error. All columns except the right-most one deploy an ACE regression head
directly predicting 3D scene coordinates (see Sec. 1.2.1). The last column shows the contribution of the homogeneous coordinate encoding,
which is helpful, especially in a complex scene like “Stairs”. As such, the results in the main text use the tanh-based loss with circular
schedule and homogeneous coordinates.

1.3. Ensemble Variant

In the main text, we introduced an ensemble variant of
ACE that we evaluated on the five scenes of the Cambridge
Landmarks dataset [16]. We named that variant “Poker”, as
it is composed of four identical but independently trained
network heads, collaboratively contributing to the estima-
tion of the camera poses in the larger environments part of
the dataset. The main reasoning behind the introduction of
the ensemble of networks is that some of the scenes of the
dataset are covering a large area around the landmarks in
the city of Cambridge.

We postulated that, instead of training a single ACE
head to regress 3D scene coordinates for the entirety of
each landmark (a hard task, considering the map size and
training times we target), we could instead cluster the map-
ping frames into sub-regions and deploy multiple regression
heads, each focusing on a specific area of the scene.

In the following paragraphs, we describe how we split
the training data and ran localization to produce the results
we showed in Table 2 of the main text. We also present ad-
ditional results detailing how the ensemble variants perform
with a varying number of independently trained regression
heads.

1.3.1 Ensemble Training

Previous works [6] showed how using a Mixture of Experts
can help improving the performance of large-scale outdoor
camera localization. In this paper we adopt an approach in-
spired by the ESAC paper [6], training multiple ACE heads
on independent subsets of frames part of the training split
of each scene. We adapt the code they publicly released in
order to spatially cluster the images according to the posi-

tion of the camera at capture time. This is slightly different
from the approach described in the ESAC paper, as they
used the median scene coordinate for each image – which is
available as part of the Cambridge Landmarks training set.
We decided not to use that information in order to make the
method more resembling of a realistic use-case, where the
only information available at mapping time would be the
pose of the camera (provided by ARKit [1]/ARCore [13]),
but not the 3D point cloud of the scene (which would in-
stead have to be reconstructed offline via SfM).

Specifically, given a set of posed RGB images IM to
use as training to map a large-scale environment, we ap-
ply hierarchical clustering to the translation component of
each frame’s pose in order to obtain N disjoint training sets
[IM1

..IMN
]. Clustering is performed as follows:

• Initialization: Put all images in the first cluster IM1 .
• While the target number of clusters N has not been

reached:

– Select the largest cluster (by number of images
associated to it).

– Split it into two clusters using kMeans [4] (The
input to kMeans is the translation component of
the camera pose).

– Replace the large cluster with the two new ones
output by kMeans.

• Return the N clusters [IM1
..IMN

].

After clustering, we train N ACE regression heads fHi
,

one for each set of training images. As each head is trained
independently from each other, both the mapping time and
the map size scale linearly with the number of elements part
of the ensemble, although the process can be trivially paral-
lelized to save time by using multiple GPUs, if available.



1.3.2 Ensemble Localization

Localization for the ensemble variant of ACE is straight-
forward: we simply run the standard localization pipeline
separately for each trained map, then pick the camera pose
having the most inliers after RANSAC and LM-based re-
finement.

It’s worth noting that, since the feature extraction back-
bone is scene-agnostic, we can optimize the localization
phase by running the query images through the backbone
fB just once, outputting image features fi. We can then
pass such features through the N ACE coordinate regres-
sion heads fHi

to regress the scene coordinates, which are
then passed to N instances of the RANSAC algorithm for
pose estimation.

1.3.3 Ensemble Results

In Table 2 we show how the performance of ACE on the
Cambridge Landmarks dataset [16] varies when changing
the number of maps part of the ensemble. Note how the
error initially decreases while we increase the number of
ACE heads being trained – hinting to the fact that limiting
the spatial extent covered by the frames used for training
is advantageous with such a fast/aggressive training regime
– then saturates past the ensemble with 4 ACE regressors.
The fact that the “Shop” scene does not seem to benefit from
using multiple ACE heads for regression can be explained
by considering that the mapped area is already limited, thus
not requiring further clustering. We chose to present the
results for an ensemble of four maps (which we named
“Poker”) in the main text because it achieves better results
than the baseline method (DSAC*) within a fraction of the
mapping time.

The clustering and localization approach described in
this section has been deliberately kept simple to showcase
the potential of using multiple regression heads to map large
areas (as this is not the focus of this work, but merely an
extension) but can, with clever engineering and tuning, be
made faster and more accurate, for example by tailoring the
size of each ensemble to the area covered by its scene.

2. Experimental Details
2.1. Resource Footprint of Competitors

2.1.1 Active Search [23, 24]

Mapping Time. For 7Scenes [27] and 12Scenes [30], we
report the average triangulation time of COLMAP [25] us-
ing SIFT [18] features and known camera poses. These
timings were kindly provided by the authors of [5] who
generated alternative SfM ground truth for the aforemen-
tioned datasets. They ran feature detection and parts of fea-
ture matching on GPU, while triangulation ran on CPU. Re-

construction times vary a lot between scenes: Heads is the
fastest scene with 6 minutes reconstruction, RedKitchen is
the slowest scene with 10 hours reconstruction. On average,
7Scenes took 3.3h per scene to reconstruct, and this is the
time we report for Active Search in Fig. 1 of the main paper.
12Scenes reconstructed in 35 minutes on average per scene,
due to having fewer mapping frames than 7Scenes. Aver-
aging the reconstruction times across all scenes of 7Scenes
and 12Scenes yields 1.5h, the number we give in Table 1 of
the main paper.

For Cambridge Landmarks [16], we found no public
record of reconstruction times. The SfM pseudo ground
truth was generated by running VisualSfM [31] on the com-
bined set of training and test images. It is unclear whether
running SfM on the training set alone, as one would have
to do in practise, would result in camera poses of compa-
rable quality. In terms of mapping frame count, we found
Cambridge Landmarks comparable to 12Scenes on average.
Thus, we assume that the 35 minutes reconstruction time
for 12Scenes would approximately also hold for Cambridge
Landmarks, and report this number in Table 2 of the main
paper.

Note: These times do not include any scene-specific pre-
processing that the relocalizer might do on top of the SfM
reconstruction, such as building acceleration data structures
for faster matching.

Map Size. For each scene, Active Search needs to store
the 3D point cloud, a list of feature descriptors per 3D point,
as well as co-visibility information and a visual dictionary.
Overall, feature descriptors constitute the largest portion of
the map size, and we disregard all other factors. Active
Search stores SIFT [18] descriptors, i.e. 128 byte if stored
in unsigned char precision. At most, Active Search could
store all observed descriptors for each 3D point in the SfM
reconstruction, i.e. one descriptor for all feature detections
that lead to a triangulated 3D point. However, in practise,
Active Search runs a clustering algorithm on all descriptors
per 3D point, and creates one representative descriptor per
cluster. Based on communication with the authors of [24],
we assume that Active Search stores descriptors for only
30% of feature observations. The COLMAP reconstruc-
tion statistics reported in [5] include the number of triangu-
lated 3D points, and the number of feature observations for
7Scenes [27] and 12Scenes [30]. We use these statistics to
calculate an average descriptor storage demand of 200MB
per scene for these two datasets. This is the number we give
in Table 1 of the main paper.

For Cambridge Landmarks [16], Camposeco et al. report
an average memory demand of 200MB per scene in [8] for
Active Search. This is the number we give in Table 2 of the
main paper.



Scene DSAC*
(Full) [7] ACE ACE Ensemble

2 models 3 models 4 models 5 models 6 models 7 models

Court 34/0.2 43/0.2 32/0.2 32/0.2 28/0.1 29/0.1 28/0.1 27/0.1
King’s 18/0.3 28/0.4 23/0.4 20/0.4 18/0.3 18/0.3 18/0.3 16/0.3
Hospital 21/0.4 31/0.6 22/0.4 23/0.5 25/0.5 24/0.5 25/0.5 23/0.5
Shop 5/0.3 5/0.3 6/0.2 5/0.3 5/0.3 5/0.3 6/0.3 5/0.3
St. Mary’s 15/0.6 18/0.6 13/0.4 12/0.4 9/0.3 9/0.3 9/0.3 9/0.3

Average (cm/◦) 19/0.4 25/0.4 19/0.3 18/0.4 17/0.3 17/0.3 17/0.3 16/0.3

Mapping Time 15h 5min 10min 15min 20min 25min 30min 35min
Map Size (MB) 28MB 4MB 8MB 12MB 16MB 20MB 24MB 28MB

Table 2. ACE Ensemble. Performance of the ACE Ensemble variants on scenes from the Cambridge Landmarks dataset [16]. We report
the median position and rotation errors, together with the time and storage required for each map.

2.1.2 D.VLAD+R2D2 [19]

Mapping Time. We report the average triangulation time
of COLMAP [25] in Table 1 of the main paper. Please
see our reasoning for Active Search, explained above. This
assumes that a COLMAP reconstruction using R2D2 [19]
takes approx. the same time as when using SIFT [18].

Map Size. Following our reasoning for Active Search
(see above) we approximate the map size with the
memory needed to store descriptors. We assume that
D.VLAD+R2D2 stores descriptors for all feature observa-
tions, and uses 256 bytes per descriptor for 128 floating-
point entries with half precision. We found no public
record of R2D2 reconstruction statistics for 7Scenes [27]
and 12Scenes [30]. Re-using the reconstruction statistics
of [5], we arrive at 1GB map size on average. This is the
number we give in Table 1 of the main paper.

2.1.3 hLoc (SP+SG) [20, 21]

Mapping Time. We report the average triangulation time
of COLMAP [25] in Table 1 and Table 2 of the main paper.
Please see our reasoning for Active Search, as explained
above. This assumes that a COLMAP reconstruction using
SuperPoint [10] takes approximately the same time as when
using SIFT [18] features.

Map Size. Following our reasoning for Active Search
(see above) we approximate the map size with the memory
needed to store descriptors. We assume that hLoc stores
descriptors for all feature observations, and uses 512 bytes
per descriptor for 256 floating-point entries with half preci-
sion. We found no public record of SuperPoint reconstruc-
tion statistics for 7Scenes [27] and 12Scenes [30]. Re-using
the reconstruction statistics of [5], we arrive at 2GB map
size on average across 7Scenes and 12Scenes. This is the

number we give in Table 1 of the main paper. For 7Scenes
alone, we arrive on 3.5GB average map size, and this is the
number we state in Fig. 1 of the main paper. This aligns
well with the 3.3GB average map size for hLoc on 7Scenes
that is reported by Zhou et al. in [33]. For Cambridge Land-
marks [16], Zhou et al. report an average memory demand
of 800MB per scene in [33] for hLoc (SP+SG). This is the
number we give in Table 2 of the main paper.

2.1.4 pixLoc [22]

Mapping Time. pixLoc is a method that works on top of
existing 3D map reconstructions. Thus, as mapping time in
Table 1 and Table 2 of the main paper, we report the av-
erage triangulation time of COLMAP [25] using SIFT [18]
features, see our reasoning for Active Search above.

Map Size. pixLoc relies on dense features to optimize
map-to-image alignment. We assume that it is more advan-
tageous to store the original mapping images and compute
features on the fly, than it is to store dense descriptors for all
mapping images. Additionally, [22] uses DenseVLAD [28]
to retrieve the top reference images for each query image,
together with the scene point cloud to associate 3D coordi-
nates to the pixels of the reference images. Thus, in Table 1
and Table 2 of the main paper we approximate the map size
of pixLoc with the average memory demand of storing all
mapping images, as the additional space required to store
retrieval descriptors and point cloud is tiny in comparison.

2.1.5 hybridSC [8]

Mapping Time. hybridSC is a compression algorithm
that reduces the average size of feature descriptors. It con-
stitutes a post-processing on top of existing 3D map recon-
structions. We ignore any overhead incurred by descriptor
compression, and report the average triangulation time of



COLMAP [25] using SIFT [18], see our reasoning for Ac-
tive Search above. This is the number we give in Table 2.

Map Size. We report the average memory demand per
scene given in [8] in Table 2 of the main paper.

2.1.6 GoMatch [33]

Mapping Time. GoMatch estimates a pose by matching
constellations of 2D feature detections against a 3D point
cloud. Thus, as mapping time in Table 2 of the main pa-
per, we report the average triangulation time of COLMAP
[25] using SIFT [18] features, see our reasoning for Active
Search above.

Map Size. We report the average memory demand per
scene given in [33] in Table 2 of the main paper.

2.1.7 PoseNet17 [15]

Mapping Time. As mapping time in Table 2 of the main
paper, we report the range of training times given in [15].

Map Size. We report the memory demand given in [8].

2.1.8 MS-Transformer [26]

Mapping Time. We used the code released by the authors
of the paper [26] to get an estimate of the time required to
train a Multi-Scene Transformer network on the four scenes
from the Cambridge Landmarks dataset [16] they report
results for (the paper doesn’t report results for the “Great
Court” scene). We found that, on a machine equipped with
a Nvidia RTX A6000 GPU, training the model for 1 epoch
takes approximately 3 minutes. From the paper we saw that,
on the Cambridge dataset, the training should run for 550
epochs initially, followed by 40 epochs in which only the
position branch is optimized. This means that the network
would be fully trained in approximately 29.5h but, as the
same network can then be used to localize in all four scenes
of the dataset, in Table 2 of the main text we report the “av-
erage” per-scene time of 7h.

Map Size. As per the paper [26], the trained network has
a memory footprint of 74.6MB. Since the network can be
used to localize in all four scenes of the Cambridge Land-
marks dataset considered by the authors, in the main text we
report an “average” per-scene map size of 18MB.

2.1.9 SANet [32]

Mapping Time. The SANet paper uses a scene-agnostic
network to interpolate the coordinate maps associated to the

top-scoring images returned by a retrieval method such as
NetVLAD [2]. As such we can consider the time it takes
to create the retrieval index for the set training images as
the mapping time. In [32], the authors report that each
forward pass of NetVLAD takes approximately 0.06s. We
can compute the average mapping time per scene by simply
multiplying the above by the number of frames in the train-
ing sets of the various datasets. For the indoor datasets (7
Scenes [27] and 12 Scenes [30]) the average scan length is
2259 frames. As such, we report in Table 1 of the main pa-
per a mapping time of ∼2.3min. For the Cambridge Land-
marks dataset [16] the average training scan length is 1073
frames, so we report a mapping time of ∼1min in Table 2.

Map Size. According to [32], for each element of the
training set, SANet requires to store the (resized) RGB-D
image, its pose, and the corresponding NetVLAD descrip-
tion, for a total of 248kB. Similarly to the previous para-
graph, we use the avg. length of the training scans in both
indoor and outdoor datasets to derive the “average” size of
SANet maps. In the main paper we thus report ∼550MB
for the indoor maps and ∼260MB for the outdoor maps.

2.1.10 SRC [11]

Mapping Time. The Scene Region Classification ap-
proach [11] is based on a neural network classifying each
pixel of the query images into one of the discrete regions de-
termined via hierarchical partitioning of RGB-D mapping
images. As such, the mapping time is comprised of two
components: (a) the time required to create the region par-
titions, and (b) the training of the Scene Region Classifica-
tion network, learning to classify pixels in the input images
into their respective region. In [11] the authors claim that
the training of the region classification network converges
in ∼2min, so we report that in Tables 1 and 2 of the main
text, but that doesn’t include the time required to partition
the training data. In our experiments with the code publicly
released by the authors we saw that hierarchical partitioning
takes between 1 and 2 minutes per scene (on 7 Scenes [16]),
and that ought to be added to the mapping time.

Map Size. In [11] the authors report that a trained net-
work occupies ∼40MB.

2.2. Wayspots Dataset

2.2.1 Scene Selection

We take the 10 scenes of our Wayspots dataset from the
training split of the MapFree [3] dataset. The MapFree
dataset is designed for relative pose regression from pairs
of images. As training data, Arnold et al. [3] provide 460
outdoor scenes with two fully registered scans each. These



scans are meant as source for sampling image pairs to train
relative pose regression. We re-purpose this data for stan-
dard visual relocalisation using one scan as mapping se-
quence, and using the second scan for queries. We re-
serve the first 200 scenes of the MapFree training corpus
for training an ACE backbone variant, see Sec. 2.4. For our
Wayspots dataset, we selected the scenes s00200 - s00209.

2.2.2 Pseudo Ground Truth

The MapFree dataset consists of scans from phones that ran
RGB-based visual odometry to track camera poses. Arnold
et al. [3] triangulated each scan using the phone’s cam-
era poses, and registered scans of the same scene using
COLMAP [25]. They also refined camera poses using bun-
dle adjustment. The bundle-adjusted SfM poses are what
the MapFree dataset provides as pseudo ground truth.

However, we are interested in using the original phone
poses for mapping since they can be generated in real-time,
and thus incur practically no further mapping overhead.
Arnold et al. [3] kindly provided the original phone poses
based on our request. We can use the phone poses of the
mapping scan for creating a scene representation. How-
ever, phone poses of the query scan are not registered to
the mapping poses. To enable evaluation, we register the
phone poses of the mapping scan to their SfM counterpart
poses, essentially registering them to the SfM query poses.
In doing so, we regard the SfM poses as the unobservable
pseudo ground truth, and the phone poses as the less precise
– but observable – mapping input.

Note: Although our dataset does not use SfM poses for
mapping, SfM-based relocalizers might still have an advan-
tage on these scenes. The MapFree dataset does only con-
tain scenes where COLMAP triangulation and COLMAP
registration was successful. Thus, there might be a selec-
tion bias in favour of sparse feature-based methods. In our
main paper, we only compare scene coordinate regression
approaches on this dataset, where we do not expect a bias
towards one of the methods [5].

2.2.3 Phone-to-SfM Pose Alignment

To register phone poses to SfM poses, we use the Kabsch
algorithm [14] within a RANSAC loop [12], relying on 3D
camera positions alone. We sample 1000 random triplets
of corresponding camera positions to generate registration
hypotheses. We rank hypotheses by inlier counting with a
threshold of 10cm. We re-fit the winning hypotheses to all
inlier correspondences. Note that Arnold et al. have already
re-scaled the SfM poses according to the phone trajectories
after bundle adjustment to prevent scale drift [3].

Due to SfM poses being bundle-adjusted, we cannot ex-
pect perfect alignment with the original phone poses. We
list alignment errors for each scene in Table 3. Since we do

Statue Winter Sign

Mapping Query Mapping Query

Figure 1. Hard Scenes. Example frames from the two hardest
scenes of the Wayspots dataset. These scenes where mapped from
close-up but queried from afar.

not use camera rotation in our pose registration, statistics
over rotation alignment provide a good plausibility check
on the success of our approach. We see that some scenes
exhibit noticeable drift between poses from phone tracking
and poses from SfM. However, the median alignment error
is below 10cm for all scenes, such that at least 50% relocal-
isation rate is achievable for all scenes using our proposed
error threshold of 10cm and 5◦. Better results are possible
if a method refines mapping poses during mapping.

To verify that alignment errors are not the main cause
of poor results on some scenes, we repeat experiments with
ACE using SfM poses for mapping, see Table 3. While re-
sults do indeed improve, they improve only moderately on
average. Difficult scenes remain difficult (such as “Win-
ter Sign” and “Statue”) even when factoring out alignment
errors of the pseudo ground truth. See Fig. 1 for example
frames of these two scenes, highlighting their challenges.

2.3. Gradient Decorrelation

We train ACE with correlated gradients to show the detri-
mental effect on accuracy and stability. Akin to DSAC* [7],
we train ACE by using all features per mapping image, and
by shuffling the ACE buffer image-wise. In this variant,
ACE sees correlated features from a single mapping im-
age during each training iteration, as opposed to random
features selected from the entire mapping sequence. Ac-
curacy deteriorates across all datasets, see Table 4. The
effect is particularly pronounced on Cambridge where in-
dividual scenes, such as St. Marys Church, diverge com-
pletely. Note that ACE with correlated gradients still ex-
ceeds the 5 minute version of DSAC*. ACE starts with
strong backbone features, and does more training iterations
in the same time due to the small network.

2.4. Feature Backbone

We combine ACE training with some popular feature
backbones and report results in Table 5. Training a back-
bone specifically for the task of scene coordinate regres-
sion achieves best results. Descriptor backbones of sparse
feature-matching pipelines use 128 or 256 feature dimen-
sions for faster matching, and leaner storage. In contrast,



Number of Frames Phone-to-SfM Alignment Residuals ACE Results (10cm,5◦)

Scene Mapping Query
Position

(mean/median/max)
Rotation

(mean/median/max)
Mapping w/
Phone Poses

Mapping w/
SfM Poses

Cubes 581 575 2.6cm/1.9cm/8.6cm 0.6◦/0.6◦/0.9◦ 97.0% 97.6%
Bears 581 580 1.3cm/1.2cm/3.1cm 0.5◦/0.5◦/0.9◦ 80.7% 80.9%
Winter Sign 580 580 2.1cm/1.4cm/13.8cm 0.6◦/0.6◦/2.2◦ 1.0% 0.7%
Inscription 578 555 4.4cm/3.7cm/21.5cm 1.0◦/1.0◦/1.5◦ 49.0% 59.5%
The Rock 579 578 5.1cm/5.5cm/10.2cm 0.7◦/0.8◦/1.1◦ 100% 100%
Tendrils 580 581 8.4cm/4.6cm/26.9cm 1.7◦/1.7◦/2.0◦ 34.9% 34.6%
Map 575 503 7.2cm/4.5cm/23.2cm 1.0◦/0.9◦/1.9◦ 56.5% 87.7%
Square Bench 580 577 8.4cm/5.9cm/22.1cm 0.7◦/0.6◦/1.0◦ 66.7% 93.9%
Statue 560 553 14.5cm/9.3cm/43.6cm 0.5◦/0.5◦/1.2◦ 0% 0%
Lawn 575 579 3.3cm/3.2cm/6.2cm 0.4◦/0.5◦/0.9◦ 35.8% 40.4%

Average 52.2% 59.5%

Table 3. Wayspots Pose Alignment. Evaluation of the alignment quality between the phone’s poses (estimated using visual odometry, in
real time) and bundle-adjusted SfM poses obtained offline (used as pseudo ground truth to evaluate camera relocalization results) on the
Wayspots dataset. We also show, on the right, the difference in performance achieved by ACE when using phone poses, vs. using SfM
poses during mapping. In Figure 4 of the main paper we report the results obtained using the former, as that’s ACE’s intended use case.

7Scenes 12Scenes Cambridge
Method Gradients Mapping

Time SfM poses D-SLAM poses SfM poses D-SLAM poses (avg. median error) Wayspots

DSAC* correlated 15h 96.0% 81.1% 99.6% 98.8% 19cm/0.4° 50.7%
DSAC* correlated 5min 3.6% 5.5% 0.0% 0.2% 2375cm/49° 7.4%
ACE correlated 5min 91.2% 72.9% 74.3% 75.2% 406cm/8.7° 49.7%
ACE decorrelated 5min 97.1% 80.8% 99.9% 99.6% 25cm/0.4° 52.2%

Table 4. Gradient Decorrelation. The gray line marks a version of ACE where the training buffer is shuffled image-wise instead of
feature-wise, akin to the training procedure of DSAC*. Gradient decorrelation improves accuracy and stability of ACE.

scene coordinate regression can benefit from higher dimen-
sional features with neglectable impact on computation time
or memory. Training our backbone on ScanNet [9] yields
best results. We also trained a backbone variant on the
MapFree dataset [3]. We used scenes s00000 to s000991,
and both available scans per scene since they are registered.
The MapFree backbone performs slightly worse than the
ScanNet backbone. Presumably ScanNet scenes, being in-
doors, contain less uninformative areas like sky or ground.

2.5. Map Visualization

To create 3D representations of the maps learned by ACE
(as shown in Fig. 4 and 5 of the main paper), we run the
mapping sequence through the learned network and accu-
mulate 3D scene coordinate predictions. To obtain colored
point clouds, we rescale the mapping images to the network
output resolution, and read out the color of each predicted
point. To de-clutter the point clouds, we remove coordinate
predictions that are more than 10m from the image plane.

1We reserved the first 200 scenes of the MapFree training set for en-
coder experiments but ended up only using the first 100 scenes.

Backbone
Descriptor

Dim.
Accuracy

(7Scenes, 5cm5◦)

DenseSIFT [17] 128 83.0%
DISK [29] 128 73.6%
R2D2 [19] 128 87.7%
SuperPoint [10] 256 91.6%

ACE [MapFree [3]] 512 91.5%

ACE [ScanNet [9]]
128 95.8%
256 96.4%
512 97.1%

Table 5. Backbones. We can use multiple off-the-shelf backbones
with ACE. Our backbone trained on ScanNet achieves best results.

To visualize camera trajectories, we connect consecutive
camera positions with a line. We skip lines when cameras
are further than 0.5m apart, assuming an outlier estimate.
To also show camera orientation, we place a camera frustum
for 1 out of 25 frames.



References
[1] Apple. ARKit. Accessed: 11 November 2022. 3
[2] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. NetVLAD: CNN architecture for
weakly supervised place recognition. In CVPR, 2016. 6

[3] Eduardo Arnold, Jamie Wynn, Sara Vicente, Guillermo
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